Simulation of the catchments hydrological processes in arid, semi-arid and semi-humid areas

Document Type: Research Paper

Authors

1 watershed Management, Faculty of Natural Resources, Since agriculture and Natural University, Sari

2 International Desert Research Center

Abstract

Hydrological processes and their spatial distribution directly are relevant to climate, topography, geology, and land use in the watershed. Therefore, use of a model whit integrity and high performance for simulating the process in deferent watersheds is very important. In this study was assessment performance of semi-distributed SWAT model in simulating hydrology processes in three watersheds with different climate: Jazmurian basin with 1258 (km2) in an arid climate, Khorramabad watershed white 2467 (km2) in a semi-arid climate and Talar watershed white 2057 climate in semi-humid climate. To this purpose, maps land use, soil, digital elevation model, and meteorological data in daily step collected from many stations for each region. After running the SWAT model, the calibration and validation model did whit SUFI2 algorithm. Performance models were assessed with statistical coefficients NS, R2 and bR2. The results showed that the values of these coefficients in Jazmurian basin is 0.56, 0.54 and 0.20, in Khorramabad watershed is 0.68, 0.72 and 0.32 respectively and in Talar watershed is 0.64 0.66 and 0.31 respectively. Overall, the results showed that the SWAT model performance in Talar watershed is higher than the other watersheds.

Keywords

Main Subjects


Abbaspour, K.C., 2012. SWAT-CUP SWAT calibration
    
and uncertainty programs - a user manual. Eawag:
    
Swiss Federal Institute Science and Technology.

Abbaspour, K.C., M,Vejdani, S, Haghighat, 2007.
    
SWAT-CUP calibration and uncertainty programs for
    
SWAT. Modsim 2007 International Congress on
    
Modelling and Simulation: Land, Water and
    
Environmental Management: Integrated Systems for
    
Sustainability, Christchurch, New Zealand.

Akhavan, S., F. Mousavi, J. Abedi, K. Abbaspour,
    
B.Yaghobi, 2010. Application of SWAT model to
    
estimating of water resources in Hamadan–Bahar
    
Watershed, Iran. 1th national National conference Conference of water Water
    
resources Resources Usage Researches, Iran.

Arnold, J.G., D.N. Moriasi, P.W. Gassman, K.C.
    
Abbaspour, M.J. White, 2012. SWAT: model use,
    
calibration, and validation. J. Transactions of the
    
ASABE. , 55(4); 1491-1508.

Azari, M., H.R. Moradi, B. Saghafian, M.Faramarzi,
    
2013. Assessment of Hydrological Effects of Climate
    
Change in Gourganroud River Basin. J. Water and
    
Soil. , 27(3); 537-547.

Beyranvand, Z., 2014, Simulation Runoff using SWAT
    
model in Khorramabad watershed. MsM.S.C c. These,
    
University of Zabol.

 Babaei-Fini, A., M. Farajzadeh, 2002. Temporal and  
    
spatial variations in precipitation patterns. J. Modares
    
Humanities, 6 (4); 51-69.

Bastani-Allahabadi, A., A. Telori, M. Joseini, 2012.
    
Assessment model for estimating runoff catchment
    
SWAT2009 of Kordan, National Conference of inter-
    
basin transfers, ShahreKord.  

Beven, K., 2001. How far can we go in distributed
    
hydrological modelling. J. Hydrol. Earth Syst. Sci., 5;
    
1–12.

Binaman J., C.A. Shoemaker, 2005. an analysis of high-
    
flow sediment event data for evaluating model
    
performance. J. Hydrological Processes, 19; 605-620.

Ficklin, D. L., I. T. Stewart, E. P. Maurer, 2013. Effects
    
of projected climate change on the hydrology in the
    
Mono Lake Basin. J. California Climatic Change,
    
116(1); 111-131.

