Adhikari, K., A.E. Hartemink, 2016. Linking soils to
ecosystem services - A global review. Geoderma, 262;
101–111.
Bagheri Bodaghabadi, M., M.H. Salehi, J.A. Martínez-
Casasnovas, J. Mohammadi, N. Toomanian, I.
Esfandiarpoor Borujeni, 2011. Using Canonical
Correspondence Analysis (CCA) to identify the most
important DEM attributes for digital soil mapping
applications. Catena, 86; 66–74.
Bagheri Bodaghabadi, M., J.A. Martínez-Casasnovas,
M.H. Salehi, J. Mohammadi, I. Esfandiarpoor
Borujeni, N. Toomanian, A. Gandomkar, 2015. Digital
Soil Mapping using Artificial Neuronal Networks
(ANN) and Terrain-Modelling Attributes. Pedosphere,
25; 580-591.
Bockheim, J.G., A.E. Hartemink, 2013. Distribution and
classification of soils with clay-enriched horizons in
the USA. Geoderma, 209–210; 153–160.
Brungard, C.W., J.L. Boettinger, M.C. Duniway, S.A.
Wills, T.C. Edwards, 2015. Machine learning for
predicting soil classes in three semi-arid landscapes.
Geoderma, 239-240; 68–83.
Das, M.D., 2009. Principles of Geotechnical Engineering
(7th ed.), Cengage Learning, Stamford, CT.
Elliott, P.E., P.J. Drohan, 2009. Clay accumulation and
argillic-horizon development as influenced by aeolian
deposition vs. local parent material on quartzite and
limestone-derived alluvial fans. Geoderma, 151; 98–
108.
Esfandiarpoor Borujeni I., J. Mohammadi, M.H. Salehi,
N. Toomanian, R.M. Poch, 2010. Assessing
geopedological soil mapping approach by statistical
and geostatistical methods: A case study in the
Borujen region, Central Iran. Catena, 82; 1–14.
Geological survey and mineral exploration of Iran. 2017.
http://www.gsi.ir.
Goodman, J. M., P. R. Owens, 2012. Predicting soil
organic carbon using mixed conceptual and
geostatistical models. In: B. Minasny, B. P.Malone, A.
B. McBratney (eds), Digital soil assessments and
beyond (pp. 155–159). London: CRC Press.
Gunal, H., M.D. Ransom, 2006. Clay illuviation and
calcium carbonate accumulation along a precipitation
gradient in Kansas. Catena, 68; 59–69.
Heung, B., H.C. Ho, J. Zhang, A. Knudby, C.E. Bulmer,
M.G. Schmidt, 2016. An overview and comparison of
machine-learning techniques for classification
purposes in digital soil mapping. Geoderma, 265; 62–
77.
Holmes, K.W., E.A. Griffin, N.P. Odgers, 2015. Large-
area spatial disaggregation of a mosaic of conventional
soil maps: evaluation over Western Australia. Soil
Research, 53; 865–880.
Jafari, A., P.A. Finke, J. VandeWauw, S. Ayoubi, H.
Khademi, 2012. Spatial prediction of USDA- great soil
groups in the arid Zarand region, Iran: comparing
logistic regression approaches to predict diagnostic
horizons and soil types. European Journal of Soil
Science, 63; 284–298.
Kalavathi, K., P.V. Nimitha Safar, 2015. Performance
Comparison between Naive Bayes, Decision Tree and
k-Nearest Neighbor. International Journal of
Emerging Research in Management and Technology,
4; 152-161.
Khormali, F., S. Ghergherechi, M. Kehl, S. Ayoubi, 2012.
Soil formation in loess-derived soils along a subhumid
to humid climate gradient, Northeastern Iran.
Geoderma, 179–180; 113–122.
Lagacherie, P., S. Holmes, 1997. Addressing
geographical data errors in a classification tree for soil
unit prediction. International Journal of Geographical
Information Science, 11; 183–198.
Machado, I.R., E. Giasson, A.R. Campos, J. Janderson, F.
Costa, E.B. Silva, B.R. Bonfatti, 2018. Spatial
Disaggregation of Multi-Component Soil Map Units
Using Legacy Data and a Tree-Based Algorithm in
Southern Brazil. Rev Bras Cienc Solo; 42: e0170193.
Massawe, B.H.J., S.K. Subburayalu, A.K. Kaaya, L.
Winowiecki, B.K. Slater, 2018. Mapping numerically
classified soil taxa in Kilombero Valley, Tanzania
using machine learning. Geoderma, 311; 143–148.
