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Mangrove forests play a vital role in providing ecosystem services such as coastal 

protection and mitigating the impacts of climate change, necessitating mapping 

for assessment, monitoring, conservation, and management. Advances in remote 

sensing have enabled rapid and accurate mapping of these forests. This study aims 

to determine the best method for mapping Iran's mangrove forests (northern 

coasts of the Persian Gulf and the Gulf of Oman) by comparing the Mangrove 

Vegetation Index (MVI) and Random Forest (RF) classification using Landsat-9 

and Sentinel-2 satellite data, as well as evaluating the accuracy of land cover 

products from the European Space Agency (ESA), the GLC_FCS30 land cover 

product, and the Global Mangrove Watch (GMW) product. The results show 

respective mangrove class accuracies of 95%, 84%, 91%, 86%, 83%, 80%, and 

78% for MVI with Sentinel-2 data, MVI with Landsat-9 data, RF classification 

with Sentinel-2 data, RF classification with Landsat-9 data, ESA product, 

GLC_FCS30 product, and GMW product. The corresponding areas were 11,509 

ha, 11,834.5 ha, 10,779.41 ha, 13,702.23 ha, 15,814 ha, 11,441.5 ha, and 11,117 

ha, respectively. The findings indicate that Sentinel-2 data show higher potential 

than Landsat-9 data for mapping Iran's mangrove forests. Furthermore, the results 

demonstrate the higher accuracy of the generated maps compared to existing 

remote sensing products. These findings not only highlight the potential of 

modern remote sensing data for enhancing mangrove forest mapping but also 

pave the way for more precise and cost-effective monitoring strategies, which are 

crucial for conservation efforts in coastal ecosystems. 
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1. Introduction 

Mangrove forests, consisting of trees and shrubs distributed in tropical and subtropical regions 

between 30°N and 30°S latitudes, thrive in sheltered intertidal zones along coastlines (Sobhani & 

Danekar, 2023). These intertidal ecosystems offer diverse socio economic advantages and are 

highly productive (Bihamta Toosi et al., 2020; Ambarwari et al., 2023). They provide crucial 

ecological services, including carbon sequestration, water purification, and coastal protection 

(Sahraei et al., 2023), and act as natural barriers against natural disasters like storms and tsunamis. 

Mangroves, which grow in saline or freshwater soils and waters, are recognized as key habitats 

for biodiversity due to their remarkable capabilities in pollution filtration, water resource 

preservation, and nutrient storage (Lu et al., 2021). Furthermore, they offer fisheries resources 

and tourism opportunities, with the restoration of mangrove forests being up to five times more 

cost efficient than artificial infrastructure (Ibharim et al., 2015; Ashournejad et al., 2019a). 

Mangrove forests, known for their ability to store carbon 3 to 5 times more effectively than 

tropical forests, play a vital role in enhancing water quality and mitigating the effects of climate 

change. Their ecosystem services have an estimated global economic value exceeding $800 

billion annually, with Iran's share estimated at $164 million. However, over the past fifty years, 

35% of mangrove forests have been degraded (Tran et al., 2022; Ashournejad, 2022). These 

ecosystems are highly productive and diverse, providing significant environmental, economic, 

and social benefits (Khan et al., 2024). Despite their importance, mangroves face considerable 

threats from human activities and the impacts of climate change (Zanvo et al., 2023). 

Deforestation, pollution, and sea level rise are major factors driving their degradation and loss 

(Gholami et al., 2019). As a result, generating accurate and regularly updated mangrove maps 

is essential for implementing effective conservation and management strategies. Up-to-date 

land cover data play a vital role for governments and organizations in the process of developing 

and implementing environmental and sustainable policies (Grekousis et al., 2015). 

The accuracy of these mapping varies depending on the specific techniques used, the spatial 

and temporal resolution of the images, and the availability of ground truth data. Studies that use 

higher-resolution images and integrate multiple data sources show improved accuracy (Bihamta 

Toosi et al., 2020). Given the availability of comprehensive remote sensing data, various 

products have been developed, including land cover, vegetation indices, surface temperature, 

and humidity. These products are available in varying resolutions (Araujo-Barbosa et al., 2015; 

Wu et al., 2019). Among these products, land cover maps are of particular importance as 

understanding and monitoring them is crucial for environmental studies (Ashournejad, 2023).  

Although land cover products are designed for use at global, regional, national, and local 

scales, the models used to develop these products are typically optimized with a broad, global 

approach. As a result, the performance and accuracy of these products at national and local 

scales have received less attention. Therefore, examining the characteristics of these products, 

evaluating their performance, and measuring their accuracy in specific environments is 

essential. Such efforts could significantly enhance the practical application of these data in 

natural resource management and environmental decision making (Wu et al., 2019). 

In this regard, studies have been conducted in the past. Chaaban et al. (2022) assessed the 

accuracy of two land cover products, ESA WorldCover and ESRI, in the Tartous province of 

Syria. The results indicated accuracy rates of 78% and 74% for these products in the region. 

