How different source regions across the Middle East change aerosol and dust particle characteristics

Document Type : Research Paper


1 Faculty of Natural Resources, Urmia University, Urmia, Iran

2 Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Pkwy, NV 89512, USA

3 Dept. of Water and Soil Engineering, Faculty of Agriculture, Ilam University, Ilam, Iran


A major question is whether different source regions across the Middle East account for changes in aerosol and dust particle characteristics, which impact Western Iran. Therefore, over a period of sampling from April 2017 to April 2018, dust particles were collected in Western Iran from different cities including Urmia, Sanandaj, Sare-Pole-Zahab, Dehloran and Abadan. The research aim is to compare the chemical compositions of dust and aerosol samples collected during the dust events from the different regions. Results of the analysis of components indicate that during dust events, the concentrations of major and trace elements change. The variability of chemical species during dust events, noted by tracking the dust plumes in satellite images, was also assessed and the results related to the different source areas, namely the dry lands of North-Western Iraq and the desert areas of South-Eastern Syria, some parts of Kuwait and KSA (around the Persian Gulf). Generally, the results show, different source regions across the Middle East have individual chemical compositions with different abundances.


Main Subjects

Ahmady-Birgani, H., K.G. McQueen, H. Mirnejad,
     2018. Characteristics of mineral dust impacting the
     Persian Gulf. Aeolian Research, 30; 11-19.
Ahmady-Birgani, H., E. Agahi, S.J. Ahmadi, M.
     Erfanian, 2018. Sediment Source Fingerprinting of
     the Lake Urmia Sand Dunes. Scientific Reports, 8;
Ahmady-Birgani, H., K.G. McQueen, M. Moeinaddini,
     H. Naseri, 2017. Sand dune encroachment and
     desertification processes of the Rigboland Sand Sea,
     Central Iran. Scientific Reports, 7 (1); 1523.
Ahmady-Birgani, H., H. Mirnejad, S. Feiznia, K.G.
     McQueen, 2015. Mineralogy and geochemistry of
     atmospheric particulates in western Iran. Atmospheric
     Environment, 119; 262-272.
Al-Dabbas, M. A., M.A. Abbas, R.M. Al-Khafaji, 2012.
     Dust storms loads analyses-Iraq. Arabian Journal of
     Geosciences, 5; 121-131.
Bozlaker, A., J.M. Prospero, J. Price, S. Chellam, 2018.
     Linking Barbados mineral dust aerosols to North
     African sources using elemental composition and
     radiogenic Sr, Nd, and Pb isotope signatures. Journal
     of Geophysical Research: Atmospheres, 123; 1384-
Bullard, J. E., M. Baddock, T. Bradwell, J. Crusius, E.
     Darlington, D. Gaiero, C. McKenna‐Neuman, 2016.
     High‐latitude dust in the Earth system. Reviews of
     Geophysics, 54; 447-485.
Dentener, F. J., G.R. Carmichael, Y. Zhang, J. Lelieveld,
     P.J. Crutzen, 1996. Role of mineral aerosol as a
     reactive surface in the global troposphere. Journal of
     Geophysical Research: Atmospheres, 101; 22869-
Engelbrecht, J. P., R. K. M. Jayanty, 2013. Assessing
     sources of airborne mineral dust and other aerosols,
     in Iraq. Aeolian Research, 9; 153-160.
Engelbrecht, J. P., E. V. McDonald, J.A. Gillies, R. K.
     M. Jayanty, G. Casuccio, A. W. Gertler, 2009a.
     Characterizing mineral dusts and other aerosols from
     the Middle East—part 1: ambient sampling.
     Inhalation Toxicology, 21; 297-326.
Engelbrecht, J. P., E. V. McDonald, J. A. Gillies, R. K.
     M. “Jay” Jayanty, G. Casuccio, A. W. Gertler, 2009b.
     Characterizing mineral dusts and other aerosols from
     the Middle East—Part 2: Grab samples and re-
     suspensions. Inhalation Toxicology, 21; 327-336.
Friese, C. A., J.A. Van Hateren, C. Vogt, G. Fischer,
     J.B.W. Stuut, 2017. Seasonal provenance changes in
     present-day Saharan dust collected in and off
     Mauritania. Atmospheric Chemistry & Physics, 17.
Furman, H. K. H., 2003. Dust storms in the Middle East:
     sources of origin and their temporal characteristics.
     Indoor and Built Environment, 12; 419-426.
Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, M.
     Zhao, 2012. Global‐scale attribution of anthropogenic
     and natural dust sources and their emission rates
     based on MODIS Deep Blue aerosol products.
     Reviews of Geophysics, 50 (3).
Goudie, A. S., N. J. Middleton, 2006. Desert dust in the
     global system. Springer Science & Business Media.
Indoitu, R., G. Kozhoridze, M. Batyrbaeva, I.
     Vitkovskaya, N. Orlovsky, D. Blumberg, L.
     Orlovsky, 2015. Dust emission and environmental
     changes in the dried bottom of the Aral Sea. Aeolian
     Research, 17; 101-115.
Mahowald, N., 2011. Aerosol indirect effect on
     biogeochemical cycles and climate. Science,
     334; 794-796.
Mardi, A. H., A. Khaghani, A.B. MacDonald, P.
     Nguyen, N. Karimi, P. Heidary, A. Sorooshian, 2018.
     The Lake Urmia environmental disaster in Iran: A
     look at aerosol pollution. Science of the Total
     Environment, 633; 42-49.
Pi, H., B. Sharratt, G. Feng, J. Lei, 2017. Evaluation of
     two empirical wind erosion models in arid and semi-
     arid regions of China and the USA. Environmental
     Modelling & Software, 91; 28-46.
Pourmand, A., J.M. Prospero, A. Sharifi, 2014.
     Geochemical fingerprinting of trans-Atlantic African
     dust based on radiogenic Sr-Nd-Hf isotopes and rare
     earth element anomalies. Geology, 42; 675-678.
Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson,
     T. E. Gill, 2002. Environmental characterization of
     global sources of atmospheric soil dust identified
     with the Nimbus 7 Total Ozone Mapping
     Spectrometer (TOMS) absorbing aerosol product.
     Reviews of Geophysics, 40; 2-1.
Rashki, A., P.G. Eriksson, C.D.W. Rautenbach, D.G.
     Kaskaoutis, W. Grote, J. Dykstra, 2013. Assessment
     of chemical and mineralogical characteristics of
     airborne dust in the Sistan region, Iran. Chemosphere,
     90; 227-236.
Ravi, S., P. D'odorico, D. D. Breshears, J. P. Field,
     A. S. Goudie, T. E. Huxman, S. Van Pelt, 2011.
     Aeolian processes and the biosphere. Reviews of
     Geophysics, 49 (3).
Roth, B., K. Okada, 1998. On the modification of sea-
     salt particles in the coastal atmosphere. Atmospheric
     Environment, 32; 1555-1569.
Scheuvens, D., L. Schütz, K. Kandler, M. Ebert, S.
     Weinbruch, 2013. Bulk composition of northern
     African dust and its source sediments—A
     compilation. Earth-Science Reviews, 116; 170-194.
Sharifi, A., L.N. Murphy, A. Pourmand, A.C. Clement,
     E.A. Canuel, A.N. Beni, H. Ahmady-Birgani, 2018.
     Early-Holocene greening of the Afro-Asian dust belt
     changed sources of mineral dust in West Asia. Earth
     and Planetary Science Letters, 481; 30-40.
Singer, A., T. Zobeck, L. Poberezsky, E. Argaman,
     2003. The PM10and PM2· 5 dust generation potential
     of soils/sediments in the Southern Aral Sea Basin,
     Uzbekistan. Journal of Arid Environments, 54; 705-     728.
Webb, N. P., J. W. Van Zee, J. W. Karl, J. E. Herrick,
     E.M. Courtright, B. J. Billings, J. L. Hand, 2017.
     Enhancing wind erosion monitoring and assessment
     for US rangelands. Rangelands, 39; 85-96.
WHO Report, 2016. World Health Organization Urban
     Ambient Air Pollution Database, 2016 Update.
Wu, G., B. Xu, C. Zhang, S. Gao, T. Yao, 2009.
     Geochemistry of dust aerosol over the Eastern
     Pamirs. Geochimica et Cosmochimica Acta, 73(4),
Wurzler, S., T.G. Reisin, Z. Levin, 2000. Modification
     of mineral dust particles by cloud processing and
     subsequent effects on drop size distributions. Journal
     of Geophysical Research: Atmospheres, 105; 4501-
Zarasvandi, A., E. J. M. Carranza, F. Moore, F.
     Rastmanesh, 2011. Spatio-temporal occurrences and
     mineralogical–geochemical characteristics of
     airborne dusts in Khuzestan Province (southwestern
     Iran). Journal of Geochemical Exploration, 111; 138-