Evaluating the Effects of Sedimentary Cycles (Aeolian and Fluvial) on Chemical Weathering Indices in Rafsanjan Region, Southeast of Iran

Document Type : Research Paper

Authors

1 Soil Science Department, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2 Soil Science Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

3 Soil Science Department, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

4 Institute of Geophysics, University of Tehran, Tehran, Iran

Abstract

Chemical indices are widely used for characterizing the degree of weathering. In this study, we focused on evaluating the capability of chemical weathering indices to distinguish the sequence of aeolian-fluvial sediments in an arid region of Iran. Seven dominant geoforms were selected in Rafsanjan region, southeast of Iran, namely pediment, alluvial fan, margin of pediment and sand sheet, desert pavement, margin of fan and cultivated clay flat, active drainage, and margin of fan and uncultivated clay flat. One representative pedon was selected, described, and sampled for each geoform. The soil physicochemical properties of different horizons of each pedon were determined. We calculated various weathering indices, including weathering index of Parker (WIP), product index (PI), chemical index of alteration (CIA), silica-sesquioxide ratio (Kr), and CIA/WIP ratio (IR), and elucidated their depth distributions. The heterogeneity of the parent material within a given pedon was confirmed with field evidence, depth functions of clay-free sand fractions, and the uniformity value (UV) index. The horizon sequence with lithologic discontinuities (LDs) indicated that the studied pedons were formed by cyclic deposition of aeolian and fluvial sediments. The vertical variations of the weathering indices as well as the vertical trend of the Al2O3/SiO2 ratio (as a grain size index) were entirely consistent with the presence of the LDs. The results suggested that different factors, such as grain size, sedimentation cycling, and their interactive effects, should be considered in order to accurately assess the vertical trend of chemical weathering indices.

Keywords


References 
 
Ahr SW, Nordt LC, Driese SG. 2012. Assessing lithologic discontinuities and parent material uniformity       within the Texas sandy mantle and implications for archaeological burial and preservation potential in       upland settings. Quaternary Research, 78; 60–71. Carpentier M, Chauvel C, Maury RC, Mattiellic N. 2009. The “zircon effect” as recorded by the chemical       and Hf isotopic compositions of Lesser Antillers forearc sediments. Earth and Planetary Science Letters,       287; 86–99. Chetelat B, Liu CQ, Wang QL, Zhang GP. 2013. Assessing the influence of lithology on weathering indices       of the Changjiang River sediments. Chemical Geology, 359; 108–115.  Clift PD, Hodges KV, Heslop D, Hannigan R, Van Long H, Calves G. 2008. Correlation of Himalayan       exhumation rates and Asian monsoon intensity. Nature Geoscience, 1; 875–880. Cremeens DL, Mokma DL. 1986. Argillic horizon expression and classification in the soils of two Michigan       hydrosequences. Soil Science Society of America Journal, 50; 1002–1007.  Delvaux B, Herbillon AJ, Vielvoye L. 1989. Characterization of a weathering sequence of soils derived       from volcanic ash in Cameroon. Taxonomic, mineralogical and agronomic implications. Geoderma, 45;       375–388. Derakhshan-Babaei F, Nosrati K, Tikhomirov D, Christl M, Sadough H, Egli M. 2020. Relating the spatial       variability of chemical weathering and erosion to geological and topographical zones. Geomorphology,       363; 107235.  Esfandiarpour-Boroujeni I, Mosleh Z, Karimi AR, Martínez-Casasnovas JA. 2020. Detection of lithologic       discontinuities in soils: a case study of arid and semi-arid regions of Iran. Eurasian Soil Science, 53;       1374- 1388. Farpoor MH, Neyestani M, Eghbal MK, Esfandiarpour Borujeni I. 2012. Soil–geomorphology relationships       in Sirjan playa, south central Iran. Geomorphology, 138; 223–230. Fedo CM, Young GM, Nesbitt HW. 1997. Paleoclimatic control on the composition of the Paleoproterozoic       Serpent Formation, Huronian Supergroup, Canada: a greenhouse to icehouse transition. Precambrian       Research, 86; 201–223. Gaillardet J, Dupre B, Alle`gre CJ. 1999. Geochemistry of large river suspended sediments: silicate       weathering or recycling tracer? Geochimica et Cosmochimica Acta,  63; 4037–4051. Garzanti E, Ando S, France-Lanord C, Censi P, Vignola P, Galy V, Lupker M. 2011. Mineralogical and       chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh).       Earth and Planetary Science Letters, 302; 107–120. Garzanti E, Ando S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y. 2010. Mineralogical and       chemical variability of fluvial sediments 1. Bedload sand (Ganga–Brahmaputra, Bangladesh). Earth and       Planetary Science Letters, 299; 368–381. 
137                                        Esfandiarpour-Boroujeni et al. 
DESERT  2022, 27(1): 115-139                                                                                                                                                    122   
Garzanti E, Padoan M, Setti M, López-Galindo A, Villa IM. 2014. Provenance versus weathering control       on the composition of tropical river mud (southern Africa). Chemical Geology, 366; 61–74.  Garzanti E, Resentini A. 2016) Provenance control on chemical indices of weathering (Taiwan river sands).       Sedimentary Geology, 336; 81-95.  Gee GW, Bauder JW. 1986. Particle size analysis, in: Klute A. (Ed.), Methods of Soil Analysis, Agron.       Monger, Madison, pp. 383-411. Geological survey and mineral exploration of Iran. 2020. http://www.gsi.ir. Guo Y, Yang S, Su N, Li C, Yin P, Wang Z. 2018. Revisiting the effects of hydrodynamic sorting and       sedimentary recycling on chemical weathering indices. Geochimica et Cosmochimica Acta, 227; 48-63. Harnois L. 1988. The CIW index: a new chemical index of weathering. Sedimentary Geology, 55; 319–      322.  Hatano N, Yoshida K, Sasao E. 2019. Effects of grain size on the chemical weathering index: A case study       of Neogene fluvial sediments in southwest Japan. Sedimentary Geololgy, 386; 1–8. Honda M, Shimizu H. 1998. Geochemical, mineralogical and sedimentological studies on the Taklimakan       Desert sands. Sedimentology, 45; 1125-1143.  IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015       international soil classification system for naming soils and creating legends for soil maps. In: World       Soil Resources Reports No. 106. FAO, Rome. Laceby JP, Evrard O, Smith HG, Blake WH, Olley JM, Minella JPG, Owens PN. 2017. The challenges and       opportunities of addressing particle size effects in sediment source fingerprinting: A review. Earth-      Science Reviews, 169; 85-103. Lanyon LE, Heald WR. 1982. Magnesium, calcium, strontium, and barium, in: Page, A.L. et al. (Eds.),       Methods of soil analysis. Agron. Monger, Madison, pp. 247–262.  Liu S, Li J, Zhang H, Cao P, Mi B, Khokiattiwong S, Kornkanitnan N, Shi X. 2020. Complex response of       weathering intensity registered in the Andaman Sea sediments to the Indian Summer Monsoon over the       last 40 kyr. Marine Geology, 426; 106206. Lupker M, France-Lanord C, Galy V, Lave JM, Gaillardet J, Gafurel AP, Guilmette C, Rahman M, Singh       SK, Sinha R. 2012. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga       basin). Geochim. Cosmochim. Acta, 84; 410-432 Moignien R. 1966. Review of Research on Laterites. Natural Resources Research W. United Nations       Educational, Scientific and Cultural Organization, Paris. 148 pp. Nelson RE. 1982. Carbonate and gypsum, in: Page, A.L. (Ed.), Methods of Soil Analysis. Agron. Monger,       Madison, pp. 181-196. Nelson DW, Sommers LE. 1982. Total Carbon, Organic matter, in: Page, A.L., et al. (Ed.), Method of Soil       Analysis. Agron. Monger, Madison, pp. 539–577. Nelson RE, Klameth LC, Nettleton WD. 1978. Determining soil gypsum content and expressing properties       of gypsiferous soils. Soil Sci Soc Am J, 42; 659-661. Nesbitt HW, Young GM. 1982. Early Proterozoic climates and plate motions inferred from major element       chemistry of lutites. Nature, 299; 715–717. Nesbitt HW, Young GM, McLennan SM, Keays RR. 1996. Effects of chemical weathering and sorting on       the petrogenesis of siliciclastic sediments, with implications for provenance studies. Journal of Geology,       104; 525-542. Okewale IA. 2020. Applicability of chemical indices to characterize weathering degrees in decomposed       volcanic rocks. Catena, 189; 104475. Parker A. 1970. An index of weathering for silicate rocks. Geological Magazine, 107; 501–504.  Price JR, Velbel MA. 2003. Chemical weathering indices applied to weathering profiles developed on       heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202; 397–416.  Qin X, Mu Y. 2011. Elimination and evaluation of grain size’s effect in analysis of chemical weathering of       loess–paleosol sequences. Chemie der Erde, 71; 53–58.  Roser BP. 2000. Whole–rock geochemical studies of clastic sedimentary suites. Memory of Geological       Society of Japan, 57; 73–89. 
DESERT  2022, 27(1): 115-139                                                                                                                                                    138   
 