Bie et al. (2020) evaluated the accuracy of three land cover products, including GLC_FCS30, 

GlobeLand30, and FROM-GLC30, in northwestern China. The results showed accuracy rates 

of 87%, 85%, and 83%, respectively, for these products in the region. Liu et al. (2023) assessed 

the accuracy of three 30-meter resolution land cover products, namely GLC_FCS30, 
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GlobeLand30, and CLCD, in the city of Xinjiang, China. The results revealed accuracy rates of 

88%, 83%, and 81%, respectively, for these products in the region. Xiao et al. (2024) evaluated 

the accuracy of three global mangrove cover products (GMW, GMD, and LREIS) in the 

Guangdong-Hong Kong Bay. The results showed accuracy rates of 63%, 76%, and 83%, 

respectively, for these products in the region 

Over the past decades, remote sensing has become a powerful tool for monitoring land 

resources and addressing environmental and socio-economic challenges, with a wide range of 

remote sensing sources available (Garshasbi et al., 2025). Therefore, it is important to select 

the most suitable data or product for mapping mangrove forests, depending on the species and 

structure of the mangroves in the study area (Ashournejad et al., 2019a). Additionally, choosing 

an appropriate classification method is crucial for accurate mangrove mapping. Recent studies 

have increasingly employed machine learning algorithms such as RF, XGBoost, and LightGBM 

(Shen et al., 2023; Elmahdy et al., 2020; Valero et al., 2024; Rahman et al., 2020; Raza et al., 

2024), demonstrating superior performance in mangrove mapping compared to traditional 

classification methods. 

Numerous studies have utilized remote sensing and satellite data analysis for mapping and 

assessing these ecosystems. Zanganeh et al. (2017) analyzed mangrove changes in Bandar 

Abbas using multi-temporal Landsat images and classification algorithms (MLC, MD, SVM), 

with MLC showing the highest accuracy. Gupta et al. (2018) developed the Combined 

Mangrove Detection Index (CMRI) using Landsat-8 data in Bangladesh, outperforming other 

indices like NDVI and SAVI. Ashournejad et al. (2019b) studied mangrove changes in the Pars 

Special Economic Energy Zone with Landsat data (1986-2018), finding a peak in 2003 and 

decline by 2018. Toosi et al. (2019) compared four supervised algorithms (RF, SVM Radial, 

SVM Linear, and RDA) using Landsat data from Qeshm mangroves, with RF achieving the 

highest accuracy (93%). ErfaniFard and Lotfi Nasirabad (2022) evaluated mangrove indices 

with Landsat-8, finding the SMRI and MVI effective in Nayband Bay, Sirik, and Gwadar Bay. 

Miraki et al. (2023) mapped mangrove forests in Qeshm, Khamir, and Sirik using Sentinel-2 

data in Google Earth Engine (GEE). The Random Forest algorithm, with MMRI and spectral 

indices, achieved the highest accuracy in Qeshm (98%, kappa = 0.73). Despite significant 

advances in the use of remote sensing for mapping mangrove forests, existing studies have 

primarily focused on individual datasets and have not provided a comprehensive evaluation 

comparing the most widely used methods and remote sensing products across the geographic 

distribution of mangrove forests in Iran. 

Mangrove forests along the arid and semi-arid coasts of Iran exhibit unique ecological 

features due to their adaptation to harsh environmental conditions. This study employs remote 

sensing techniques to map and monitor these coastal ecosystems, providing valuable insights 

into understanding vegetation dynamics in dryland areas. Given the high potential of the 

Mangrove Vegetation Index (MVI) in distinguishing mangrove from non-mangrove cover, 

compared to other existing indices, it has been demonstrated in previous studies as an 

innovative approach for mapping these forests (Baloloy et al., 2020). This study also employs 

the Random Forest (RF) algorithm, a widely used ensemble classifier in remote sensing due to 

its ability to handle high-dimensional data and multicollinearity while maintaining robustness 

against overfitting (Belgiu & Drăguţ, 2016). Therefore, the aim of this research is to identify an 

effective method for mapping mangrove forests in Iran (on the northern shores of the Persian 

Gulf and Gulf of Oman) by comparing the MVI and  

RF classification methods using Landsat-9 and Sentinel-2 satellite data. Moreover, 

mangrove forests in Iran are distributed sparsely, and the MVI index does not perform well 
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across all regions. As a result, this study addresses the identification of an appropriate threshold 

for using the MVI index in accurate mapping of mangrove forests in Iran. Additionally, this 

research seeks to evaluate the performance of land cover products (GLC_FCS30, ESA 

WorldCover, and Global Mangrove Watch) at the national scale, specifically in the mangrove 

forests of southern Iran, to assess the accuracy of these products in monitoring and managing 

this ecosystem. In this way, this study provides researchers with the opportunity to make better 

decisions when selecting methods and data for mapping mangrove forests in future studies. 

 

2. Materials and Methods 

2.1. Study Area  

The mangrove forests of Iran are scattered along the northern coastlines of the Persian Gulf and 

the Gulf of Oman. They appear as either continuous or fragmented communities (Fig. 1). These 

forests are dense or semi-dense in areas such as Qeshm, Khamir Port, Sirik, and Kolghan, while 

they are sparse and scattered in other regions. The Iranian mangrove forests, which form along 

creeks, bays, and waterways, extend up to the maximum tidal influence (Safiari, 2017).  

