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Abstract 

 

     Soil classification systems are very useful for a simple and fast summarization of soil properties. These systems 

indicate the method for data summarization and facilitate connections among researchers, engineers, and other users. 

One of the practical systems for soil classification is Soil Taxonomy (ST). As determining  soil classes for an  entire 

area is expensive, time-consuming, and almost impossible, this research has tried to predict the soil classes in each 

level of the ST system (up to family level) by using the data of 120 excavated pedons and some auxiliary parameters 

(such as derivatives of digital elevation model, i.e., DEM) in Shahrekord plain, central Iran. For this reason, the 

decision tree model was encoded and implemented in the MATLAB software for three conditions: use of soil 

properties, auxiliary parameters, and its combination. According to the results, soil class prediction error by using 

soil properties, auxiliary parameters, and its combination was estimated to be 0, 3.33 and 0% for order and suborder 

levels; 0.83, 15 and 0.83% for great group level; 3.33, 22.5 and 3.33% for subgroup level and 30, 52.5 and 30% for 

family level, respectively. In addition, the use of kriging maps of soil properties (instead of 120 observational points) 

decreased the prediction error of the modeling in all levels of the ST system. It seems that the effect of auxiliary 

parameters (in comparison to soil properties) is not very significant for predicting soil classes in low-relief areas.  
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1. Introduction 

 

     Soil classification systems indicate a set of 

quantitative methods which are used to show 

similar soils and compare different soils (Das, 

2000). One of the practical systems for soil 

classification is Soil Taxonomy (ST), which is 

more useful in agriculture because of the 

consideration of soil particle size distribution 

(Soil Survey Division Staff, 1993). Today, one of 

the most important research subjects in geology 

is the comprehension of estimation accuracy of 

soil classes based on the limited point data, 

previous researches, and the correlation between 
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soil and landscape (Goodman and Owen, 2012). 

McBratney et al. (2003) suggested the use of 

correlation between soil data and auxiliary 

parameters for estimating soil classes and soil 

properties. They expressed that the auxiliary data 

can be chosen based on soil formation factors. 

According to the viewpoints of these researchers, 

the factors of soil formation can be introduced in 

the SCORPAN model, in accordance to the 

following equation: 

 

𝑆 = 𝑓 (𝑠, 𝑐, 𝑜, 𝑟, 𝑝, 𝑎, 𝑛) +  𝜀                              (1) 

 

S shows the soil class under prediction, which 

depends on factors including soil (s), climate (c), 

organisms (o), topography (r), parent material 
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(p), time (a) and location (n). Moreover, ε shows 

the model prediction error. 

     Massawe et al. (2018) used methods of 

machine learning for the prediction of the soil 

classes in Tanzania and concluded that the use of 

derivatives of the digital elevation model (DEM) 

can be useful in predicting the soil classes. 

Bagheri Bodaghabadi et al. (2011) considered 

DEM derivatives as the most important source 

for input of digital soil maps in Boroujen, 

Chaharmahal and Bakhtiari province, central 

Iran. These researchers declared that wetness 

index, radiation duration, slope, and sediment 

index are more important than other DEM 

derivatives for predicting soil properties and for 

determining the pattern of soil distribution in that 

area. Jafari et al. (2012) used geomorphology 

maps as an input for digital soil maps and 

expressed that these maps have improved 

prediction accuracy of soil classes. They 

concluded that some soils, which were 

influenced by geomorphology and topography, 

had been predicted more exactly. 

     One of the practical models in digital soil 

mapping is the decision tree model. This model 

is based on a consecutive division of data into a 

set of discrete groups and tries to increase the 

distance between groups in the separation 

process. Various researchers have used the 

decision tree model to solve many problems of 

classification and regression. Taghizadeh-

Mehrjardi et al. (2015) used six methods of data 

mining including regression, artificial neural 

network, support vector machine, the nearest 

neighbor k, random forest, and decision tree to 

predict the soil families in Baneh, western Iran. 

