Trend analysis and detection of precipitation fluctuations in arid and semi-arid regions

Document Type : Research Paper


1 Assistance Professors, Faculty of Natural Resources ,University of Tehran ,Karaj, Iran.

2 Department of Watershed Management Engineering, Sari University of Agricultural Sciences and Natural Resources, Iran

3 PhD Student in Combating Desertification, Semnan University, Iran

4 PhD Student in Watershed Management, Faculty of Natural Resources, University of Tehran, Iran


The most important impacts of climate change relate to temperature and precipitation. Precipitation is particularly important, because changes in precipitation patterns may lead to floods or droughts in different areas. Also, precipitation is a major factor in agriculture and in recent years interest has increased in learning about precipitation variability for periods of months to annual and seasonal trends and change points had been analyzed for 22 rainfall stations in Fars province during 1972 to 2011. Mann-Kendall non-parametric test and Sen’s method had been used to determine positive or negative trends; also Pettitt test, Standard normal homogeneity test, Buishand range test, Von Neumann ratio, for detection of change points in the time series had been implemented. The TFPW approach had been used in order to decline the effects of autocorrelation and serial correlation on Mann-Kendall test. The results of Mann-Kendall test and Sen’s Method showed decreasing trend for all rainfall stations except for the Monje station. But, no significant trends were observed in all stations. Also, the results indicated that the precipitation has not occurred nonhomogeneity; whereas all test indicated there is no change point on precipitation time series.  No change and abrupt shift were visible in the precipitation time series except in winter for Ali Abad Khafr; and Ali Abad Khafr; Tangab and Ramjerd based on pettitt test and Standard normal homogeneity test, respectively.