 

Fig 1. Map of the study area (Distribution of mangroves in Iran: 1- Mahshahr Port, 2- Nakhiloo National 

Park, 3- Dayyer port, 4- Nayband Bay, 5- Charak Port, 6-  Qeshm Mangroves and Basaeidou, 7- 

Dierestan Bay(Qeshm Island) ,8- BandarAbbas, 9- Dargahan(Qeshm Island), 10- Hormoz Island, 11- 

Kulaghan, 12- Chakhah, Kolahi and  Tiyab Inlet, 13- Sirik, 14- Gabrik and Jask Protected Area, 15- 

Tang Port, 16- Pozm Tiyab Bay, 17- Chabahar port, 18- Gwatar 
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The geographic range of their distribution is from 25°10' to 30°30' North latitude and from 

49°36' to 51°05' East longitude (ErfaniFard et al., 2023). Temperature is the primary limiting 

factor for mangrove distribution. However, due to their location in the enclosed bays of the 

Persian Gulf and Gulf of Oman, these mangroves experience high salinity as a result of a lack of 

freshwater input and high evaporation rates. Despite these conditions and other geographical 

factors, only two species, Avicennia marina and Rhizophora mucronata, respectively, out of 

approximately 70 mangrove species, are present in the Persian Gulf and Gulf of Oman (Naderloo 

et al., 2024). 

 

2.2. Methods 
Fig (2) illustrates the proposed process in this study for mapping mangrove forests in Iran along 

the northern shores of the Persian Gulf and the Gulf of Oman. Sentinel-2 and Landsat-9 satellite 

images were used to map the mangrove forests in the region. The MVI and the RF classification 

algorithm were applied to identify and distinguish mangrove forests. Additionally, the accuracy 

of three global land cover products—GLC_FCS30, ESA WorldCover, and Global Mangrove 

Watch—was assessed in the study area. 

 

Fig 2. Conceptual model of the mangrove forest mapping process in the northern Persian Gulf and the 

Gulf of Oman. 

 

2.2.1. Mangrove Forest Mapping  
- MVI  

To accurately map the mangrove forests along the northern shores of the Persian Gulf and the 

Gulf of Oman, Sentinel-2 and Landsat-9 satellite images were used. Since mangrove cover is 

affected by sea water during high tide, making it difficult to distinguish, selecting images from 

low tide periods is crucial (Erfanifard et al., 2022; Baloloy et al., 2020). Therefore, 10 satellite 

images from low tide conditions that covered the entire study area were selected (Table 1). 

These images were extracted using tide archive data from the Tides4Fishing website, and times 

when the sea retreat reached its maximum were identified and selected. 
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Table 1. Specifications of the Remote Sensing Data Used in This Study 

Landsat-9 Sentinel-2 

Image Satellite/Sensor Path and Row Date Coordinate System Satellite/Sensor Image ID Date Coordinate System 

1 Landsat9/OLI 158/042 06/06/2023 WGS84/UTM/40N Sentinel2A/MSI T40RDQ 06/02/2023 WGS84/UTM/40N 

2 Landsat9/OLI 159/042 06/13/2023 WGS84/UTM/40N Sentinel2A/MSI T40RGP 07/01/2023 WGS84/UTM/40N 

3 Landsat9/OLI 159/041 06/13/2023 WGS84/UTM/40N Sentinel2A/MSI T39RWL 07/03/2023 WGS84/UTM/39N 

4 Landsat9/OLI 165/039 06/23/2023 WGS84/UTM/39N Sentinel2A/MSI T40RHP 07/06/2023 WGS84/UTM/40N 

5 Landsat9/OLI 162/042 07/04/2023 WGS84/UTM/39N Sentinel2A/MSI T40RBQ 07/10/2023 WGS84/UTM/40N 

6 Landsat9/OLI 160/041 07/06/2023 WGS84/UTM/40N Sentinel2A/MSI T40RCQ 07/12/2023 WGS84/UTM/40N 

7 Landsat9/OLI 156/043 07/10/2023 WGS84/UTM/41N Sentinel2A/MSI T39RWL 07/13/2023 WGS84/UTM/39N 

8 Landsat9/OLI 163/041 07/11/2023 WGS84/UTM/39N Sentinel2A/MSI T41RLH 07/13/2023 WGS84/UTM/41N 

9 Landsat9/OLI 161/041 07/13/2023 WGS84/UTM/40N Sentinel2A/MSI T40RDQ 07/27/2023 WGS84/UTM/40N 

10 Landsat9/OLI 157/042 08/02/2023 WGS84/UTM/41N Sentinel2A/MSI T40REP 08/13/2023 WGS84/UTM/40N 

 

In MVI, three key spectral bands are used: Near-Infrared (NIR), Short-Wave Infrared 1 

(SWIR1), and Green bands (Eq 1). In Sentinel-2 satellite imagery, these bands correspond to 

bands 8, 11, and 3, respectively, while in Landsat-9 imagery, bands 5, 6, and 3 are used to 

calculate this index. The SWIR1 band is particularly crucial due to its ability to detect water 

absorption by vegetation, playing a key role in delineating mangrove forest boundaries 

(Erfanifard et al, 2022). Additionally, the NIR band serves as a key indicator of plant greenness 

and structural characteristics of vegetation. Reflectance from mangrove forests in the visible 

spectrum, particularly in the blue and red bands, is lower due to the strong absorption of light 

by chlorophyll during photosynthesis. These features, combined with the high reflectance of 

mangroves in the NIR and SWIR1 bands, provide ideal conditions for designing the MVI index. 