They concluded that the decision tree model and 

the artificial neural network have been the most 

accurate methods. Hash et al. (2009) used the 

decision tree model to predict soil class in 

Nevada. They concluded that this method 

predicted soil groups more accurately. Saunders 

and Boettinger (2007) evaluated efficiency of the 

decision tree in soil classes’ prediction in the 

Wyoming State as optimum. Scull et al. (2005) 

applied the decision tree model to predict soil 

classes using remote sensing data and DEM 

derivatives, and expressed a clear correlation 

between soil and landscape as necessary for 

experts to be able to use this method. In addition, 

they suggested that because of the wide range of 

auxiliary parameters, which are used in 

predicting the soil classes and the high flexibility 

of the decision tree, the mentioned model has a 

high efficiency in the prediction of soil classes. 

The other researchers such as Lagacherie and 

Holmes (1997) in France and Russia, Odgers et 

al. (2014) in Australia, Holmes et al. (2015) in 

Australia and Adhikari, and Hartemink (2016) in 

Denmark, have used the decision tree model to 

predict soil classes as well. 

     Although many studies have been done about 

predicting soil classes during the recent years, 

these predictions were rarely conducted in 

different levels of the ST system for low-relief 

regions (such as the Shahrekord plain). In 

addition, the separation of the effect of soil 

properties and auxiliary parameters has not been 

done for predicting soil classes. Therefore, the 

main goal of the present research is to use soil 

properties, auxiliary parameters, its combination 

in predicting soil classes, and comparing the 

results at different levels of the ST system (up to 

family class) using the decision tree model. The 

use of the kriging maps of soil properties as an 

input of the decision tree model and comparing 

the results of these maps with the results obtained 

from the soil characteristics measured at 120 

observation points as inputs of the model is 

another goal of this research. Iran lacks a correct 

definition for soil series. Therefore, this research 

does not consider this level of the ST system. 

 

2. Materials and Methods 

 

2.1. The Study Area 

 

     The study area is a part of the Shahrekord 

plain, located in Chaharmahal-va-Bakhtiari 

Province, Iran (Figure 1). This region is located 

between 32 ̊ 12' to 32 ̊ 23' N, and 50 ̊ 45' to 50 ̊ 

59' E, with a mean altitude of about 2060m a.s.l. 

The mean annual rainfall and temperature of the 

region, during a 50-year period (1966-2016), is 

329mm and 12.3 ̊C, respectively. The 

approximate area of this region is 10000ha, with 

4800ha of the area including cultivated land. The 

main cultivated crops in this region are wheat, 

alfalfa, potato, and forage maize. The soil 

moisture and temperature regimes of the area are 

xeric and mesic, respectively (Soil Survey Staff, 

2014). The soils of this area have been formed on 

Quaternary shale and foliated clayey limestone 

deposits (Geological Survey and Mineral 

Exploration of Iran, 2017).  
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Fig. 1. The location of study area with 120 sampling points 

 

2.2. The Soil Properties Used for Soil Class 

Prediction 

 

     The soil properties used in this research, have 

been extracted from the data of 120 excavated 

pedons in the Shahrekord plain (Figure 1) 

obtained by Mosleh et al. (2017) in the form of a 

random stratified sampling pattern for the 

preparation of a digital map of soil classes using 

random forest (RF), boosted regression tree 

(BRT), artificial neural network (ANN), and 

multinomial logistic regression (MLR) models. 

In the present study, only the important 

properties affecting the classification of soils at 

different levels of the ST System (Soil Survey 

Staff, 2014) were considered for modeling soil 
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classes by the decision tree model. In other 

words, after final classification of all pedons, 

only the main discriminant properties of studied 

soils in each level of ST System were considered, 

and after modeling, the most effective properties 

were determined and compared from the model's 

perspective by sensitivity analysis and tree 

structure. Therefore, only a property of presence 

or absence of argillic horizon for order level 

(separating Inceptisols from Alfisols), and two 

properties of presence or absence of argillic 

horizon and/or aquic moisture regime for 

suborder level (separating Aquepts, Xerepts, and 

Xeralfs) were used for predicting the soil classes. 

In addition, some properties including the 

presence or absence of cambic, argillic, calcic, 

petrocalcic horizons, aquic moisture regime, 

secondary carbonates, and chroma of 2 or less, 

were used for the prediction of soil classes in the 

great group and subgroup levels.  

