Estimation of actual evapotranspiration using SEBAL and METRIC algorithms and validation with lysimetric data in arid regions

Document Type : Research Paper

Authors

Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran

10.22059/jdesert.2022.90828

Abstract

Estimation of actual evapotranspiration (ET) in large areas is an important part of water resources management. In recent years, remote sensing has been successfully used in ET estimation, which is supposed to be more accurate for estimating ET on regional and agricultural scales. The main aim of this investigation is to evaluate the efficiency of two algorithms namely Surface Energy Balance Algorithms for Land (SEBAL) and Mapping ET at high Resolution with Internalized Calibration (METRIC) algorithms for estimating actual ET from agricultural lands in Davarsen County, Iran. Accordingly, six Landsat 8 OLI/TIR satellite images and Lysimeter data installed in these lands were used. The amounts of actual ET were estimated using two algorithms and the obtained results were compared with Lysimeter data. Based on the results of evaluation, Root Mean Square Error (RMSE) of 0.54 and 0.64 mm day-1, Nash-Sutcliffe Efficiency (NSE) criteria of  0.85 and 0.79, Mean Bias Error (MBE) of 0.04 and 0.02 mm day-1, Mean Absolute Error (MAE) of 0.42 and 0.48 mm day-1 and coefficient of determination  (R2) of 0.86 and 0.82 were estimated for SEBAL and METRIC algorithms, respectively. These statistical indices show that these algorithms have a high accuracy for estimating actual ET in the study area. The executive applications of this study can be used to determine the exact amount of evapotranspiration in irrigated lands for water allocation planning, optimization of crop production, irrigation management and assessment of land use change on water efficiency.

Keywords


References 
 
Abrishamkar M, Ahmadi A. 2017. Evapotranspiration estimation using remote sensing technology       based on SEBAL algorithm, Iranian Journal of Science and Technology, Transactions of Civil       Engineering, 41; 65-76. Allen R, Tasumi M, Trezza R, Waters R, Bastiaanssen W. 2002. SEBAL (Surface Energy Balance       Algorithms for Land), Advance Training and Users Manual–Idaho Implementation, version, 1; 97. Allen RG, Morse A, Tasumi M. 2003. Application of SEBAL for western US water rights regulation       and planning. In Proc. ICID Int. Workshop on Remote Sensing. Allen RG, Tasumi M, Trezza R. 2007. Satellite-based energy balance for mapping evapotranspiration       with internalized calibration (METRIC)—Model, Journal of Irrigation and Drainage Engineering,       133; 380-394. Babran S, Honarbakhsh N. 2008. Water Crisis in Iran and World. Rahbord, 16, 193-214. Bastiaanssen W, Noordman E, Pelgrum H, Davids G, Allen R. 2005. SEBAL for spatially distributed       ET under actual management and growing conditions, ASCE Journal of Irrigation and Drainage       Engineering, 131; 85-93. Bastiaanssen WG. 1998a. Remote sensing in water resources management: The state of the art.       International Water Management Institute, Colombo, Sri Lanka. Bastiaanssen WG. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin,       Turkey, Journal of Hydrology, 229; 87-100. Bastiaanssen WG, Pelgrum H, Wang J, Ma Y, Moreno J, Roerink G, Van der Wal T. 1998. A remote       sensing surface energy balance algorithm for land (SEBAL).: Part 2: Validation, Journal of       Hydrology, 212; 213-229. Bhattarai N, Quackenbush LJ, Im J, Shaw SB. 2017. A new optimized algorithm for automating       endmember pixel selection in the SEBAL and METRIC models, Remote Sensing of Environment,196;178-192. Carmona F, Rivas R, Kruse E. 2017. Estimating daily net radiation in the FAO Penman–Monteith       method, Theoretical and Applied Climatology, 129; 89-95. 
  Estimation of actual evapotranspiration using SEBAL and METRIC algorithms …                                                              275  
 