The combination of these three bands (SWIR1, NIR, and Green) makes the MVI index an 

efficient and reliable tool for accurately identifying and analyzing mangrove forest cover 

(Baloloy et al., 2020). Given that bands 3 and 8 in Sentinel-2 have a spatial resolution of 10 

meters, band 11, which has a spatial resolution of 20 meters, was resampled to 10 meters. To 

improve the accuracy of mangrove forest identification, the Normalized Difference Vegetation 

Index (NDVI) was used as a complementary index to the MVI (Eq 2). NDVI, which ranges 

from -1 to +1, distinguishes vegetation from other land cover types, with negative values 

indicating areas without vegetation (Li et al., 2014). Therefore, to remove non-mangrove pixels 

from the initial MVI results that could reduce mapping accuracy, a binary image multiplication 

approach (MVI × NDVI) was applied. This process, a common image computation technique, 

allows the separation of specific areas by multiplying two binary images (0 and 1) (Fatemi & 

Rezaei, 2023). An appropriate threshold for NDVI was determined to retain only vegetation, 

while other non-vegetated surfaces and features were masked. This combined approach 

enhanced the accuracy of mangrove forest identification and reduced the impact of errors 

related to non-relevant cover types in the final mapping. Accurate mangrove forest detection 

relies on determining an appropriate threshold for the MVI. Although the standard threshold 

value is generally considered to be above 4.5 (Baloloy et al., 2020), it may vary depending on 

the structural characteristics and environmental conditions of the mangroves. In areas with 

lower tree density, canopy height, and greenness, lowering the threshold value can improve the 

accuracy of distinguishing mangroves from non-mangrove cover. This is particularly relevant 

for mangrove forests in the Persian Gulf and the Gulf of Oman, as these ecosystems have a 

weaker structure compared to riverine mangroves due to their location in coastal zones, 
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exposure to tidal fluctuations, and limited access to freshwater (Naderloo et al., 2024). Taking 

these factors into account, in this study, the MVI threshold was assessed and adjusted across all 

mangrove sites in Iran using Sentinel-2 and Landsat-9 satellite images. This process was carried 

out within the GEE platform, which facilitated cloud processing and analysis of extensive 

remote sensing data, enabling the evaluation and optimization of various threshold values. The 

threshold adjustment was performed experimentally by applying different values to determine 

the optimal threshold that ensures the highest accuracy in mangrove forest delineation. 

𝑀𝑉𝐼 =
𝑁𝐼𝑅−𝐺𝑟𝑒𝑒𝑛

𝑆𝑊𝐼𝑅1−𝐺𝑟𝑒𝑒𝑛
 (1) 

𝑁𝐷𝑉𝐼 =
 𝑁𝐼𝑅−𝑅𝑒𝑑 

𝑁𝐼𝑅+𝑅𝑒𝑑
 (2) 

- Classification with RF 
The classification of mangrove forests in this study was performed using the RF algorithm 

within the GEE platform. For this purpose, Sentinel-2 and Landsat-9 images (Table 1), covering 

the entire extent of Iran’s mangrove forests, were utilized. For the classification of Landsat-9 

images, the bands SR_B2, SR_B3, SR_B4, SR_B5, and SR_B6 were used, which are corrected 

data representing the actual surface reflectance. For Sentinel-2, the bands B1, B2, B3, B4, B5, 

B6, B7, B8, B8A, and B11 were used to extract the spectral characteristics of mangrove forests 

and other land covers. Since Sentinel-2 images include bands with varying spatial resolutions 

(10, 20, and 60 meters), all bands were resampled to a uniform 10-meter resolution to enhance 

model accuracy. This resampling was performed using the bilinear resampling method, where 

the value of each new pixel is calculated as a weighted average of the values of the four 

neighboring pixels in the original image (Lillesand et al., 2015). For model training, a set of 

4,520 training points from three distinct classes (water, soil, and mangrove) was extracted from 

available data (Fatemi & Rezaei, 2023), including Google Earth images. The use of high-

resolution Google Earth imagery is a common approach for assessing the accuracy of satellite 

image classification (Kiyani et al., 2014). A simple random sampling method was used to select 

these points to maintain class balance and ensure proper model training. All classes were 

defined and labeled using these 4520 training points. For the selection of the number of trees 

(30 trees), this value was determined empirically to strike an optimal balance between model 

accuracy and overfitting prevention. Initial evaluations showed that increasing the number of 

trees beyond 30 did not significantly improve accuracy, while reducing the number of trees 

decreased model accuracy and increased sensitivity to the training data. Therefore, 30 trees 

were selected as the optimal number for this study. Additionally, random feature selection for 

each split and a minimum sample size of 1 for node splitting were applied with the default 

settings of GEE. The majority voting rule was then used to determine the final class for each 

pixel. Given the satisfactory performance of these settings with the study data, more complex 

configurations were deemed unnecessary. All information regarding the default settings and the 

Random Forest algorithm was obtained from the GEE documentation. 

 

2.2.2. Remote Sensing Products 

Global land cover products are designed for use at various scales; however, their accuracy at 

local scales may not be reliable. Therefore, in this study, the accuracy of three products—

GLC_FCS30, ESA WorldCover, and Global Mangrove Watch—was evaluated in the 

mangrove forests of southern Iran to provide researchers with insights into their regional 

accuracy for monitoring these ecosystems. 
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- ESA Land Cover Product 

The ESA Land Cover product, provided by the European Space Agency, has a spatial resolution 

of 10 meters. This product was generated using imagery from the Sentinel-1 and Sentinel-2 

satellites and the Decision Tree (DT) classification algorithm. The accuracy of the product is 75% 

for 2020 and 76.7% for 2021. The product consists of 11 classes based on the Land Cover 

Classification System (LCCS), one of which is mangrove forests (Zanaga et al., 2021). 