     In order to predict soil classes at the family 

level, all of the used characteristics in the 

subgroup level were used to determine the soil 

families (such as carbonatic mineralogy class, 

cation exchange activity class, and presence or 

absence of shallow depth class). It should be 

noted that in order to define the qualitative 

properties of the modelling process, zero marked 

the non-existence mode and one marked the 

existence mode of a property. 

 

2.3. The Auxiliary Properties Used for Soil 

Class Prediction 

 

     One of the auxiliary parameters used in this 

research was DEM derivatives. Therefore, DEM 

of area was prepared with spatial resolution of 

30×30m which was downloaded from the Aster 

GDEM database (US Geology Survey, 2014) and 

projected to the Universal Transverse Mercator 

(UTM) projection. Then, DEM derivatives 

including longitudinal curvature, cross sectional 

curvature, aspect, elevation, slope, analytical hill 

shading, convergence index, closed depressions, 

catchment area, topographic wetness index, LS 

factor, channel network base level, vertical 

distance to channel network, valley depth, and 

relative slope position were prepared. In addition 

to DEM derivatives, geo-form maps of the area 

(including the landform map and the landform 

phase map) were prepared using aerial 

photographs (1:40000) and based on the 

hierarchy presented by Zinck (1989). The 

geologic map of the area with a scale of 1:25000 

(Geological Survey and Mineral Exploration of 

Iran, 2017) and the soil map of the area with a 

scale of 1:50000 (Mohammadi, 1986) were used 

as auxiliary parameters. Additionally, 

normalized difference vegetation index (NDVI) 

was computed and used as an auxiliary parameter 

with the following equation: 

 

NDVI = (NIR –  RED) / (NIR +  RED)        (2) 

 

     NIR and RED are the amount of reflection of 

near infrared and red waves, respectively Rouse 

et al., 1973). It must be mentioned that this index 

has been calculated by images taken from 

Landsat 8 satellite in June, 2017.  

 

2.4. Decision Tree Model 

 

     This model is a non-parametric method which 

can use a set of qualitative and quantitative 

predictive variables for classification. In fact, a 

decision tree shows the direct and indirect 

correlations of several independent variables 

with a target variable (dependent) as a tree 

structure and by a reversible classification of data 

(Taghizadeh-Mehrjerdi et al., 2014). In the 

mentioned tree structure above, if a variable 

separates the classes in higher branches, it will 

have more influence on the class prediction.  

     DEM derivatives and a resampled map were 

first inputed in the MATLAB software (version 

2015) for the modelling process. Then, 

sensitivity analysis was done by the StatSoft 

method (StatSoft Inc, 2004) to determine the 

most effective properties in soil classes’ 

estimation. In this method, the sensitivity value 

for each input property is derived from the 

division of the network error in the absence of the 

desired input property on the network error in the 

presence of all input variables. It means that at 

first the model was created with all the input 

variables. The amount of error index (ε') was 

computed after gaining the best performance or 

the least amount of errors. Afterwards, a certain 

input variable was deleted and the model was 

remade by other input properties. In addition, the 

amount of error index (ε) was determined in this 

condition after obtaining the most suitable 

structure and performance of the model. The 

amount of output sensitivity compared to the 

input variable under study was computed by the 

ratio of the error index in the second condition 

(deletion of input properties to the first condition 

(presence of all inputs)). In this method, any 

property with a sensitivity analysis of more than 

one value was more valueable in the prediction 

of soil classes. In other words, the numerical 

value in this method is as follows: 

 

𝑛 =
𝜀

𝜀′
                                                            (3) 

 

https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
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     Where, 𝑛 is the numerical value of the 

sensitivity analysis by the StatSoft method for a 

special property, ε is the rate of the prediction 

error with all properties except a special 

property, and ε' is the rate of the prediction error 

in the presence of all the properties (along with 

the same special property) (StatSoft Inc, 2004). 

     In addition, the structure of the decision tree 

can show the most effective properties for the 

prediction of soil classes. This means that some 

properties in higher branches are more effective 

for this prediction. The estimation error 

percentage was computed and compared by the 

following equation, for each level of ST system:   

 

𝑒 =
𝑛

𝑁
× 100                                                    (4) 

 

     where, e is the percentage of error, n is the 

number of points which have not been predicted 

correctly, and N is the total number of the studied 

points.  