Diak GR, Whipple MS. 1993. Improvements to models and methods for evaluating the land-surface       energy balance and ‘effective’roughness using radiosonde reports and satellite-measured       ‘skin’temperature data, Agricultural and Forest Meteorology, 63; 189-218. Filgueiras R, Mantovani EC, Althoff D, Ribeiro RB, Venancio LP, dos Santos RA. 2019. Dynamics of       actual crop evapotranspiration based in the comparative analysis of SEBAL and METRIC-EEFLUX,       Irriga 1(1); 72-80.  Folhes M, Rennó C, Soares J. 2009. Remote sensing for irrigation water management in the semi-arid       Northeast of Brazil, Agricultural Water Management, 96; 1398-1408. French A, Jacob F, Anderson M, Kustas W, Timmermans W, Gieske A, Su Z, Su H, McCabe M, Li F.       2005. Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection       radiometer (ASTER) at the Iowa 2002 SMACEX site (USA), Remote Sensing of Environment, 99;       55-65. Hafeez M, Chemin Y. 2002. Evapotranspiration Estimation using TERRA/ASTER sensor: A case study       in District 1 of UPRIIS, Central Luzon, Philippines, Canadian Journal of Remote Sensing, 101; 81-      95. Hoseinalizadeh M, Ayoubi S, Shataei S. 2006. Comparison of various interpolation methods on       evaluation surface soil  properties (Case study: Mehr Sabzevar Watershed), Journal of Agricultural       Sciences and Natural Resources, 13; 152-162. Howell TA. 2005. Lysimetry. In Encyclopedia of Soils in the Environment, ed. D. Hillel, 379-386.       Oxford: Elsevier. Jaafar HH, Ahmad FA. 2020. Time series trends of Landsat-based ET using automated calibration in       METRIC and SEBAL: The Bekaa Valley, Lebanon, Remote Sensing of Environment, 238; 111034. Javadian M, Behrangi A, Gholizadeh M, Tajrishy M. 2019. METRIC and WaPOR estimates of       evapotranspiration over the Lake Urmia Basin: comparative analysis and composite assessment,       Water, 11; 1647. Jia Z, Liu S, Xu Z, Chen Y, Zhu M. 2012. Validation of remotely sensed evapotranspiration over the       Hai River Basin, China, Journal of Geophysical Research: Atmospheres, 117, 113-125. Kimura R, Bai L, Fan J, Takayama N, Hinokidani O. 2007. Evapo-transpiration estimation over the river       basin of the Loess Plateau of China based on remote sensing, Journal of Arid Environments, 68; 53-      65. Li H, Zheng L, Lei Y, Li C, Liu Z, Zhang S. 2008. Estimation of water consumption and crop water       productivity of winter wheat in North China Plain using remote sensing technology, Agricultural       Water Management, 95; 1271-1278. Losgedaragh SZ, Rahimzadegan M. 2018. Evaluation of SEBS, SEBAL, and METRIC models in       estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran), Journal       of Hydrology, 561, 523-531. Mazidi A, Kooshki S. 2015. Simulation of Rainfall-Runoff Process and Estimate of Flood with HEC-      HMSModel in Khorramabad Catchment Area, Geography and Development Iranian Journal, 13; 1-      10. Modiri S, Modiri M. 2016. Calibration of separate window model factors to calculate land surface       temperature using MODIS images, European Online Journal of Natural and Social Sciences, 5;       546-558. Mutiga JK, Su Z, Woldai T. 2010. Using satellite remote sensing to assess evapotranspiration: Case       study of the upper Ewaso Ng’iro North Basin, Kenya, International Journal of Applied Earth       Observation and Geoinformation, 12; S100-S108. Paul G, Gowda PH, Prasad PV, Howell TA, Staggenborg SA, Neale CM. 2013. Lysimetric evaluation       of SEBAL using high resolution airborne imagery from BEAREX08, Advances in Water Resources,       59; 157-168. Sari DK, Ismullah I, Sulasdi W, Harto A. 2013. Estimation of water consumption of lowland rice in       tropical area based on heterogeneous cropping calendar using remote sensing technology, Procedia       Environmental Sciences, 17; 298-307. Spiliotopoulos M, Holden NM, Loukas A. 2017. Mapping evapotranspiration coefficients in a temperate       maritime climate using the metric model and landsat TM, Water, 9; 23. 
 276                                                                                                                        DESERT, 27-2, 2022 
 
Tang R, Li ZL, Chen KS, Jia Y, Li C, Sun X. 2013. Spatial-scale effect on the SEBAL model for       evapotranspiration estimation using remote sensing data, Agricultural and Forest Meteorology, 174;       28-42. Tasumi M. 2003. Progress in operational estimation of regional evapotranspiration using satellite       imagery. In Ph.D.Dissertation, University of Idaho, 357. Tasumi M. 2019. Estimating evapotranspiration using METRIC model and Landsat data for better       understandings of regional hydrology in the western Urmia Lake Basin, Agricultural Water       Management, 226; 105805. Tasumi M, Trezza R, Allen RG, Wright JL. 2003. US Validation tests on the SEBAL model for       evapotranspiration via satellite, In 2003 ICID Workshop on Remote Sensing of ET for Large       Regions. Tasumi M, Trezza R, Allen RG, Wright JL. 2005. Operational aspects of satellite-based energy balance       models for irrigated crops in the semi-arid US, Irrigation and Drainage Systems, 19; 355-376. Teixeira AdC, Bastiaanssen WG, Ahmad M.-u.-D, Bos M. 2009. Reviewing SEBAL input parameters       for assessing evapotranspiration and water productivity for the Low-Middle Sao Francisco River       basin, Brazil: Part A: Calibration and validation, Agricultural and Forest Meteorology, 149; 462-476. Wagle P, Bhattarai N, Gowda PH, Kakani VG. 2017. Performance of five surface energy balance models       for estimating daily evapotranspiration in high biomass sorghum, ISPRS Journal of Photogrammetry       and Remote Sensing, 128; 192-203. Wolff W, Francisco JP, Flumignan DL, Marin FR, Folegatti MV. 2022. Optimized algorithm for       evapotranspiration retrieval via remote sensing, Agricultural Water Management, 262; 107390. Yang Y, Shang S. 2013. A hybrid dual‐source scheme and trapezoid framework–based       evapotranspiration model (HTEM) using satellite images: Algorithm and model test, Journal of       Geophysical Research: Atmospheres, 118; 2284-2300. Yang Y, Shang S, Jiang L. 2012. Remote sensing temporal and spatial patterns of evapotranspiration       and the responses to water management in a large irrigation district of North China, Agricultural and       Forest Meteorology, 164; 112-122. Zhou J, Zhang X, Zhan W, Zhang H. 2014. Land surface temperature retrieval from MODIS data by       integrating regression models and the genetic algorithm in an arid region, Remote Sensing, 6; 5344-      5367. Zwart SJ, Bastiaanssen WG. 2007. SEBAL for detecting spatial variation of water productivity and       scope for improvement in eight irrigated wheat systems, Agricultural Water Management, 89; 287-      296.