- GLC_FCS30 land cover product  

The GLC_FCS30 land cover product represents a significant advancement in global land 

cover monitoring, providing a comprehensive understanding of land cover dynamics with 30-

meter resolution for the period from 1985 to 2022. Developed through continuous change 

detection methods and utilizing an extensive archive of Landsat images within the GEE 

platform, this dataset includes 35 distinct land cover types, including mangrove forests. The 

accuracy of this product, verified with over 84,000 global samples, is 80.88% for the base 

classification system (10 major land cover types) and 73.248% for the Level-1 assessment 

system, which includes 17 land cover types according to the Land Cover Classification System 

(LCCS) (Zhang et al., 2024). 

- Global Mangrove Watch (GMW) product 

The GMW program was launched in 2011. It provides spatial information on changes and the 

extent of mangrove forests. The program has produced global baseline maps of mangrove extent 

for 2010 using ALOS PALSAR and Landsat data, while tracking changes from 1996 to 2020 

using JERS-1 SAR, ALOS PALSAR, and ALOS-2 PALSAR-2 data. Additionally, annual maps 

are available from 2018 onward. The product classifies mangrove forests using Random Forest 

and Artificial Neural Networks, achieving an overall accuracy of 87% (Bunting et al., 2022). 

2.2.3. Accuracy Assessment 
In this study, the accuracy of the mangrove class in maps derived from the MVI, RF 

classification, and remote sensing products was evaluated using 3,950 ground truth points 

collected through random sampling (Tso & Mather., 2003) and Google Earth imagery. 

Accuracy assessment was conducted using the Confusion Matrix, a common method for 

comparing classified data with reference data and determining their level of agreement 

(Congalton, 1991). This method is one of the most widely used approaches in satellite image 

classification accuracy assessments and enables the evaluation of the correctness of pixels 

classified as mangroves. In other words, this assessment determines what percentage of the 

pixels identified by the model as mangroves actually belong to the real mangrove cover. 

 

3. Results 

- Threshold accuracy results of MVI with Landsat-9 and Sentinel-2 images. 

In this section, the results of comparing Sentinel-2 and Landsat-9 data using the MVI index for 

detecting mangrove forests along the northern coasts of the Persian Gulf and the Gulf of Oman 

are presented. Based on the MVI threshold analysis, the results indicated that Sentinel-2 data 

generally outperformed Landsat-9 data in detecting mangrove forests in these areas. For 

example, at the Qeshm site, which is one of the largest mangrove areas in the region, Sentinel-

2 achieved a mangrove class accuracy of 98%, while Landsat-9 data showed a mangrove class 

accuracy of 88%. The estimated mangrove area at this site was 7,579.8 hectares using Sentinel-

2 and 8,054.4 hectares using Landsat-9. This difference can be attributed to Sentinel-2’s ability 

to better identify smaller and more scattered areas in addition to larger ones. At the Sirik site, 

Sentinel-2 also performed better than Landsat-9. Sentinel-2 data achieved a mangrove class 
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accuracy of 96%, while Landsat-9 data showed a mangrove class accuracy of 92%. The 

mangrove area at this site was estimated at 715.8 hectares using Sentinel-2 and 808 hectares 

using Landsat-9. For medium and smaller sites, Sentinel-2 data consistently demonstrated better 

performance. At the Chakhah, Kolahi, and Tiyab Inlet sites, Sentinel-2 achieved a mangrove 

class accuracy of 97%, compared with Landsat-9’s mangrove class accuracy of 83%. The 

mangrove area at this site was estimated at 490.3 hectares using Sentinel-2 and 452 hectares 

using Landsat-9. At the Charak Port site, one of the smallest study areas, Sentinel-2 achieved a 

mangrove class accuracy of 89%, compared to 73% for Landsat-9. The estimated mangrove 

area was 6.3 hectares using Sentinel-2 and only 2.9 hectares using Landsat-9. Table 2 provides 

detailed mangrove class accuracy and area estimates for mangrove sites in Iran. 

- Mangrove class accuracy results in the classification of Sentinel-2 and Landsat-9 

images using the RF. 

In this section, the results of the comparison between Sentinel-2 and Landsat-9 data using 

the RF algorithm for mangrove forest classification along the northern coasts of the Persian 

Gulf and the Gulf of Oman are presented. In the classification results, Sentinel-2 generally 

showed higher accuracy, but the performance of Landsat-9 was closely comparable, with 

Landsat-9 even showing better accuracy in some cases. For the Gabrik and Jask Protected Area, 

one of the largest study sites, differences between the two datasets were observed. Sentinel-2 

data achieved a mangrove class accuracy of 95% and estimated the mangrove area at 924.9 

hectares. In contrast, Landsat-9 data showed a mangrove class accuracy of 91% and estimated 

the mangrove area at 1,127 hectares. The Qeshm site also demonstrated Sentinel-2's superior 

performance, with a mangrove class accuracy of 96% and an estimated area of 6,154.45 

hectares. In comparison, Landsat-9 data showed a mangrove class accuracy of 88% and 

estimated the area at 7,513.4 hectares. The Sirik site further highlighted Sentinel-2's superior 

performance. Sentinel-2 achieved a mangrove class accuracy of 98% and estimated the 

mangrove area at 783.4 hectares. In comparison, Landsat-9 data showed a mangrove class 

accuracy of 93% and estimated the area at 845.1 hectares. At the Chakhah, Kolahi, and Tiyab 