 

2.5. Kriging Maps of Soil Properties  

 

     In this research, the measured soil properties 

in 120 observation points were considered as the 

model inputs. After that, the kriging maps of 

these properties were drawn and used as the input 

model data. In fact, the authors of current 

research wanted an answer to if the modelling 

results of the two mentioned conditions were 

different in terms of accuracy level. For this 

purpose, the kriging maps of soil properties were 

prepared by ArcGIS software (version 10.3). 

These maps include: the presence or absence of 

argillic, calcic, and petrocalcic horizons, chroma 

of one or less, chroma of two or less, secondary 

carbonates in genetic horizons of pedons, and the 

percentage of calcium carbonate equivalent, 

sand, clay, clay-size carbonates, particles with 

diameters of 0.1 to 75mm, coarse fragments (≥ 

2mm), and amounts of cation exchange activity 

in the control section of family level of ST 

system. It must be mentioned that kriging maps 

of soil classes were prepared in five levels of the 

ST system (up to family level). In fact, the total 

number of region pixels were determined 

(125000 pixels) in relation to the area of each 

pixel (0.08ha) and the area of the whole region 

(10000ha). The amounts of soil properties and 

soil classes were determined for each of the 

quintuple levels of the ST system (up to family 

level) based on geographical coordinates of each 

used point prepared by kriging maps. 

 

 

 

3. Results and Discussion 

3.1. Studied Soils Abundance and Their 

Distribution Pattern 

 

     Figure 2 shows the taxonomy results of the 

studied pedons and its abundance percentage to 

the subgroup level. As indicated in Figure 2, 

Typic Calcixerepts subgroup has the most 

abundant soil in the region and Typic 

Endoaquepts, Typic Haploxeralfs, and Aquic 

Haploxerepts subgroups are the least abundant 

soils in the Shahrekord plain. 9.17% of the 

studied soils have been considered as the Alfisols 

order class. Figure 3 shows a distribution of the 

studied soils in the region at subgroup level. It is 

observed that most parts of the Alfisols order 

class were located in the west and northwest of 

the studied region. Bockheim and Hartemink 

(2013) suggested that argillic horizon could be 

formed in pergelic, cryic, frigid, mesic, thermic 

and hyper-thermic soil temperature regimes, and 

in aquic, udic, ustic, xeric and aridic soil moisture 

regimes. However, the formation of argillic 

horizon can occur in moisture regions more than 

dry ones (Gunal and Ransom, 2006; Khormali et 

al., 2012). Gunal and Ransom (2006) also stated 

that the least amount of annual rainfall for the 

formation of argillic horizon is about 400-

500mm. As the mean annual rainfall in the 

studied region is 329mm, it seems that the 

formation of argillic horizon in this region is a 

result of a wetter paleoclimate. There are also 

alternative periods of wetness and dryness, which 

causes the subsurface dry soil to absorb moisture 

when the water and clay transferred to the 

subsurface dry soil, so the clay illuviates as clay 

films in the walls of pores. For this reason, it is 

probable that long-term irrigation in the 

agricultural lands of the region would form 

argillic horizon and as a result, the formation of 

Alfisols. 

     There are some low lands in the southern or 

central parts of the study area in which surface 

water accumulation has occurred due to the high 

groundwater levels. This has caused for an aquic 

moisture regime too take place. Additionally, the 

accumulation of secondary carbonates have 

occurred in much of the soils, due to the 

calcareous nature of the parent material of the 

study area. Petrocalcic horizon is often formed. 

