Investigation of Climate Change Effect on Drought Characteristics in the Future Period using the HadCM3 model (Case Study: Khoy Station, Northwest of Iran)

Document Type: Research Paper

Authors

1 Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO)

2 Geo Science Research Dept., International Desert Research Center (IDRC), University of Tehran, Tehran, Iran c Faculty of Natural Resources, University of Tehran

3 Faculty of Natural Resources, University of Tehran

4 Faculty of Agricultural Engineering and Technology, University of Tehran

Abstract

     Investigation of drought event has a great importance in the natural resources and water resources management and planning. In this research, the effect of the climate change on drought characteristics in Khoy station was investigated using the HadCM3 model under B2 scenario. The statistical downscaling was executed using SDSM 4.2.9 and observed daily precipitation, observed predictors and large-scale predictors derived from the HadCM3 model. Afterwards the SPI was calculated for different time scales of 3, 12, 24, 48 months in the observed period of 1977-2006 and also three periods of 2007-2036, 2037-2066 and 2067-2096. The results show that the mean annual precipitation will decrease in the future periods, in the manner that the fourth and second periods respectively with the depletion of 48 mm (17%) and 34 mm (12%) than the observed period have maximum and minimum rate of the depletion. The results also show that the drought occurrence with more intensity, duration and frequency can occur in the future periods.

Keywords


Abbasi, F., M. Asmari, 2011. Forecasting and
     assessment of climate change over Iran during
     future decades using MAGICC-SCENGEN model.
     Water and Soil, 25; 70-83.

Babaeian, I., R. Modirian, M. Karimian, M. Zarghami,
     2015. Simulation of climate change in Iran during
     2071-2100 using PRECIS regional climate
     modelling system. Desert, 20; 123-134.

50

 
Bootsma, A., S. Gameda, D.W. McKenney, 2005.
     Impacts of potential climate change on selected
     agroclimatic indices in Atlantic Canada. Canadian
     Journal of Soil Science, 85; 329-343.

Braga, A.C.F.M., R.M. da Silva, C.A.G. Santos, G.C.
     de Oliveira, P. Nobre, 2013. Downscaling of a
     global climate model for estimation of runoff,
     sediment yield and dam storage: A case study of
     Pirapama basin, Brazil. Journal of Hydrology, 498;
     46-58.

Dastorani, M.T., A.R. Massah Bavani, S.
     Poormohammadi, M.H. Rahimian, 2011.
     Assessment of potential climate change impacts on
     drought indicators (case study: Yazd Station,
     Central Iran). Desert, 16; 159-167.

Golmohammadi, M., A. Massah Bavani, 2011.
     Investigation of climate change impact on drought
     intensity and duration. Water and Soil, 25; 315-326.

Hoerling, M., J. Eischeid, J. Perlwitz, X. Quan, T.
     Zhang, P. Pegion, 2012. On the increased
     frequency of Mediterranean drought. Journal of
     Climate, 25; 2146-2161.

IPCC, 2007. Summary for policy makers. In: IPCC.
     Climate change: The physical Science basic.
     Contribution of working group first to the Fourth
     assessment report of the intergovernmental panel
     on climate change. 1th ed., Cambridge university
     press, Cambridge.

Labedzki, L., 2006. Estimation of local drought
     frequency in central Poland using the standardized
     precipitation Index (SPI). Irrigation and Drainage,
     56; 67-77.

Lazar, B., M. Williams, 2008. Climate change in
     western ski areas: potential changes in the timing of
     wet avalanches and snow quality for the Aspen ski
     area in the years 2030 and 2100. Cold Regions
     Science and Technology, 51; 219-228.

Lee, J.H., C.J. Kim, 2013. A multimodel assessment of
     the climate change effect on the drought severity–
     duration–frequency relationship. Hydrological
     Processes, 27; 2800-2813.

