Assessment of Remote Sensing Images and Products in Mapping Mangrove Forests of Iran (Northern Coasts of the Persian Gulf and the Gulf of Oman).

Document Type : Research Paper

Authors

Department of Geography and Urban Planning, Faculty of Humanities and Social Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran

Abstract

Mangrove forests play a vital role in providing ecosystem services such as coastal protection and mitigating the impacts of climate change, necessitating mapping for assessment, monitoring, conservation, and management. Advances in remote sensing have enabled rapid and accurate mapping of these forests. This study aims to determine the best method for mapping Iran's mangrove forests (northern coasts of the Persian Gulf and the Gulf of Oman) by comparing the Mangrove Vegetation Index (MVI) and Random Forest (RF) classification using Landsat-9 and Sentinel-2 satellite data, as well as evaluating the accuracy of land cover products from the European Space Agency (ESA), the GLC_FCS30 land cover product, and the Global Mangrove Watch (GMW) product. The results show respective mangrove class accuracies of 95%, 84%, 91%, 86%, 83%, 80%, and 78% for MVI with Sentinel-2 data, MVI with Landsat-9 data, RF classification with Sentinel-2 data, RF classification with Landsat-9 data, ESA product, GLC_FCS30 product, and GMW product. The corresponding areas were 11,509 ha, 11,834.5 ha, 10,779.41 ha, 13,702.23 ha, 15,814 ha, 11,441.5 ha, and 11,117 ha, respectively. The findings indicate that Sentinel-2 data show higher potential than Landsat-9 data for mapping Iran's mangrove forests. Furthermore, the results demonstrate the higher accuracy of the generated maps compared to existing remote sensing products. These findings not only highlight the potential of modern remote sensing data for enhancing mangrove forest mapping but also pave the way for more precise and cost-effective monitoring strategies, which are crucial for conservation efforts in coastal ecosystems.