Inlet sites, Sentinel-2 achieved a mangrove class accuracy of 87% and estimated the area at 

663.6 hectares. Landsat-9 data showed a slightly higher mangrove class accuracy of 90% and 

estimated the area at 1,060.7 hectares. For other sites, including Mahshahr Port, Kulaghan, 

Gwatar, and Nayband Bay, Sentinel-2 data generally showed higher mangrove class accuracy, 

with estimated areas typically smaller than those calculated using Landsat-9. Detailed results 

for all sites are presented in Table 2. 

- Remote Sensing Products 

Mangrove forest classifications in various regions using the ESA, GLC, and GMW products 

have yielded different results (Table 3). The ESA product failed to identify mangrove forests at 

several sites. In key sites such as Mahshahr Port, Tang Port, Chabahar Port, and Charak Port, 

no mangroves were detected, with mangrove class accuracy being zero. However, in regions 

such as Qeshm (mangrove class accuracy 93%, area 8670 ha), Kulaghan (mangrove class 

accuracy 90%, area 716 ha), and Sirik (mangrove class accuracy 91%, area 844 ha), acceptable 

performance was achieved. The GLC product performed better than ESA in many regions. It 

exhibited higher mangrove class accuracy at sites such as Qeshm (mangrove class accuracy 

94%, area 11862 ha), Kulaghan (mangrove class accuracy 92%, area 784 ha), and Sirik 

(mangrove class accuracy 90%, area 919 ha). It also detected a limited area of mangroves at 

sites such as Tang Port (mangrove class accuracy 59%, area 2.9 ha) and Hormoz Island 
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Table 2. Accuracy assessment and area of mangrove sites on the northern coast of the Persian Gulf. 

 

S
it

e 
N

am
e 

M
ah

sh
ah

r 
P

o
rt

 

T
an

g
 P

o
rt

 

C
h
ab

ah
ar

 P
o

rt
 

C
h
ar

ak
 P

o
rt

 

D
ay

y
er

 p
o

rt
 

B
an

d
ar

A
b
b

as
 

N
ak

h
il

o
o

 N
at

io
n

al
 

P
ar

k
 

H
o

rm
o
z 

Is
la

n
d
 

P
o

zm
 T

iy
ab

 B
ay

 

D
ei

rs
ta

n
 B

ay
 

N
ay

b
an

d
 B

ay
 

C
h
ak

h
ah

, 
K

o
la

h
i 

an
d
  

T
iy

ab
 I

n
le

t 

D
ar

g
ah

an
  

S
ir

ik
 

Q
es

h
m

 

K
u

la
g
h

an
 

G
w

at
ar

 

G
ab

ri
k

 a
n
d

 J
as

k
 

P
ro

te
ct

ed
 A

re
a 

M
V

I 

S
en

ti
n

el
-2

 Threshold 1 1.9 1 1.2 1.5 1 1 1 1.1 1.1 1.7 1.4 1.1 1.1 1.5 1.5 1.5 1.7 

Mangrove class 

accuracy 
95% 90% 95% 89% 87% 95% 90% 90% 95% 95% 93% 97% 98% 96% 98% 96% 96% 96% 

Area (ha) 242 5.1 32 6.3 8.8 90 14 14.6 38.2 24.3 266 490.3 118.6 715.8 7579.8 608.7 557 697 

L
an

d
sa

t-
9
 Threshold 1 2 2 2 1.7 1.5 1.5 1 1.5 1.6 1.6 2 2 1.5 1.5 1 1.5 1 

Mangrove class 

accuracy 
83% 83% 84% 73% 75% 92% 83% 84% 75% 79% 80% 83% 98% 92% 88% 83% 83% 81% 

Area (ha) 127 3.6 41.49 2.9 3.6 131.31 9 15.1 11.3 26.8 232.2 452 182 808 8054.4 741 406 576 

R
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 Mangrove class 

accuracy 
93% 92% 94% 91% 79% 85% 90% 87% 88% 77% 89% 87% 95% 98% 96% 90% 93% 95% 

Area (ha) 587 9.6 71.7 8.8 8.6 113.2 14.4 15.3 39.7 30.36 233 663.6 123.5 783.4 61.54 568.5 516.4 924.9 

L
an

d
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t-
9
 Mangrove class 

accuracy 
78% 88% 93% 82% 66% 93% 68% 70% 85% 79% 83% 90% 96% 93% 88% 91% 87% 91% 

Area (ha) 736 14.5 165.2 11.4 18.68 99 24.7 22.5 111.4 40.6 272.7 1060.7 317.1 845.1 7513.4 699.7 622.6 1127 
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 Mangrove class 

accuracy 
0 0 0 0 0 80% 0 0 0 61% 0 84% 0 91% 93% 90% 79% 88% 

Area (ha) 0 0 0 0 0 79 0 0 0 5.6  591.4 0 844 8670 716 453 825.5 

G
L

C
 Mangrove class 

accuracy 
0 59% 49% 0 0 72% 0 56% 0 73% 0 84% 85% 90% 94% 92% 84% 83% 

Area (ha) 0 2.9 11.2 0 0 57 0 10.4 0 20.7 0 560 142 919 11862 784 545 910 

G
M

W
 Mangrove class 

accuracy 
0 0 0 0 0 79% 0 0 0 57% 0 77% 0 86% 82% 89% 71% 88% 

Area (ha) 0 0 0 0 0 87 0 0 0 7 0 580.5 0 91.2 6044.4 855 302 635.5 

  