Gassman, P.W., M. Reyes, C.H. Green, J.G. Arnold,
    
2007. The soil and water assessment tool: historical
    
development, applications, and future directions.
    
J. Transactions of the ASABE, 50(4); 1212-1250.

Gotzinger, J., Bgrdossy, A. 2007. Comparison of four
    
regionalization methods for a distributed hydrological
    
model. J. Hydrology, 333; 374–384.

Hrachowitz, M., H. H. G. Savenije, G. Blöschl, 2013. A
    
decade of predictions in ungauged basins (PUB)
    
review. Hydrological Sciences Journal, 58; 1198-
    
1255.

Hwa, K., Y.A. Pachepsky, J. Ha, J. Kim, M. Park, 2012.
    
The modified SWAT model for predicting fecal
    
coliforms in the Wachusett Reservoir Watershed. J.
    
Water Research, 46(15); 4750–4760.

Hyung–Kyung, J., P. Jong –Yoon, J. Hyun-Kyo, S.
    
Hyung-Jin, K. Hyung-Joong, K. seong-joon, 2011.
    
The uncertainty analysis of SWAT simulated stream
    
flow and water quality applied to Chungju dam
    
watershed of South Korea. Dep of Civil and
    
Environmental System Eng., Konkuk University
     Seoul, South Korea. 29 p.

Kavian, A., M., Golshan, H., Rouhani, A. Esmali, 2014,
    
Assesment of Physiographic Characteristics Effect on
    
SWAT Model Performance: A Case Study of Haraz
    
Catchment, Amol, Iran, J International Bulletin of 
    
Water Resources & Development, 1(03); 184-193. 

Khoi, D.N., T. Suetsugi, 2014. Impact of climate and
    
land-use changes on hydrological processes and
    
sediment yield-a case study of the Be
    
Rivercatchment, Vietnam. J. Hydrological Sciences,
    
59(5); 1095-1108.

Kirchner, J. W. 2012. Getting the right answers for the
    
right reasons: Linking measurements, analyses, and
    
models to advance the science of hydrology. J. Water
    
Resources Researches, 42; 1-5.

Koch, S., A. Bauwe, B. Lennartz, 2013. Application of
    
the SWAT Model for a tile-drained lowland
    
catchment in north-eastern Germany on subbasin
    
scale, Water Resour. Manag., 27; 791–805.

Lerat, J., V. Andréassian, C. Perrin, J. Vaze, J. M.
    
Perraud, P. Ribstein, C.  Loumagne, 2012. Do
    
internal flow measurements improve the calibration
    
of rainfall–runoff models. J.Water Resour. Res., 48 (2);
     1-18.

Li, Z., W. Liu, Z. F, 2009. Impact of land use change
    
and climate variability on hydrology in an
    
agricultural catchment on the Loess Plateau of China.
    
J. Hydrology, 377; 35-42.

Neitsch, S.L., J.G. Arnold, J.R. Kiniry, J.R. Williams,
    
2005. Soil and Water Assessment Tool Theoretical
    
Documentation - Version 2005. Grassland, Soil &
    
Water Research Laboratory, Agricultural Research
    
Service, and Blackland Agricultural Research Station,
    
Temple, Texas. 494p.

Neitsch, S.L., J.G. Arnold, J.R. Kiniry, J.R. Williams,
    
2011. Soil and water assessment tool theoretical
    
documentation version 2009, College Station: Texas
    
Water Resources Institute, Technical Report, No 406.

Pechlivanidis, I. G., N. R. Mclntyre, H. S. Wheater,
    
2010. Calibration of the semi-distributed PDM
    
rainfall–runoff model in the Upper Lee catchment,
    
UK. J. Hydrology, 386(1-4); 198-209.

Plesca, I., E. Timbe, J. F. Exbrayat, D.Windhorst, P.
    
Kraft, P. Crespo, K. Vache, H Frede, L. Breuer, 2012.
    