For this reason, some parts of the studied soils 

have been located in the great groups of 

Calcixerepts or petrocalcic subgroups (Figure 3). 
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Studied 

soils 

Inceptisols (90.83%)  

Alfisols (9.17%) 

Aquepts (2.5%) 

Xerepts (88.33%) 

Calcixerepts (59.17%) 

Haploxerepts (29.17%) 

Typic Calcixerepts (43.33%) 

Petrocalcic Calcixerepts (14.17%) 

Aquic Calcixerepts (1.67%) 

Aquic Haploxerepts (9.17%) 

Typic Haploxerepts (20%) 

Endoaquepts (0.83%) 

Epiaquepts (1.67%) Typic Epiaquepts (1.67%) 

Typic Endoaquepts (0.83%) 

Xeralfs (9.17%) 

Haploxeralfs (4.16%) 

Palexeralfs (5%) Petrocalcic Palexeralfs (5%) 

Aquic Haploxeralfs (0.83%) 

Typic Haploxeralfs (0.83%) 

Calcic Haploxeralfs (2.5%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. The abundance of soil classes to subgroup level in the study area
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Fig. 3. Soil subgroups distribution map in the study area 

 

3.2. Soil Classes Prediction by Auxiliary 

Parameters 

 

     Table 1 shows the sensitivity analysis results 

of the prediction of soil classes by auxiliary 

parameters in different levels (up to family level) 

of the ST system. As it was mentioned, each 

property with a sensitivity value of more than 1 

is important in predicting soil classes. For 

example, at the order level, two properties of 

surface relief, such as aspect and analytical hill 

shading, are the most important for the prediction 

of soil classes. In the decision tree structure (its 

scheme for the decision tree has not been 

showed), other than the mentioned properties, 

some properties like catchment area, 

convergence index, soil map, landform, and 

elevation have also affected the prediction of soil 

classes at order level. 

     In the suborder level which presence or 

absence of argillic horizon and aquic condition 

were used for classification of soils at this level, 

some properties including cross-sectional 

curvature, slope, analytical hill shading, closed 

depressions, catchment area, and channel-

network base level were the most effective 

properties in predicting soil classes. On the other 

hand, in the tree structure of suborder prediction 

(the scheme of the decision tree has not been 

shown), some properties like analytical hill 

shading, channel-network base level, catchment 

area, cross-section curvature, and slope have 

been located on the higher branches. Therefore, 

they are considered as the most effective 

properties of the suborder prediction. These 

properties are related to surface relief and can be 

in accordance with the formation of argillic 

horizon, and aquic moisture regime in the low 

land positions of the study area.  
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  Table 1. Sensitivity analysis results for predicting soil classes by auxiliary parameters 

Soil Taxonomy levels 
Auxiliary parameters 

Family Subgroup Great group Suborder Order 

1.00 1.00 1.00 1.00 1.00 Geologic map 

1.00 1.00 1.00 1.00 1.00 Landform map 

1.00 0.86 1.00 1.00 1.00 Landform phase map 

1.00 1.00 1.00 1.00 1.00 Soil map 

1.02 0.92 1.00 1.00 1.00 NDVI 

1.00 1.03 1.00 1.00 1.00 Longitudinal curvature 

1.00 1.00 1.42 3.33 1.00 Cross-sectional curvature 

0.90 0.89 1.17 1.00 1.20 Aspect 

1.02 1.00 1.00 1.00 1.00 Elevation 

1.00 1.00 1.00 1.67 1.00 Slope 

1.00 0.95 1.08 3.00 1.40 Analytical hill shading 

0.97 1.00 1.00 1.00 1.00 Convergence index 

1.00 0.81 1.00 1.33 0.40 Closed depressions 

1.00 1.03 1.08 2.66 1.00 Catchment area 

1.03 0.92 1.08 1.00 1.00 Topographic wetness index 

1.00 1.00 1.00 1.00 1.00 LS factor 

1.00 0.84 0.83 2.00 1.00 Channel-network base level 

0.98 0.97 1.00 1.00 1.00 Vertical distance to channel network 

0.93 1.00 1.00 1.00 1.00 Valley depth 

1.00 1.00 1.08 1.00 1.00 Relative slope position 

 

     Also, it is observed that for the great group 

and subgroup levels, DEM attributes have been 

the most effective properties in predicting soil 

classes (Table 1). Moore et al. (1991) expressed 

that the reason for the effectiveness of DEM and 

its derivatives in predicting soil classes was its 

description of soil moisture, soil erosion, and the 

conditions of its sedimentation by these 

derivatives. Thompson et al. (2001) described 

the advantages of the soil-landscape models as 

showing soil properties in the entire landscape 

continuously, quantifying the effects of 

environmental factors such as topography on the 

soil properties, and spatial prediction of soil 

properties throughout the landscape, even in 

areas which have not been sampled. Wilson 

(2012) has recognized the following points: the 

importance of climate elevation on vegetation 

and potential energy, the importance of slope on 

the amount of sediment, the flow velocity of 

surface and undersurface water, the amount of 

runoff, the content of soil water, the flow 

direction, sunny hours, the amount of 

evaporation, and the abundance of floral and 

faunal population. He also considered the 

topographic wetness index as a saturated area 

with runoff, and regarded it as a function of the 

transferability of soil and the amount of slope. 

