Monitoring Dynamic Distribution of Surface Soil Moisture Using SMAP data in Simineh-Zarrineh Catchment (Semi-arid region), NW of Iran

Document Type : Research Paper

Authors

1 Soil Science Department, Faculty of agriculture, University of Zanjan

2 Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

3 soil science, tehran university

4 Assistant Professor, Agricultural Engineering Research Department, West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran

Abstract

Soil moisture (SM) acts like an impressive factor in hydrological process, agricultural productivity and monitoring of dangerous outcomes of climate change. The main purpose of this study was to monitoring and pattern recognition of spatial and temporal variation of SMAP soil moisture in five subcatchment of Simineh-Zarrineh catchment in north west of Iran from 2015 to 2017. Precipitation data of thirty-five meteorological stations and 287 soil moisture points derived from the SMAP were used to monitoring SM variations in the time scale. Result indicated that the SM variations are subject to precipitation variations throughout the monthly scale in the catchment. In all seasons of the period SM decreased from north to south of the catchment also on the contrary, east to west does not follow up such a constant pattern. Oscillation SM patterns in this time period were completely coordinated by precipitation pattern. The determination coefficient between monthly SMAP soil moisture and precipitation for each sub-catchment was 0.9, 0.83, 0.7, 0.84 and 0.71 for Bokan, Saqqez, Takab, Saeinqaleh and Miandoab sub-catchment, respectively. Spatial variability of standard deviation for SM values was used to find the amount of deviation from the average value during dry and wet seasons. Result reveal that in seasonal scale northwest (0.067 to 0.069 cm3.cm3) and east parts (0.057 to 0.061 cm3.cm3) of study area have higher values of the SM standard deviations in autumn. Results demonstrated that high value of standard deviation was observed in autumn season because of irregular precipitation events and fluctuation of temperature.