Main Subjects

Alexandersson, H., 1986. A homogeneity test applied to
     precipitation data. Journal of Climatology, 6; 661–
Buffoni, L., M. Maugeri, T. Nanni, 1999. Precipitation
     in Italy from 1833 to 1996. Theoretical and Applied
     Climatology, 63; 33–40.
Buishand, T. A., 1982. Some methods for testing the
     homogeneity of rainfall records. Journal of
     Hydrology, 58; 11–27.
Choubin, B., A. Malekian, H. Gharechaei, 2013.
     Investigating the trend of changes temporal in the
     water table of groundwater in an arid ecosystem (case
     study: Aspas), Journal of Desert Ecosystems, 1; 39-
Choubin, B., A. Malekian, M. Golshan, 2016a.
     Application of several data-driven techniques to
     predict a standardized precipitation index. Atmósfera.
     29(2); 121–128.
Choubin, B., A. Malekian, S.S. Samadi, S. Khalighi‐
     Sigaroodi, F. Sajedi‐Hosseini, 2017. An ensemble
     forecast of semi‐arid rainfall using large‐scale
     climate predictors. Meteorological Applications,
     DOI: 10.1002/met.1635.
Choubin, B., S. Khalighi-Sigaroodi, A. Malekian, Ö.
     Kişi, 2016b. Multiple linear regression, multi-layer
     perceptron network and adaptive neuro-fuzzy
     inference system for forecasting precipitation based
     on large-scale climate signals. Hydrological Sciences
     Journal, 61; 1001–1009.
Choubin, B., S. Khalighi-Sigaroodi, A. Malekian, S.
     Ahmad, P. Attarod, 2014. Drought forecasting in a
     semi-arid watershed using climate signals: a neuro-
     fuzzy modeling approach. Journal of Mountain
     Science, 11; 1593–1605.
Gocic, M., S. Trajkovic, 2013. Analysis of changes in
     meteorological variables using Mann-Kendall and
    Sen’s slope estimator statistical tests in Serbia. Global
     and Planetary Change, 100; 172-182.
Hejam, S., Y. Khoshkhu, R. Shamsodin-vandi, 2008.
     Analyzing the trend of annual and seasonal rainfall
     changes in selected stations at enteral basin of Iran
     use non-parametric methods, Journal of Geographical
     Researches, 64; 157-168.
Karabork, M. C., E. Kahya, A. U. Komuscu, 2007.
     Analysis of Turkish precipitation data: homogeneity
     and the Southern Oscillation forcings on frequency
     distributions. Hydrological Processes, 21; 3203–
Kaveiani, M., H. Asakere, 1993. Statistical analysis of
     trend long-term annual rainfall, third Conference on
     Climate Change, Isfahan.
Kendall, M. G., 1975. Rank Correlation Methods. 4th ed.
     Charles Griffin: London.
Kulkarni, A., H. Von Storch, 1995. Monte
     Carloexperiments on the effect of serial correlation
     on the Mann- Kendall test of trend, Journal of 
     Meteorologische Zeitschrift, 4; 82–85.
Lima, M.I.P., S.C.P. Carvalho, J.L.M.P. de Lima,
     M.F.E.S. Coelho, 2011. Trends in precipitation:
     analysis of long annual and monthly time series from
     mainland Portugal. Advances Geoscience, 25; 155–
Liu, Q., Z. Yang, B. Cui, 2008. Spatial and temporal
     variability of annual precipitation during 1961–2006
     in Yellow River Basin. China. Journal of Hydrology,
     361; 330–338.
Mann, H.B., 1945. Nonparametric tests against trend.
     Econometrica, 13; 245–259.
Maroufi, S., H. Tabari, 2011. Detection trend changes in
     river flow Maroon using parametric and non-
     parametric methods, Journal of geographical
     researches, 101; 125-146.
Masih, I., S. Uhlenbrook, S. Maskey, V. Smakhtin,
     2011. Stream flow trends and climate linkages in the
     Zagros Mountains, Iran. Climatic Change, 104; 317–
Modarres, R., V. Silva, 2007.Rainfall trends in arid and
     semi-arid regions of Iran. Journal of Arid
     Environments, 70; 344-355.
Moghaddamneia, A., M. Rostami Kamrood, F.
     Farsadneia, 2012. Analyzing precipitation trend in
     Mazandaran Province using regional Mann-Kendall
     test, Journal of Iran Water Resources, 8; 60-70.
Nasri, M., R. Modarres, 2007. Regional analyzing of
     drought based on two-drought index in Ardestan,
     Journal of Development on Natural Resources, 76;
Partal, T., E. Kahya, 2011. Trend analysis in Turkish
     precipitation data. Hydrological Processes, 20; 2011-
Pettitt, A.N., 1979. A non-parametric approach to the
     change-point detection. Appl. Stat, 28; 126–135.
Sen, P., 1968. Estimates of the regression coefficient
     based on Kendall’s tau. Journal of American
     Statistical Association, 63; 1379–1389.
     Sigaroodi, S.K., Q. Chen, S. Ebrahimi, A. Nazari, B. 
     Choobin, 2014. Long-term precipitation forecast for
     drought relief using atmospheric circulation factors: a
     study on the Maharloo Basin in Iran. Hydrology and
     Earth System Sciences, 18; 1995–2006.
Tabari, H., B. Shifteh Somee, M. Rezaian Zadeh, 2011.
     Testing for long-term trends in climatic variables in
     Iran. Atmospheric Research, 100; 132–140.
Tabari, H., P. Hosseinzadeh Talaee, 2011. Temporal
     variability of precipitation over Iran: 1966–2005.
     Journal of Hydrology, 396; 313–320.
Tabari, H., S. Marofi, 2011. Changes of pan evaporation
     in the west of Iran. Water Resources Management,
     25; 97-111.
Turke, S.M., 1999. Vulnerability of Turkey to
     desertification with respect to precipitation and aridity
     conditions. Turkish Journal of the Engineering and
     Environmental Sciences, 23; 363–380.
Von Neumann, J., 1941. Distribution of the ratio of the
     mean square successive difference to the variance.
     Annals of Mathematical Statistics, 13; 367–395.
Wijngaard, J., A.T. Klein, G. Konnen, 2003.
     Homogeneity of 20th century European daily
     temperature and precipitation series. International
     Journal of Climatology, 23; 679–692.
Yue, S., P. Pilon, B. Phinney, C. Cavadias, 2002. The
     influence of autocorrelation on the ability to detect
     trend in hydrological series. Hydrology Process,
     16; 1807–1829.