Maynard and Johnson (2014) defined terrain 

curvatures like longitudinal curvature and cross-

sectional curvature as the amount of slope 

changes in a special direction and considered it 

very important in determining surface 

distribution and undersurface water. Machado et 

al. (2018) expressed that auxiliary parameters 

including landform, slope and wetness index can 

be useful in predicting soil classes. Mirakzehi et 

al. (2018) prepared a digital soil map of the 

region of Sistan using the RF model, and 

concluded that the channel networks, valley 

depth, convergence, NDVI, and catchment area 

were one of the most important covariates. 

Bagheri Bodaghabadi et al. (2015) also predicted 

the soil classes of Borujen in Chaharmahal and 

Bakhtiari province, using the ANN model. He 

stated that the use of relief attributes was 

sufficient in achieving good prediction results.  

At the family level, which mainly uses the soil's 

inherent characteristics (such as texture and 

cation exchange capacity) in classification, in 

addition to the topographic characteristics (i.e., 

elevation and topographic wetness index), the 

NDVI feature was also influenced in predicting 

soil family classes (Table 1). Figure 4 shows the 

scheme of the decision tree in predicting the soil 

family classes, which confirms the above 

conclusion. Mosleh et al. (2017) declared NDVI 

as the most important auxiliary parameter for 

predicting soil classes by multinomial logistic 

regression (MLR) and artificial neural network 

(ANN) models.  
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Fig. 4. Scheme of decision tree for predicting soil family classes using auxiliary parameters 

CNBL: Channel-network base level; As: Aspect; LSF: LS factor; VDCN: Vertical distance to channel network; CI: Convergence index; El: Elevation; VD: Valley depth; LC: Longitudinal curvature; CSC: 

Cross-sectional curvature; RSP: Relative slope position; NDVI: Normalized difference vegetation index 

 

 

https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
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3.3. Soil Classes Prediction by Soil Properties  

 

     As shown in Table 2, the properties of the 

presence and absence of argillic, calcic, and 

petrocalcic horizons have been the most effective 

properties for predicting the soil great groups. In 

addition, these properties, with the presence and 

absence of chroma equal to 1-2, were the most 

effective for predicting the subgroup level. These 

results are fully consistent with the principles of 

Keys to Soil Taxonomy (2014), which were used 

to classify the studied pedons. For example, in 

the great group level, about 60% of the pedons 

were located in the Calcixerepts class (Figure 2) 

due to the presence of calcic horizon in these 

pedons. According to the results of the sensitivity 

analysis (Table 2), the corresponding number of 

this horizon is 9 for the great group level and it is 

7.5 for the subgroup level. 

 
Table 2. Sensitivity analysis results for predicting soil classes using soil properties 

Soil properties 
Soil Taxonomy levels 

Order Suborder Great group Subgroup Family 

Calcic horizon - - 9 7.05 1.14 

Cambic horizon - - 1 1.00 1.00 

Argillic horizon Inf Inf 11 3.50 1.06 

Secondary carbonates - - 1 1.00 1.00 
Xeric - - 1 1.00 1.00 

Chroma 1-2 - - 1 2.00 1.00 

Chroma <=1 - Inf 1 1.00 1.00 
Petrocalcic horizon - - 4 5.70 1.08 

Shallow depth - - - - 1.00 

Subactive - - - - 1.00 
Semiactive - - - - 1.00 

Active - - - - 1.03 

Superactive - - - - 1.00 
Carbonatic - - - - 1.00 

Silty - - - - 0.94 

Loamy - - - - 1.00 
Less than 60 percent clay (Fine) - - - - 1.06 

Skeletal - - - - 1.08 

Less than 18 percent clay (Coarse) - - - - 1.00 
18 to less than 35 percent clay (Fine) - - - - 1.00 

Clayey - - - - 1.00 

- : shows nonuse of the considered properties for predicting soil class in the relevant level. 
Inf : shows a condition that based on it the rate of prediction error is equal to zero (with special properties). 