Keywords


References 
 
Albergel C, Dorigo W, Balsamo G, Mu˜noz-Sabater J, de Rosnay P, Isaksen L,Wagner W. 2013.       Monitoring multi-decadal satellite earth observation of soil moisture products through land surface       re analyses. Remote Sensing Environment, 138; 77–89. Al-Yaari A, Wigneron JP, Ducharne A, Kerr Y, de Rosnay P, de Jeu R, Mialon A. 2014a. Global-scale       evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E)       with respect to land data assimilation system estimates. Remote Sensing Environment, 149; 181–      195. Babaeian E, Homaee M, Montzka C, Vereecken H, Norouzi AA, van Genuchten MT. 2016. Soil       moisture prediction of bare soil profiles using diffuse spectral reflectance information and vadose       zone flow modeling. Remote Sensing Environment, 187; 218–229. Brocca L, Camici S, Melone F, Moramarco T, Martínez-Fernández J, Didon-Lescot JF, Morbidelli R.       2014b. Improving the representation of soil moisture by using a semi analytical infiltration model.       Hydroly Processes, 28; 2103–2115. Brocca L, Moramarco T, Melone F, Wagner W, Hasenauer S, Hahn S. 2012. Assimilation of surface-      and root-zone ASCAT soil moisture products intorainfall–runoff modeling. Geoscience Remote       Sensing, 50; 2542–2555. Brocca L, Moramarco T, Melone F, Wagner W, Hasenauer S, Hahn S. 2012. Assimilation of surface       and root zone ASCAT soil moisture products into rainfall-runoff modelling. IEEE Transactions on       Geoscience and Remote Sensing, 50; 2542–2555. Champagne C, Rowlandson T, Berg A, Burns T. 2016. Satellite surface soil moisture from SMOS and       Aquarius: Assessment for applications in agricultural landscapes. International Journal of Applied       Earth Observation and Geoinformation. 45; 143–154. Chen F, Crow W D, Starks PJ, Moriasi DN. 2011. Improving hydrologic predictions of catchment model       via assimilation of surface soil moisture. Advances in Water Resources, 34; 526–535. Das NN, Entekhabi D, Njoku EG, Johnston J, Shi JC, Colliander A. 2014. Tests of the SMAP combined       radar and radiometer brightness temperature disaggregation algorithm using airborne field campaign       observations. IEEE Transactions on Geoscience and Remote Sensing. 52; 2018–2028. Das NN, Mohanty BP, Njoku EG. 2008. Characterization of backscatter by surface features in L-band       active microwave remote sensing of soil moisture. IGARSS 2008– 2008 IEEE International       Geoscience and Remote Sensing Symposium. vol. 2. IEEE, pp. II–817. 
DESERT2021, 26(2): 187-203                                                                                                                                                    202   
Das NN, Entekhabi D, Njoku EG. 2011.  An algorithm for merging SMAP radiometer and radar data       for high-resolution soil-moisture retrieval. IEEE Transactions on Geoscience and Remote Sensing       49; 1504–1512. Entekhabi D, Njoku EG, O'Neill P, Kellogg K, Crow W, Edelstein W, Entin J, Goodman S, Jackson T,       Johnson J, Kimball J, Peipmeier J, Koster R, McDonald K, Moghaddam M, Moran S, Reichle R, Shi       J, Spencer M, Thurman S. 2010. The soil moisture active and passive (SMAP) mission. IEEE       Transactions on Geoscience and Remote Sensing 98; 704–716. Hassan-Esfahani L, Torres-Rua A, Jensen A, McKee M. 2015. Assessment of surface soil moisture       using high-resolution multi-spectral imagery and artificial neural networks. Remote Sensing. 7;       2627–2646. Iran Ministry of Energy, Deputy of water and Wastewater, Macro Planning Bureau 2014. The National       Water Master Plan Study in the Aras, Sefidrood, between Sefidrood and Haraz, Atrac and Urmia       Basins, Volume 20: Industrial Water Demand and Consumption and Produced Wastewater in Urmia       Basin Projection, 2040 Horizion , Report number: 2385070-5120-24878. Koster RD, Suarez MJ. 2001. Soil moisture memory in climate models. Journal of Hydrometeorology,       2; 558–570. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P. 2004. Regions of strong coupling between       soil moisture and precipitation. Science, 305; 1138–1140. Legates DR, Mahmood R, Levia DF, DeLiberty TL, Quiring SM, Houser C, Nelson E. 2011. Soil       moisture: a central and unifying theme in physical geography. Progress in Physical Geography. 35;       65-86.  Lei F, Crow WT, Kustas WP, Dong J, Yang Y, Knipper KR, Anderson MC, Gao F, Notarnicola C,       Greifeneder F, McKee LM. 2020. Data assimilation of high-resolution thermal and radar remote       sensing retrievals for soil moisture monitoring in a drip-irrigated vineyard. Remote Sensing of       Environment, 239; 111622. Leroux DJ, Kerr YH, Al Bitar A, Bindlish R, Jackson TJ, Berthelot B, Portet G. 2014. Comparison       between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in US.       IEEE Transaction on Geoscience and Remote Sensing 52; 1562–1571. Liu YY, Dorigo WA, Parinussa RM, De Jeu RAM, Wagner W, McCabe MF, Van Dijk AIJM. 2012.       Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote       Sensing. Environment. 123; 280–297. McGinn SM, Shepherd A. 2003. Impact of climate change scenarios on the agro climate of the Canadian       prairies. Canadian Journal of Soil Science, 83; 623–630. Miralles D, van den Berg M, Teuling AJ, De Jeu RAM. 2012. Soil moisture-temperature coupling: A       multiscale observational analysis. Geophysical Research Letters, 39 (No. L21707, 2012). Mladenova IE, Jackson TJ, Njoku E, Bindlish R, Chan S, Cosh MH, Holmes TRH, De Jeu RAM, Jones       L, Kimball J, Paloscia S. 2014. Remote monitoring of soil moisture using passive microwave-based       techniques—theoretical basis and over view of selected algorithms for AMSR-E. Remote Sensing       Environment. 144; 197–213. Njoku EG, Entekhabi D. 1996. Passive microwave remote sensing of soil moisture. Journal of       Hydrology. 184; 101–129. Owe M, De Jeu R, van de Griend A. 2000. Estimating long term surface soil moisture from satellite       microwave observations in Illinois. IAHS-AISH Publication, USA, pp. 394–399. Powell LR, Berg AA, Johnson DL, Warland JS. 2007. Relationships of pest grasshopper populations in       Alberta, Canada to soil moisture and climate variables. Agricultural and Forest Meteorology, 144;       73–84. Pratt DA, Ellyett CD. 1979. The thermal inertia approach to mapping of soil moisture and geology.       Remote Sensing Environment. 8; 151–168. Pruski FF, Nearing MA. 2002. Climate-induced changes in erosion during the21st century for eight US       Art. no. 1298. Water Resources Research, 38; 1298. Reichle RH, De Lannoy GJ, Liu Q, Colliander A, Conaty A, Jackson T, Kimball J, Koster RD. 2015.        Soil Moisture Active Passive (SMAP) Project Assessment Report for The Beta-Release L4_SM Data       Product; NASA Technical Report Series on Global Modeling and Data Assimilation, NASA:       Houston, 55p. 
203  Haji Maleki et al. 
 