Model intercomparison to explore catchment

      functioning: Results from a remote montane tropical 

     rainforest. Ecol. Model., 239; 3-13.

Pokhrel, P., H. V. Gupta, 2011. On the ability to infer
    
spatial catchment variability using streamflow
    
hydrographs. Water Resourse Researches, 47 (8); 1-13.

Rathhen, H., N. Oppelt, 2012. SWAT grid: An interface
   
 for setting up SWAT in a grid-base discretizarion
    
scheme. J. Copmuter and Geosince, 45; 161-167.

Razavi, T., P. Coulibaly, 2013. Streamflow prediction in
    
ungauged basins; review of regionalization methods,
    
Journal of Hydrologic Engineering, 18; 958–975.

Salmani, H., M. Saravi, H. Rouhani, A. Salajegeh, 2013.
    
evaluation performance of ArcSWAT model and
    
Paraso program to simulate flow. Iran-Watershed
    
Management Science & Engineering, 7 (22); 1-14.

Santhi, C., J.G. Arnold, J.R. Williams, W.A. Dugas, L.
    
Hauck, 2001.Validation of the SWAT model on a
    
large river basin with point and nonpoint sources.
    
American Water Resources Association, 37; 1169-
    
1188.

Setegn, S. G., Dargahi, B., Srinivasan, A. M. Melesse,
    
2010. Modeling of Sediment Yield From Anjeni-
    
Gauged Watershed, Ethiopia Using SWAT Model.
    
Journal of the American Water Resources
    
Association, 46(3); 514–526.

Solaymani, H.R., A.K, Gosain, 2014. Assessment of    
    
climate change impacts in a semi-arid watershed in
    
Iran using regional climate models. Journal of Water
    
and Climate Change, 6; (1) 161-180.

Thampi, S. G., K. Y. Raneesh, T. V. Surya, 2010.
    
Influence of Scale on SWAT Model Calibration for
    
Streamflow in a River Basin in the Humid Tropics.
    
Water Resources Management, 24(15); 4567-4578.

Vaghefi, S.A., S.J. Mousavi, K.C. Abbaspour, R.
    
Srinivasan, J.R. Arnold, 2015. Integration of
    
hydrologic and water allocation models in basin-scale
    
water resources management considering crop pattern
    
and climate change: Kakheh River Basin in Iran.
    
Regional Environment Change, 15 (3); 475-484.

Vaghefi, S.A., S.J. Mousavi, K.C. Abbaspour, R.
    
Srinivasan, H. Yang, 2014. J. Hydrological Processes,
    
28 (4); 2018-2032.

Wang, S., Z. Zhang, G. Sun, P. Strauss, j. Guo, Y. Tang,
    
A. Yao, 2012. Multi-site calibration, validation, and
    
sensitivity analysis of the MIKE SHE Model for a
    
large watershed in northern China. Hydrology Earth
    
System Sciences, 16; 4621–4632.

Wei, X.H., W.F. Liu, P.C. Zhou, 2013. Quantifying the
    
relative contributions of forest change and climatic
    
variability to hydrology in large watersheds: a critical
    
review of research methods. J. Water., 5 (2); 728-746.

Yang, J., P. Reicher, K.C. Abbaspour, J. Xia, H. Yang,
    
2008. Comparing uncertainty analysis techniques for
    
a SWAT application to the Chao he Basin in China. J.
    
Hydrology, 358 (1–2); 1–23.

Yen, H., M.J. White, J. Jeong, J.G. Arnold, 2015.
    
Evaluation of alternative surface runoff accounting
    
procedures using the SWAT model. International
    
Journal Agriculture and Biology Engineering, 8 (1); 1-
    
15

                        Zuo, D., Z. Xu, J. Zhao. Karim C. Abbaspour, H. Yang,
    
2015. Response of runoff to climate change in the
     Wei River basin, China. Hydrological Sciences
    
Journal, 60 (3); 2604-2618.