Lee, J.H., H.H. Kwon, H.W. Jang, T.W. Kim, 2016.
     Future Changes in Drought Characteristics under
     Extreme Climate Change over South Korea.
     Advances in Meteorology, 2016; 1-19.

Loukas, A., L. Vasiliades, J. Tzabiras, 2008. Climate
     change effects on drought severity. Advances in
     Geosciences, 17; 23-29.

McKee, T.B., N.J. Doesken, J. Kleist, 1993. The
     relationship of drought frequency and duration to
     time scales. In Proceedings of the 8th Conference  
     on Applied Climatology, Anaheim, USA. pp. 179-
     183.

Mohammadi, H., M. Moghbel, F. Ranjbar, 2010. The
     study of Iran's precipitation and temperature
     changes using the MAGICC-SCENGEN model.
     Journal of Geography, 8; 125-142.

 Mohammadi, H., F. Taghavi, 2005. Trend of extreme

     indices of temperature and precipitation in Tehran.
     Geography Researches, 53; 151-172.

Morid, S., M. Moghaddam, Sh. Paymozd, H. Ghaemi,
     2005. Design of Tehran province drought
     monitoring system. Water Resources Management
     Co. (WRMC-Iran), Report number: 1, 196p.

Nandintsetseg, B., M. Shinoda, 2013. Assessment of
     drought frequency, duration, and severity and its
     impact on pasture production in Mongolia. Natural
     Hazards, 66; 995-1008.

Salajegheh, A., E. Rafiei Sardooei, A. Moghaddamnia,
     A. Malekian, Sh. Araghinejad, Sh. Khalighi
     Sigaroodi, A. Salehpour Jam, 2016. Prediction of
     climatic variables using statistical downscaling
     model (SDSM) in Future under Scenario A2.
     Desert Management, 4; 12-25.

Salehpour Jam, A., M. Mohseni Saravi, J. Bazrafshan,
     Sh. Khalighi Sigaroudi, 2015. Investigation of
     Climate Change Effect on Drought Characteristics
     in the Future Period using the HadCM3 model,
     Case Study: Northwest of Iran. Journal of Range
     and Watershed Management, 67; 537-545.

Sayari, N., A. Alizadeh, M. Bannayan, A. Farid
     Hossaini, M.R. Hesami Kermani, 2011.
     Comparison of two GCM models (HadCM3 and
     CGCM2) for the prediction of climate parameters
     and crop water use under climate change (case
     study: Kashafrood Basin). Water and Soil, 25; 912-
     925.

Schoof, J.T., S.C. Pryor, 2001. Downscaling
     temperature and precipitation: A Comparison of
     regression-based methods and artificial neural
     networks. International Journal of Climatology,
     21; 773-790.

Spinoni, J., G. Naumann, H. Carrao, P. Barbosa, J.
     Vogt, 2014. World drought frequency, duration,
     and severity for 1951-2010. International Journal of
     Climatology, 34; 2792-2804.

Enyew, B. D., H. A. J. Van Lanen, A. F. Van Loon,
     2014. Assessment of the impact of climate change
     on hydrological drought in Lake Tana catchment,
     Blue Nile basin, Ethiopia. Journal of Geology &
     Geosciences, 3; 174-185.

Wilby, R.L., T.M.L. Wigley, 2000. Precipitation
     predictors for downscaling: Observed and general
     circulation model relationships. International
     Journal of Climatology, 20; 641-661.

Yu, P.S., T.C. Yang, C.M. Kuo, H.W. Tseng, S.T.
     Chen, 2014. Climate change impacts on streamflow
     drought: a case study in Tseng-Wen reservoir
     catchment in southern Taiwan. Climate, 3; 42-62.

Zehtabian, Gh R., A. Salajegheh, A. Malekian, N.
     Boroomand, A. Azareh, 2016. Evaluation and
     comparison of performance of SDSM and
     CLIMGEN models in simulation of climatic
     variables in Qazvin plain. Desert, 21; 155-164.