Keywords


Reference
Ambarwari, A., & Husni, E. M. (2023) Studying How Machine Learning Maps Mangroves in Moderate-Resolution Satellite Images. Indonesian Journal of Artificial Intelligence and Data Mining, 6(2), 270-280.‏ http://dx.doi.org/10.24014/ijaidm.v6i2.25263
Ashournejad, Q., Amiraslani, F., Kiyavarz Moghaddam, M., & Tomanian, A. (2019a). Impacts of Landuse/Landcover Changes on the Ecosystem Service Values in Pars Special Economic Energy Zone Using Remote Sensing. Physical Geography Research, 51(2), 317-333. https://doi.org/10.22059/jphgr.2019.270215.1007303
Ashournejad, Q., Amiraslani, F., Kiavarz Moghadam, M., Toomanian, A., (2019b). Assessing the changes of mangrove ecosystem services value in the Pars Special Economic Energy Zone. Ocean & Coastal Management 179, 104838. https://doi.org/10.1016/j.ocecoaman.2019.104838
Ashournejad, Q. (2022). Economic evaluation of tourism ecosystem services of Iran's biomes based on remote sensing products. Journal of Tourism Planning and Development10(39), 141-162. https://doi.org/10.22080/jtpd.2022.22179.3603
Ashournejad, Q. (2023). Evaluation and comparison of regional accuracy of global remote sensing products in Iran-Case study of land cover products in Mazandaran Province. Scientific-Research Quarterly of Geographical Data (SEPEHR)32(127), 95-115.‏ https://doi.org/10.22131/sepehr.2023.1988986.2954
Baloloy, A. B., Blanco, A. C., Ana, R. R. C. S., & Nadaoka, K. (2020). Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 95-117.‏ https://doi.org/10.1016/j.isprsjprs.2020.06.001
Behera, M. D., Barnwal, S., Paramanik, S., Das, P., Bhattyacharya, B. K., Jagadish, B., ... & Behera, S. K. (2021). Species-level classification and mapping of a mangrove forest using random forest—utilisation of AVIRIS-NG and sentinel data. Remote Sensing13(11), 2027.‏ https://doi.org/10.3390/rs13112027
Bihamta Toosi, N., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & T. Waser, L. (2020). Land cover classification in mangrove ecosystems based on VHR satellite data and machine learning—an upscaling approach. Remote Sensing12(17), 2684.‏ https://doi.org/10.3390/rs12172684
Bie, Q., Shi, Y., Li, X., & Wang, Y. (2022). Contrastive analysis and accuracy assessment of three global 30 m land cover maps circa 2020 in arid land. Sustainability, 15(1), 741.‏ https://doi.org/10.3390/su15010741
Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., ... & Rebelo, L. M. (2022). Global mangrove extent change 1996–2020: Global mangrove watch version 3.0. Remote Sensing14(15), 3657.‏ https://doi.org/10.3390/rs14153657
Chaaban, F., El Khattabi, J., & Darwishe, H. (2022). Accuracy assessment of ESA WorldCover 2020 and ESRI 2020 land cover maps for a Region in Syria. Journal of Geovisualization and Spatial Analysis, 6(2), 31.‏ https://doi.org/10.1007/s41651-022-00126-w
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment37(1), 35-46.‏ https://doi.org/10.1016/0034-4257(91)90048-B
Conopio, M., Baloloy, A. B., Medina, J., & Blanco, A. C. (2021). Spatio-temporal mapping and analysis of mangrove extents around Manila Bay using Landsat satellite imagery and Mangrove Vegetation Index (MVI). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences46, 103-108.‏ https://doi.org/10.5194/isprs-archives-XLVI-4-W6-2021-103-2021
de Araujo Barbosa, C. C., Atkinson, P. M., & Dearing, J. A. (2015). Remote sensing of ecosystem services: A systematic review. Ecological Indicators, 52, 430-443.‏ https://doi.org/10.1016/j.ecolind.2015.01.007
Elmahdy, S. I., Ali, T. A., Mohamed, M. M., Howari, F. M., Abouleish, M., & Simonet, D. (2020). Spatiotemporal mapping and monitoring of mangrove forests changes from 1990 to 2019 in the Northern Emirates, UAE using random forest, Kernel logistic regression and Naive Bayes Tree models. Frontiers in Environmental Science, 8, 102.‏ https://doi.org/10.3389/fenvs.2020.00102
Erfanifard, Y., Lotfi Nasirabad, M., & Stereńczak, K. (2022). Assessment of Iran’s mangrove forest dynamics (1990–2020) using Landsat time series. Remote Sensing14(19), 4912.‏ https://doi.org/10.3390/rs14194912
Erfanifard, Y., & Lotfi Nasirabad, M. (2022). Efficiency of Mangrove Indices in Mapping Some Mangrove Forests Using Landsat 8 Imagery in Southern Iran. RS and GIS for Natural Resources 13 (4), 68–86.‏ https://doi.org/10.30495/girs.2022.685675
Erfanifard, Y., & Lotfi Nasirabad, M. (2023). Mapping mangrove forest extent in Iran using Sentinel-2 imagery. Iranian Journal of Forest and Poplar Research31(2), 98-112.‏  https://doi.org/10.22092/ijfpr.2023.360820.2081
Fatemi, S.B., Rezaei, Y.(2023). Fundamentals of Remote Sensing, 6th Edition, Azadeh Press