123                            Esfandiarpour-Boroujeni et al. 
 
 
Roy PD, Caballero M, Lozano R, Smykatz-Kloss W. 2008. Geochemistry of Late Quaternary sediments       from Tecocomulco lake, central Mexico: implication to chemical weathering and provenance. Chemie       der Erde, 68; 383–393.  Ruxton BP. 1968. Measures of the degree of chemical weathering of rocks. The Journal of Geology, 76;       518–527.  Schoeneberger PJ, Wysocki DA, Benham EC, Soil Survey Staff. 2012. Field book for describing and       sampling soils. Natural Resources Conservation Service. National Soil Survey Center, Lincoln, NE. Soil Science Division Staff. 2017. Soil Survey Manual. U.S. Department of Agriculture, Handbook No. 18.       pp. 605 Soil Taxonomy. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service,       Washington, DC.  Song C, Ji H, Beckford HO, Chang C, Wang S. 2019. Assessment of chemical weathering and physical       erosion along a hillslope, southwest China. Catena, 182; 104133.  Tsai CC, Chen ZS. 2000. Lithologic discontinuities in Ultisols along a topo-sequence in Taiwan. Soil       Science, 165; 587–596. Vasu D, Karthikeyan K, Atole S, Paul R, Gaikwad SS, Humadevi K, Shabana S, Neha G, Roshani N,       Tiwary P, Chandran P. 2020. Elucidating the geogenic and pedogenic pathways of formation of soils of       Peninsular India – Signatures of past landscape modifications. Catena, 192; 104591. Wen QZ. 1989. The Geochemistry of Chinese Loess. Science Press, Beijing. [In Chinese] Yang SL, Ding F, Ding ZL. 2006. Pleistocene chemical weathering history of Asian arid and semi-arid       regions in loess deposits of China and Tajikistan. Geochimica et Cosmochimica Acta, 70; 1695–1709.  Zinck JA. 1989. Physiography and soils. Lecture-notes for soil students. Soil Science Division. Soil survey       courses subject matter: K6 ITC, Enschede, The Netherlands.