 

     In addition, at the order level, the presence 

and absence of the argillic horizon has caused 

about 9% of the soils to fall into the Alfisols, and 

the rest (91%) are located into the Inceptisols 

(Fig. 2). For this reason, the sensitivity analysis 

value of this horizon is 11 for the great group 

level and it is 3.5 for the subgroup level. But in 

the suborder level, the presence and absence of 

aquic conditions (chroma 1 or less) have caused 

2.5% of the studied soils to be included in 

Aquepts suborder and the rest being located in 

Xerepts and Xeralfs suborder classes (Figure 2). 

Therefore, the decision tree model is not able to 

show the effect of aquic conditions in predicting 

the great group and subgroup levels. This can be 

due to the low number of affected points by this 

feature (only 2.5%), and increasing inputs to 

predict of great group and subgroup levels. In 

spite of this matter, the error amount is 0.83% for 

the prediction of the great group (Table 4). This 

means that the model can predict those points 

under the effect of the presence and absence of 

aquic conditions based on other inputs and the 

model predicted only one point wrongly. The 

point was 105, which has been located in the 

Endoaquepts class, but was incorrectly predicted 

under the Epiaquepts class.  

     The amount of error for subgroup prediction 

is 3.33% (Table 4). This means that 4 out of the 

120 points, including points number 93 (Typic 

Epiaquepts), 97 (Typic Calcixerepts), 105 (Typic 

Endoaquepts) and 120 (Aquic Haploxeralfs), 

have been wrongly predicted. It is apparent that 

for the subgroup level, only the aquic conditions 

caused errors.  

     The schematic of the decision tree to predict 

the great group and subgroup (the schematic of 

the decision tree for these levels is not presented) 

is also in accordance with the sensitivity analysis 

values, and the features of the presence and 

absence of argillic, calcic, and petrocalcic 

horizons as well as aquic moisture regime are the 

most effective properties for predicting the great 

group and subgroup level. These properties are 

located in the upper parts of the tree structure. A 

remarkable point in the tree structure of subgroup 

prediction is that the chroma (the aquic 

conditions), which did not show its effect in the 

sensitivity analysis, was located in the higher 

branches of the tree structure. Therefore, it has 
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been one of the most effective properties in 

predicting the subgroup level.  

     At the family level, the properties of the 

presence and absence of argillic, calcic, and 

petrocalcic horizons are still influential, with 

sensitivity values of more than one. This is 

entirely logical because those properties which 

were effective in the higher levels of the ST 

system (order, suborder, great group and 

subgroup levels), will also be effective in the 

lower levels of the system. In addition to these 

properties, the cation exchange capacity class 

(i.e., active) and the particle size distribution 

class (i.e., fine and skeletal) have been more 

important than the other properties for predicting 

soil family classes. This issue is also fully in line 

with the principles of Keys to ST (Soil Survey 

Staff, 2014), because most of the studied soils are 

differentiated at the family level based on the 

differences in the cation exchange capacity 

classes and the particle size distribution classes. 

Figure 5 shows the scheme of the tree structure 

in the prediction of soil family classes. It is 

observed that the cation exchange capacity class 

and particle size distribution class are in the 

higher branches. As a result, these properties are 

more effective in predicting soil family classes 

than the presence and absence of diagnostic 

horizons.  