  

(mangrove class accuracy 56%, area 10.4 ha). However, it still performed poorly in areas such 

as Mahshahr Port, Charak Port, and Nakhiloo National Park. The GMW product showed good 

performance in many regions and, in some cases, produced results similar to the GLC. For 

example, in Qeshm (mangrove class accuracy 82%, area 6044.4 ha), Kulaghan (mangrove class 

accuracy 89%, area 855 ha), and Sirik (mangrove class accuracy 86%, area 91.2 ha), it 

demonstrated high ability in detecting mangrove forests. However, like the others, it failed to 

detect mangroves in areas such as Mahshahr Port, Tang Port, Chabahar Port, and Nakhiloo 

National Park, with mangrove class accuracy being zero, indicating an inability to detect 

mangroves in these regions. Fig 3 show the mangrove class for several mangrove forest sites in 

Iran based on the MVI threshold, the generated classifications, and remote sensing products. 

 

Fig 3. Geographic distribution maps of mangrove forests in Qeshm, Sirik, Gwatar, Chakhah, Kolahi and 

Tiyab Inlet, Kulgan, and Bandar Abbas. 

The mangrove class accuracy and estimated area of mangrove forests using the MVI index, 
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RF classification, and global products were also calculated collectively for all studied sites, in 

contrast to previous analyses that evaluated accuracy separately for each of the 18 sites (Table 

3). The classification based on the MVI index using Sentinel-2 showed the highest mangrove 

class accuracy (95%) and estimated an area of 11,509 hectares, while Landsat-9, with an 

accuracy of 84%, estimated a larger area of 11,834.5 hectares. The classification using the RF 

algorithm showed different performance, with Sentinel-2 achieving a mangrove class accuracy 

of 91% and estimating an area of 10,779.41 hectares, whereas Landsat-9, with an accuracy of 

86%, estimated a larger area of 13,702.23 hectares. Among the global products, GLC had an 

accuracy of 80% and estimated the largest mangrove area at 15,814 hectares. The ESA product 

showed an accuracy of 83%, with an estimated mangrove area of 11,441.5 hectares, while 

GMW had the lowest accuracy (78%) and estimated an area of 8,605 hectares (Fig 4). 

Table 3. Mangrove class accuracy and area for different methods (RF, MVI)  

and remote sensing products. 

 

Maps Mangrove class accuracy Area(ha) 

MVI (Sentinel-2) 95% 11509 

MVI (Landsat-9) 84% 11834.5 

RF (Sentinel-2) 91% 10779.41 

RF (Landsat-9) 86% 13702.23 

GLC 80% 15814 

ESA 83% 11441.5 

GMW 78% 8605 

 

 

Fig 4. Comparison of mangrove class accuracy and area for different methods (RF, MVI) and remote 

sensing products. 

 

4. Discussion 
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Unlike previous research (Zanganeh et al., 2017; Conopio et al., 2021; Neri et al., 2021; Yang 

et al., 2022; Jia et al., 2023), which mainly relied on isolated datasets, this study provides a 

comprehensive evaluation of remote sensing techniques, including the MVI and RF 

classification methods, utilizing Landsat-9 and Sentinel-2 satellite imagery. One of the primary 

challenges in mangrove forest mapping in Iran is the uneven distribution of mangrove areas, 

which complicates the performance of indices like the MVI across different regions. As a result, 

this study focuses on identifying an appropriate threshold for the MVI to improve its 

effectiveness for mapping mangrove forests in Iran. The research also highlights the 

performance of global land cover products, such as GLC_FCS30, ESA WorldCover, and Global 

Mangrove Watch, in the context of Iran's mangrove ecosystems. By evaluating their accuracy 

in local conditions, this study aims to enhance the practical application of these products. 

The analysis of the results for determining the MVI threshold in different regions revealed 

that the sensitivity of the MVI threshold significantly impacts the accuracy of mangrove 

detection. A comparison between Sentinel-2 and Landsat-9 data showed that Sentinel-2 

outperformed Landsat-9 in terms of mangrove class accuracy (98%) and higher accuracy 

values. Specifically, the Chakhah, Kolahi and Tiyab Inlet, Dargahan, and Qeshm regions 

achieved high mangrove class accuracy (98%) using Sentinel-2, demonstrating its ability to 

accurately identify mangroves, even in complex areas. These results are consistent with the 

findings of Wang et al. (2018) and Baloloy et al. (2020). On the other hand, Landsat-9 data, 

particularly in areas like Mahshahr Port and Tang Port, showed lower mangrove class accuracy 

(83%) and lower performance. Moreover, the sensitivity of the threshold in Landsat-9 data was 

higher. For instance, changes in the threshold in Tang Port and Chabahar significantly affected 

the mangrove class accuracy, highlighting the need for finer parameter adjustment for this 

sensor. Ultimately, the threshold analysis indicates that the accuracy of mangrove detection and 

the calculated area is highly dependent on the selection of an appropriate threshold and the 

characteristics of the sensor used. 