Garshasbi, F., Ashournejad, Q., & Ghalenoei, N. (2025). A comparative assessment of remote sensing based land cover products for economic valuation of ecosystem services of Hyrcanian forests. Advances in Space Research.‏ https://doi.org/10.1016/j.asr.2024.12.064
Gholami, D. M., & Baharlouii, M. (2019). Monitoring long-term mangrove shoreline changes along the northern coasts of the Persian Gulf and the Oman Sea. Emerging Science Journal, 3(2), 88-100.‏ https://doi.org/10.28991/esj-2019-01172
Ghorbanian, A., Zaghian, S., Asiyabi, R. M., Amani, M., Mohammadzadeh, A., & Jamali, S. (2021). Mangrove ecosystem mapping using Sentinel-1 and Sentinel-2 satellite images and random forest algorithm in Google Earth Engine. Remote sensing, 13(13), 2565.‏ https://doi.org/10.3390/rs13132565
Grekousis, G., Mountrakis, G., & Kavouras, M. (2015). An overview of 21 global and 43 regional land-cover mapping products. International Journal of Remote Sensing, 36(21), 5309-5335.‏ https://doi.org/10.1080/01431161.2015.1093195
Gupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Majumdar, S. D., Samanta, S., ... & Hazra, S. (2018). An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX5, 1129-1139.‏ https://doi.org/10.1016/j.mex.2018.09.011
Ibharim, N. A., Mustapha, M. A., Lihan, T., & Mazlan, A. G. (2015). Mapping mangrove changes in the Matang Mangrove Forest using multi temporal satellite imageries. Ocean & coastal management114, 64-76.‏ https://doi.org/10.1016/j.ocecoaman.2015.06.005
Jia, M., Wang, Z., Mao, D., Ren, C., Song, K., Zhao, C., ... & Wang, Y. (2023). Mapping global distribution of mangrove forests at 10-m resolution. Science Bulletin, 68(12), 1306-1316‏. https://doi.org/10.1016/j.scib.2023.05.004
Khan, W. R., Nazre, M., Akram, S., Anees, S. A., Mehmood, K., Ibrahim, F. H., ... & Zhu, X. (2024). Assessing the productivity of the Matang Mangrove Forest reserve: Review of one of the best-managed mangrove forests. Forests15(5), 747.‏ https://doi.org/10.3390/f15050747
Kiyani, V., Alizade Shaabani, A., & Nazari Samani, A. (2014). Assessing the Classification accuracy of LISS-III Sensor Image of IRS-P6 Satellite using Google Earth'sDatabase to provide land coverage/ Land use maps (Case study: Taleghan Watershed). Quarterly of Geographical Data, 23(90), 51-59.  https://doi.org/10.22131/sepehr.2014.12167
Li, L., Wang, Y., & Liu, C. (2014). Effects of land use changes on soil erosion in a fast developing area. International Journal of Environmental Science and Technology11, 1549-1562.‏ https://doi.org/10.1007/s13762-013-0341-x
Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.
Liu, J., Ren, Y., & Chen, X. (2023). Regional Accuracy Assessment of 30-Meter GLC_FCS30, GlobeLand30, and CLCD Products: A Case Study in Xinjiang Area. Remote Sensing, 16(1), 82.‏ https://doi.org/10.3390/rs16010082
Lu, Y., & Wang, L. (2021). How to automate timely large-scale mangrove mapping with remote sensing. Remote Sensing of Environment264, 112584.‏ https://doi.org/10.1016/j.rse.2021.112584
Lu, Y., & Wang, L. (2022). The current status, potential and challenges of remote sensing for large-scale mangrove studies. International Journal of Remote Sensing43(18), 6824-6855.‏ https://doi.org/10.1080/01431161.2022.2145584
Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: Mapping and monitoring of mangrove ecosystem—A review. Complex & Intelligent Systems7(6), 2797-2818.‏ https://doi.org/10.1007/s40747-021-00457-z
Miraki, M., Sohrabi, H., Sadeghi, S., Fatehi, P., & Immitzer, M. (2023). Application of mangrove recognition index for mapping mangrove forests using Sentinel-2 satellite images in Google Earth Engine.‏ Journal of Marine Science and Technology, 22(3), 40-49. https://doi.org/10.22113/jmst.2022.318177.2456
Naderloo, R., Shahdadi, A., Rahymanian, H., Ghodrati Shojaei, M., & Nasrollahi, A. (2024). Atlas of Sensitive Marine Ecosystems of Iran (Persian Gulf and Oman Sea). Tehran University Press
Neri, M. P., Baloloy, A. B., & Blanco, A. C. (2021). Limitation assessment and workflow refinement of the Mangrove Vegetation Index (MVI)-based mapping methodology using Sentinel-2 imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences46, 235-242.‏ https://doi.org/10.5194/isprs-archives-XLVI-4-W6-2021-235-2021
Purwanto, A. D., Wikantika, K., Deliar, A., & Darmawan, S. (2022). Decision tree and random forest classification algorithms for mangrove forest mapping in Sembilang National Park, Indonesia. Remote Sensing15(1), 16.‏ https://doi.org/10.3390/rs15010016
