Assessment the effect of drought and land use change on vegetation using Landsat data

Document Type : Research Paper


Faculty of Natural Resources, University of Tehran, Iran


     Drought is a disaster phenomenon especially in arid and semi-arid areas. Vegetation and its production play a main role in the social and economic issues in every country. In this study, Standardized Precipitation Index (SPI) and Normalized Difference Vegetation Index (NDVI) data have been used to monitor drought and the vegetation condition in Sonqor Abad in, Kermanshah province.  Meteorological station data in the study area was used to study the SPI as a drought index. The maps of NDVI and also land use changes were provided using Landsat-TM images for 2001, 2008 and Landsat 8 images for 2015 in ENVI software environment.  The obtained results showed that the land uses of cultivation and fallow have decreased and rangeland, urban and rock mass have increased. On the other hand, the dense of rainfall in the vegetation density has increased in this area during 2001 until 2015. Due to population growth and expansion of urban areas, the farm and garden lands have decreased around the city during this period. The correlation was found between vegetation density in mid-spring and the annual SPI of last year. Therefore, it can be concluded that there is a direct relationship between rainfall and the density of vegetation. By increasing the amount of rainfall and SPI, the vegetation density is increased. Based on the results, it is recommended that in addition to using meteorological data, satellite images should be used for monitoring the drought.


Main Subjects

Azarakhshi, M., M. Mahdavi, H. Arzani, H. Ahmadi,
     2011. Assessment of the Palmer drought severity
     index in arid and semi-arid rangeland: (Case study:
     Qom province, Iran). Desert, 16; 77-86.

Babar, M. A., M.P. Reynolds, M. van Ginkel, A. R.
     Klatt, W. R. Raun, M. L. Stone, 2006. Spectral
     Reflectance Indices as a Potential Indirect Selection
     Criteria for Wheat Yield under Irrigation. Crop
, 46; 578-588.

Bhuiyan, C., R.P. Singh, F.N. Kogan, 2006. Monitoring
     drought dynamics in the Aravalli region (India) using
     different indices based on ground and remote sensing
     data. International Journal of Applied Earth
     Observation and Geoinformation, 8; 289-302.

Buermann, W., Y.J. Wang, J.R. Dong, L.M. Zhou, 
     2002. Analysis of a multiyear global vegetation leaf
     area index data set. Journal of geophysical research,
     107; 1-16.

Carnahan, W.H., R.C. Larson, 1990. An analysis of an
     urban heat sink. Remote Sensing of Environment, 33;

Delshadi, S., M. Ebrahimi, E. Shirmohammadi, 2017.
     Plant growth promoting bacteria effects on growth,
     photosynthetic pigments and root nutrients uptake of
     Avena sativa L. under drought stress. Desert, 22;

Ebrahimi, M., R. Darvishzadeh, A. Matkan, D.
     Ashourloo, 2010. Drought Assessment in Arid
     Regions Using Vegetation Indices - a Case Study of
     "Shirkooh of Yazd" in Central Iran.

Goddard, S., S. Harms, S. Reichenbach, T., Tadesse,  
     W.J. Waltman, 2003. Geospatial decision support for
     drought risk management. Communication of the
     ACM, 46; 35–37.

Heydari Alamdarloo, E., M. Behrang Manesh, H.
     Khosravi 2018. Probability assessment of vegetation
     vulnerability to drought based on remote sensing data.
     Environmental Monitoring Assessment, 190; (702-

Hicke, J.A., G.P. Asner, J.T. Randerson, C. Tucker,
     2002. Trends in North American net primary
     productivity derived from satellite observations,
     1982–1998. Global Biogeochem Cycles, 16; 1018-

Himanshu, S.K., G. Singh, N. Kharola, 2015.
     Monitoring of drought using satellite data. Int. Res. J.
     Earth Sci., 3; 66-72.

Honglin Wang, H., A. Chen, Q. Wang, B. He, 2015.
     Drought dynamics and impacts on vegetation in
     China from 1982 to 2011. Ecological Engineering,
     75; 303-307.

Jahanshahi, A., K. Shahedi, 2018. Evaluation of
     meteorological, hydrological and groundwater
     resources indicators for drought monitoring and
     forecasting in a semi-arid climate. Desert, 23; 29-43.

Jensen, J.R., 2007. Remote sensing of the environment:
     an earth resource perspective. 2nd edn. Prentice Hall,
     Upper Saddle River, NJ.

Ji, L., A.J. Peter, 2003. Assessing Vegetation Response
     to Drought in the Northern Great Plains Using
     Vegetation and Drought Indices. Remote Sensing of
     Environment, 87; 85–98.

Khosravi, H., E. Haydari, S. Shekoohizadegan. S.
     Zareie, 2017a. Assessment the Effect of Drought on
     Vegetation in Desert Area using Landsat Data. The
     Egyptian Journal of Remote Sensing and Space
, 20; s3-s12.