Maynard, J.J., M.G. Johnson, 2014. Scale-dependency of
LiDAR derived terrain attributes in quantitative soil-
landscape modeling: Effects of grid resolution vs.
neighborhood extent. Geoderma, 230–231; 29–40.
McBratney, A. B., M. L. Mendonc, B. Minasny, 2003. On
digital soil mapping. Geoderma, 117; 3–52.
Mirakzehi, K., M. Pahlavan-Rad, A. Shahriari, 2018.
Digital soil mapping of deltaic soils: A case of study
from Hirmand (Helmand) river delta. Geoderma, 313;
233–240.
Mohammadi, M., 1986. Semi-detailed soil studies report
Chaharmahal-Va-Bakhtiari province (Shahrekord and
Borujen area). Tehran, Iran. Iranian Soil and Water
Research Institute.
Moore, ID., R.B. Grayson, A.R. Ladson, 1991. Digital
terrain modelling: a review of hydrological.
geomorphological and biological applications. Hydrol
Process, 5; 3-30.
Mosleh, Z., M.H. Salehi, A. Jafari, I. Esfandiarpoor
Borujeni, A. Mehnatkesh, 2017. Identifying sources of
soil classes variations with digital soil mapping
approaches in the Shahrekord plain, Iran. Environ
Earth Sci, 76; 748p.
Odgers, N.P., W. Sun, A.B. McBratney, B. Minasny, D.
Clifford, 2014. Disaggregating and harmonising soil
map units through resampled classification trees.
Geoderma, 214; 91–100.
Olaya, V. F., 2004. A gentle introduction to SAGA GIS.
User Manual. Germany, DC; Gottingen.
Rossiter, D. G., 2000. Methodology for soil resource
inventories. Lecture notes. 2nd revised version.
Enschede, The Netherlands: Soil Science Division,
International Institute for Aerospace Survey and Earth
Science (ITC).
Rouse, J. W., R. H. Hass, J. A. Schell, D.W. Deering,
1974. Monitoring vegetation systems in the Great
Plains with ERTS. Proceedings of 3rd Earth Resource
Technology Satellite (ERTS) Symposium, 1; 48-62.
Saunders, A. M., J. L. Boettinger, 2007. Incorporating
classification trees into a pedogenic understanding
raster classification methodology, Green River Basin,
Wyoming, USA. In: P. Lagacherie McBratney A. B.,
Voltz M. (ed.), Digital Soil Mapping: An introductory
perspective. Developments in Soil Science. Elsevier,
Amsterdam, 31; 389-399.
Scull, P., J. Franklin, O.A. Chadwick, 2005. The
application of classification tree analysis to soil type
prediction in a desert landscape. Ecological
Modelling, 181; 1–15.
Soil Survey Division Staff, 1993. Soil Survey Manual.
Soil Conservation Service, U.S. Department of
Agriculture Handbook 18 (Chapter 3).
Soil Survey Staff, 2014. Soil taxonomy: a basic systems
of soil classification for making and interpreting soil
surveys (12th ed.). USDA; NRCS.
Taghizadeh-Mehrjardi, R., B. Minasny, J. Triantafilis, F.
Sarmadian, M. Omid, 2014. Digital mapping of soil
classes using decision tree and auxiliary data in
theArdakan region, Iran. Arid Land Research and
Management, 42; 225-237.
Taghizadeh-Mehrjardi, R., K. Nabiollahi, B. Minasny, J.
Triantafilis, 2015. Comparing data mining classifiers
to predict spatial distribution of USDA-family soil
groups in Baneh region. Iran. Geoderma, 253–254;
67–77.
Thompson, J.A., J.C. Bell, C.A. Butler, 2001. Digital
elevation model resolution: effects on terrain attribute
calculation and quantitative soil-landscape modeling.
Geoderma, 100; 67–89.
US Geology Survey, 2016.
Wilson, J.P. 2012. Digital terrain modeling.
Geomorphology, 137; 107–121.
Wu, W., A.D. Li, X.H. He, R. Ma, H.B. Liu, J.K. Lv,
2018. A comparison of support vector machines,
artificial neural network and classification tree for
identifying soil texture classes in southwest China.
Computers and Electronics in Agriculture, 144; 86–93.
Zinck, J. A., 1989. Physiography and soils (Lecture notes
for soil students. Soil Science Division, Soil survey
courses subject matter, K6). Enschede, The
Netherlands: ITC