Rahman, M. M., Zhang, X., Ahmed, I., Iqbal, Z., Zeraatpisheh, M., Kanzaki, M., & Xu, M. (2020). Remote sensing-based mapping of senescent leaf C: N ratio in the sundarbans reserved forest using machine learning techniques. Remote Sensing, 12(9), 1375.‏ https://doi.org/10.3390/rs12091375
Raza, S. A., Zhang, L., Zuo, J., & Chen, B. (2024). Time series monitoring and analysis of Pakistan’s mangrove using Sentinel-2 data. Frontiers in Environmental Science, 12, 1416450.‏ https://doi.org/10.3389/fenvs.2024.1416450
Sahraei, R., Ghorbanian, A., Kanani-Sadat, Y., Jamali, S., & Homayouni, S. (2023). Identifying suitable locations for mangrove plantation using geospatial information system and remote sensing. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 669-675.‏ https://doi.org/10.5194/isprs-annals-X-4-W1-2022-669-2023
Safiari, S. (2017). Mangrove forests in Iran. Iran nature, 2(2), 49-57.‏ https://doi.org/10.22092/irn.2017.111425
Shen, Z., Miao, J., Wang, J., Zhao, D., Tang, A., & Zhen, J. (2023). Evaluating Feature Selection Methods and Machine Learning Algorithms for Mapping Mangrove Forests Using Optical and Synthetic Aperture Radar Data. Remote Sensing, 15(23), 5621.‏ https://doi.org/10.3390/rs15235621
Sobhani, P., & Danehkar, A. (2023). Evaluating and zoning of ecosystem services in mangrove forests of Khamir and Qeshm. Town and Country Planning15(2), 275-292.‏ https://doi.org/10.22059/jtcp.2023.358990.670391
Sunkur, R., Kantamaneni, K., Bokhoree, C., Rathnayake, U., & Fernando, M. (2024). Mangrove mapping and monitoring using remote sensing techniques towards climate change resilience. Scientific Reports14(1), 6949.‏ https://doi.org/10.1038/s41598-024-57563-4
Tran, T. V., Reef, R., & Zhu, X. (2022). A review of spectral indices for mangrove remote sensing. Remote Sensing, 14(19), 4868.‏ https://doi.org/10.3390/rs14194868
Tso, B., & Mather, P. M. (2003). Classification methods for remotely sensed data. CRC Press.
Toosi, N. B., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & Waser, L. T. (2019). Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Global Ecology and Conservation, 19, e00662.‏ https://doi.org/10.1016/j.gecco.2019.e00662
Valero-Jorge, A., González-Lozano, R., Zayas, G. D., Matos-Pupo, F., Sorí, R., & Stojanovic, M. (2024). An Innovative Tool for Monitoring Mangrove Forest Dynamics in Cuba Using Remote Sensing and WebGIS Technologies: SIGMEM. The underlying dataset has been published as supplementary material of the article in the publisher platform at DOI 10.3390/rs16203802.‏ https://doi.org/10.3390/rs16203802
Wang, D., Wan, B., Qiu, P., Su, Y., Guo, Q., Wang, R., ... & Wu, X. (2018). Evaluating the performance of Sentinel-2, Landsat 8 and Pléiades-1 in mapping mangrove extent and species. Remote Sensing, 10(9), 1468.‏ https://doi.org/10.3390/rs10091468
Wu, X., Xiao, Q., Wen, J., You, D., & Hueni, A. (2019). Advances in quantitative remote sensing product validation: Overview and current status. Earth-Science Reviews, 196, 102875.‏ https://doi.org/10.1016/j.earscirev.2019.102875
Xiao, Z., Jiang, W., Wu, Z., Ling, Z., Deng, Y., Zhang, Z., & Peng, K. (2024). Agreement Analysis and Accuracy Assessment of Multiple Mangrove Datasets in Guangxi Beibu Gulf and Guangdong-Hong Kong-Macau Greater Bay, China, for 2000-2020. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.‏ https://doi.org/10.1109/JSTARS.2024.3353251
Yang, G., Huang, K., Sun, W., Meng, X., Mao, D., & Ge, Y. (2022). Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove. ISPRS Journal of Photogrammetry and Remote Sensing189, 236-254.‏ https://doi.org/10.1016/j.isprsjprs.2022.05.003
Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, Linlin, Tsendbazar, N.E., Ramoino, F., Arino, O., (2021). ESA WorldCover 10 m 2020 v100. https://doi:10.5281/zenodo.5571936
Zanganeh Asadi, M.A., TaghaviMoghadam, E., & Akbari, E.(2017). Evaluation and assessment of changes in forest area Harra (mangrove) Using remote sensing techniques Case Study: Bandar Abbas, Natural Ecosystems of Iran, 7(4),17-32. https://sanad.iau.ir/en/Article/983173?FullText=FullText
Zhang, X., Zhao, T., Xu, H., Liu, W., Wang, J., Chen, X., & Liu, L. (2024). GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method. Earth System Science Data, 16(3), 1353-1381.‏ https://doi.org/10.5194/essd-16-1353-2024
Zanvo, M. S., Barima, Y. S., Salako, K. V., Koua, K. N., Kolawole, M. A., Assogbadjo, A. E., & Kakaï, R. G. (2021). Mapping spatio-temporal changes in mangroves cover and projection in 2050 of their future state in Benin. BOIS & FORETS DES TROPIQUES, 350, 29-42.‏ https://doi.org/10.19182/bft2021.350.a36828