 
Robinson DA, Campbell CS, Hopmans JW, Hornbuckle BK, Jones SB, Knight R, Ogden F, Selker J,       Wendroth O. 2008. Soil moisture measurement for ecological and hydrological watershed-scale       observatories: a review. Vadose Zone Journal. 7; 358–389. http://dx.doi.org/10.2136/vzj2007.0143. Sang YF, Wang Z, Liu C. 2014. Comparison of the MK test and EMD method for trend identification       in hydrological time series. Journal of Hydrology. 510; 293–298. Su B, Wang A, Wang G, Wang Y, Jiang T. 2016. Spatiotemporal variation of soil moisture in the Tarim       River basin, China. International Journal of Applied Earth Observation and Geoinformation. 48;       122–130. Tan X, Gan TY, Shao D. 2017. Effects of persistence and large-scale climate anomalies on trends and       change points in extreme precipitation of Canada. Journal of Hydrology. 550; 453–465. Taylor CM, De Jeu RAM, Guichard F, Harris PP, Dorigo WA. 2012. Afternoon rain more likely over       drier soils. Nature, 489; 282–286. Tian J, Philpot WD. 2015. Relationship between surface soil water content, evaporation rate, and water       absorption band depths in SWIR reflectance spectra. Remote Sensing Environment. 169; 280–289. Vereecken H, Huisman JA, Pachepsky Y, Montzka C, van der Kruk J, Bogena H, Weihermüller L,       Herbst M, Martinez G, Vanderborght J. 2014. On the spatiotemporal dynamics of soil moisture at       the field scale. Journal of Hydrology. 516; 76–96. Verstraeten WW, Veroustraete F, van der Sande CJ, Grootaers I, Feyen J. 2006. Soil moisture retrieval       using thermal inertia, determined with visible and thermal space borne data, validated for European       forests. Remote Sensing Environment. 101; 299–314. Wang C, Fu BJ, Zhang L, Xu ZH. 2019. Soil moisture plant interactions: an eco-hydrological review.       Journal of Soils Sediments 19; 1-9. Wang X, Wanga B, Xu X, Liu T, Duan Y, Zhao Y. 2018. Spatial and temporal variations in surface soil           moisture and vegetation cover in the Loess Plateau from 2000 to 2015. Journal of Ecological       indicators. 95; 320–330. Whiting ML, Li L, Ustin SL. 2004. Predicting water content using Gaussian model on soil spectra.       Remote Sensing Environment. 89; 535–552. Zeng W, Xu C, Huang J, Wu J, Tuller M. 2016. Predicting near-surface soil moisture content of saline       soils from NIR reflectance spectra with a Modified Gaussian model. Soil Science Society of America       Journal. http://dx.doi.org/10.2136/sssaj2016.06.0188. Zhang Q, Li J, Singh VP. 2013. Copula-based spatio-temporal patterns of precipitation extremes in       China. International Journal of Climatology. 33; 1140–1152.