Khosravi, H.,  F. Sajedi HosseiniM. Nasrollahi,
     H.R. Gharechaee, 2017b. Trend analysis and
     detection of precipitation fluctuations in arid and
     semi-arid regions. Desert, 22; 77-84.

Lewis, J.E., J. Rowland, A. Nadeau, 1998.
     Estimatingmaize production in Kenya using NDVI:
     some statistical considerations. International Journal
     of Remote Sensing, 19; 2609–2617.

Maule, C.F., P. Thejll, J.H. Christensen, S.H. Svendsen,
     J. Hannaford, 2013. Improved confidence in regional
     climate model simulations of precipitation evaluated
     using drought statistics from the ENSEMBLES
     models. Climate Dynamics, 40; 155–173.

Montandon, L.M., E.E. Small, 2008. The impact of soil
     reflectance on the quantification of the green
     vegetation fraction from NDVI. Remote Sensing of
     Environment, 112; 1835-1845.

Myneni, R.B, C.D. Keeling, C.J.J. Tucker, G. Asrar,
     R.R. Nemani, 1997. Increased plant growth in the
     northern high latitudes from 1981 to 1991. Nature,
     386; 698–702.

Neigh, C.S.R., C.J. Tucker, J.R.G. Townshend, 2008.
     North American vegetation dynamics observed with
     multi-resolution satellite data. Remote Sens Environ.,
     112; 1749–1772.

Nichol, J.E., 1994. A GIS-based approach to
     microclimate monitoring in Singapore’s high-rise
     housing estates. Photogrammetric Engineering and
     Remote Sensing, 60; 1225– 1232.

Nouri, H., S. Beecham, F. Kazemi, A. Hassanli, S.
     Anderson, 2013. Remote sensing techniques for
     predicting evapotranspiration from mixed vegetated
     surfaces. Urban Water Journal, 12; 380-393.

Nouri, H., S. Beecham, F. Kazemi, A.M. Hassanli,
     2012. A review of ET measurement techniques for
     estimating the water requirements of urban landscape
     vegetation. Urban Water Journal, 10; 247–259.

Orhan, O., M. Yakara, 2016.  Investigating Land Surface
     Temperature Changes Using Landsat Data in Konya,
     Turkey. The International Archives of the
     Photogrammetry. Remote Sensing and Spatial
     Information Sciences. Volume XLI-B8, XXIII ISPRS
     Congress, Prague, Czech Republic.

Pettorelli, N., S. Ryan, T. Mueller, N. Bunnefeld, B.
     Jedrzejew, M. Lima, K. Kausrud, 2011. The
     Normalized Difference Vegetation Index (NDVI):

     unforeseen successes in animal ecology, Climate
     Research, 46; 15-27.

Pôças, I., M. Cunha, L.S. Pereira, R.G. Allen, 2013.
     Using remote sensing energy balance and
     evapotranspiration to characterize montane landscape
     vegetation with focus on grass and pasture lands.
     International Journal. Appl. Earth Obs. Geoinf., 21;

Shahabfar, A., A. Ghulam, J. Eitzinger, 2012. Drought
     monitoring in Iran using the perpendicular drought
     indices. International Journal of Applied Earth
     Observation and Geoinformation, 18; 119-127.

Silleos, N.G., T.K. Alexandridis, I.Z. Gitas, K. Perakis,
     2006. Vegetation Indices: advances made in biomass
     estimation and vegetation monitoring in the last 30
     years. Geocarto Int., 21; 21-28.

Unganai, L.S., F.N. Kogan, 1998. Drought monitoring
     and corn yield estimation in Southern Africa
     fromAVHRRdata. Remote Sensing of Environment,
     63; 219–232.

Vicente-Serrano, S., J.M. Cuadrat-Prats, A. Romo, 2006.
     Early prediction of crop production using drought
     indices at different time-scales and remote sensing
     data: application in the Ebro Valley (North-East
     Spain). International Journal of Remote Sensing,
     27; 511–518.

Wang, Q., S. Adiku, J. Tenhunen. A. Granier, 2005. On
     the Relationship of NDVI with leaf area index in a
     deciduous forest site. Remote Sens Environ., 94; 244–

Weng, Q., 2001. A remote sensing-GIS evaluation of
     urban expansion and its impact on surface
     temperature in the Zhujiang Delta, China.
     International Journal of Remote Sensing, 22; 1999–

Weng, Q., 2003. Fractal analysis of satellite-detected
     urban heat island effect. Photogrammetric
     Engineering and Remote Sensing, 69; 555– 566.

Zhu, Zh., Y. Fu, C.E. Woodcock, P. Olofsson, J.E.
     Vogelmann, Ch. Holden, M. Wang, Sh. Dai, Y. Yu,
     2016. Including land cover change in analysis of
     greenness trends using all available Landsat 5, 7, and
     8 images: A case study from Guangzhou, China
     (2000–2014). Remote Sensing of Environment, 185;