The results of mangrove forest classification using the RF algorithm demonstrate the 

effectiveness of this method, especially in identifying mangroves in low-density areas. 

Specifically, the RF algorithm demonstrated strong performance in regions with sparse 

mangrove coverage, such as Charak Port and Tang Port. This indicates the algorithm’s high 

sensitivity to subtle variations in satellite imagery and its ability to accurately differentiate 

features. By capturing more complex features, such as spectral diversity and small-scale surface 

variations, the algorithm effectively identified mangrove forests in areas with low vegetation 

density. In contrast, in regions with higher mangrove density, such as Dargahan and Sirik, the 

RF algorithm maintained high accuracy, demonstrating its stability and effectiveness in 

different settings. These results are consistent with studies by Ghorbanian et al. (2021), Behera 

et al. (2021), and Purwanto et al. (2022), which also highlighted the effectiveness of this 

algorithm in mangrove forest identification. 

The results indicate that remote sensing products face significant challenges in accurately 

identifying mangrove forests. While products like ESA and GLC produced acceptable results 

in some areas, their performance was poor in others, particularly in Mahshahr Port and Tang 

Port. These findings suggest that remote sensing products, especially in regions with lower 

density and more complex conditions, struggle to accurately detect mangrove forests. 

Specifically, the ESA product failed to identify mangrove forests in certain key areas, with the 

mangrove class accuracy recorded as zero in these locations, highlighting its limitations in these 

regions. In contrast, GLC and GMW products performed better in other areas, successfully 

identifying extensive mangrove forest regions, particularly in Qeshm and Kolgan. 
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Consequently, these comparisons demonstrate that no single product performed consistently 

well across all areas; rather, each product exhibited better capabilities in specific regions. 

The results of this study indicate that Sentinel-2-based methods, particularly the MVI index, 

achieved the highest accuracy in identifying the mangrove class (95%), while the RF classifier 

with Sentinel-2 data provided an accuracy of 91% for mangroves. Both methods reached 98% 

accuracy in certain sites, such as Dargahan, Sirik, and Qeshm. In comparison, Landsat-9-based 

methods showed lower accuracy (MVI: 84%, RF: 86%). Global products exhibited weaker 

performance; GLC mapped the largest area (15,814 ha) but had an accuracy of 80% for the 

mangrove class, while ESA and GMW achieved 83% and 78% accuracy, respectively. Some 

of these products failed to detect mangroves in several sites, such as Mahshahr Port, Tang Port, 

Chabahar Port, Charak Port, Dayyer Port, BandarAbbas, Nakhiloo National Park, Hormoz 

Island, Pozm Tiyab Bay, Deirstan Bay, Nayband Bay, Chakhah, Kolahi and Tiyab Inlet, 

Kulaghan, Gwatar, Gabrik, and Jask Protected Area. The choice of the optimal method depends 

on the study's objective—whether higher accuracy or broader coverage is prioritized. 

The findings of this study, in line with those of Maurya et al. (2021), Lu et al. (2022), and 

Sunkur et al. (2024), highlight the significant role of remote sensing in mapping and assessing 

mangrove forests. The results show that remote sensing is an effective tool for accurately 

identifying mangrove cover, an essential aspect for monitoring the condition of these 

ecosystems. Mangrove forests, due to their ecological importance and unique geographic 

location, are highly vulnerable to human activities and climate change. The analysis of remote 

sensing data demonstrates its potential to support the detection and evaluation of mangrove 

areas, which is crucial for informed conservation and management efforts. 

The findings of this study contribute significantly to the understanding of mangrove forest 

ecosystems and the importance of accurate remote sensing data in assessing their condition. 

These results can guide future research and helping to better understand mangrove distribution 

and dynamics. Strengthening collaborations at both local and international levels, especially 

with communities that depend on these ecosystems, along with increased investment in the 

protection and restoration of mangrove forests, is crucial for their preservation. Additionally, 

raising public awareness about the economic and environmental significance of mangrove 

forests will enhance conservation efforts. However, the limitations of using satellite data and 

classification algorithms, particularly in areas with rapid environmental changes, should be 

acknowledged. Future studies could benefit from higher resolution data and an expanded 

geographical scope to provide deeper insights into natural resource management and 

conservation strategies. 

 

5. Conclusion 

The results of this study show that the use of multi-source data combined with advanced 

machine learning algorithms has played a significant role in the identification of mangrove 

forests. Through the comparison of the performance of various sensors, such as Sentinel-2 and 

Landsat-9, this research demonstrated that Sentinel-2 images offer higher accuracy in detecting 

mangrove forests, especially in areas with low vegetation density and high complexity. 

Furthermore, selecting an appropriate threshold in the classification process, particularly when 

using various indices, significantly improved accuracy and reduced detection errors. It is 

recommended not to use global products for evaluating mangrove forests in Iran, as these 

products are unable to fully identify mangrove areas in the country. Future studies should 

consider using radar data to improve the accuracy of vegetation classification. Combining radar 

data with optical and hyperspectral imagery can enhance the accuracy of mangrove mapping 
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and facilitate their differentiation from other vegetation types. Additionally, hyperspectral 

imagery, by providing more comprehensive information, can assist in more precise 

identification and biomass estimation. One of the challenges in Iran is the lack of ground truth 

data for training samples. Providing such data would not only save researchers' time but also 

enable diverse studies on various products across a wide spatial range (at the national level). 
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