     In regards to Table 4, the error value for 

predicting the soil family classes is 30%. This 

means that 36 out of the 120 points were 

predicted incorrectly. The predicted families 

differ in one or more properties with the observed 

families. Ten predicted families in the particle 

size distribution class, 4 cases in CEC class, 4 

cases in mineralogy class, 5 cases in shallow 

depth class, and 24 cases in the higher levels than 

family class differ from observed families. 8 of 

the 24 cases in order level (these 8 cases were 

Alfisols which had been wrongly predicted as 

Inceptisols,), 4 cases in suborder level (2 cases 

were Xerepts but were predicted as Aquepts, and 

2 cases were Aquepts which were wrongly 

predicted as Xerepts), 1 case in great group level 

(Calcixerept but wrongly predicted as 

Haploxerept), and 11 cases in subgroup level (11 

cases were Aquic Haploxerepts which were 

wrongly predicted as Typic Haploxerepts) differ 

from the families of the observation points. This 

means that adding new inputs for predicting soil 

family classes disrupts the prediction of higher 

levels of family. Bagheri Bodaghabadi (2015) 

predicted soil classes by ANN and concluded 

that adding a new input variable sometimes 

disrupts the network and increases the error.  

 

3.4. Soil Classes Prediction by Combining 

Auxiliary Parameters and Soil Properties 

 

     Table 3 shows the results of sensitivity 

analysis of predicting soil classes in different 

levels of the ST system by combining auxiliary 

parameters and soil properties. It was observed 

that among these properties, the presence and 

absence of argillic horizon have just been 

effective in predicting the order class. The error 

content equaled to zero, and in accordance with 

the StatSoft sensitivity analysis method, the odd 

denominator is zero, which is shown in Table 3 

with the “Inf” mark. Other auxiliary parameters 

had little effect in this level. For the suborder 

level, the soil properties of the presence and 

absence of argillic horizon and aquic conditions 

had been effective in predicting soil classes 

(scheme of decision tree has not been shown). 

In great group and subgroup levels, some soil 

properties such as the presence and absence of 

argillic, calcic, petrocalcic horizons, and chroma 

equal to 1-2 (only for subgroup level) are the 

most effective properties in predicting soil 

classes. The auxiliary parameters showed a very 

weak effect. The probable reason for this can be 

the relatively high effect of soil properties in 

areas with low relief variation, such as the 

Shahrekord plain, or an estimation of DEM 

derivatives, rather than real soil data. In addition 

to some soil properties, landform phase as an 

auxiliary parameter influences the lower 

branches of decision tree structure for prediction 

of soil classes at great group level (data not 

shown). Esfandiarpoor Borujeni et al. (2010) 

suggested using landform phase to improve the 

soil maps prepared by the geopedology method 

(Zinck, 1989). Landform property which is 

related to auxiliary parameters of the geo-form 

map is effective in the subgroup level (data not 

shown). Machado et al. (2018) concluded that 

auxiliary parameters of landform can be useful 

for predicting soil classes. For soil family level, 

the results of sensitivity analysis (Table 3) 

showed that some soil properties and NDVI are 

effective, while in addition to these properties in 

the structure of the decision tree (Figure 6), other 

parameters, like channel-network base level, 

landform, and longitudinal curvature, have also 

been effective.  
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Fig. 5. Scheme of decision tree for predicting soil family classes using soil properties 

The statements of semiact, act, silty, skeletal, coarse, fine, clayey and carbonatic show the presence and absence of classes of cation exchange activity of semiactive and active, particle size distribution classes 

of silty, skeletal, coarse, fine and clayey, and carbonatic mineralogy class, respectively. In addition, some signs such as cam. H, cal. H, Bkm. H and arg. H show presence and absence of cambic, calcic, 
petrocalcic and argillic horizon, respectively. The sign chr2 shows the presence and absence of chroma 2 or less 
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  Table 3. Sensitivity analysis results for predicting soil classes using combining auxiliary parameters and soil properties 

Properties’ name 
Soil Taxonomy levels 

Order Suborder Great group Subgroup Family 

Soil properties 

Calcic horizon - - 4 1.75 1.05 

Cambic horizon - - 1 1.00 1.00 

Argillic horizon Inf Inf 5 1.75 1.00 

Secondary carbonates - - 1 1.00 1.00 

Xeric - - 1 1.00 1.00 

Chroma 1-2 - - 1 1.75 1.00 

Chroma <=1 - Inf 1 1.00 1.00 

Petrocalcic horizon - - 3 3.25 1.03 

Shallow depth - - - - 1.00 

Subactive - - - - 1.00 

Semiactive - - - - 1.03 

Active  - - - - 1.05 

Superactive - - - - 1.00 

Carbonatic - - - - 1.00 

Silty  - - - - 0.97 

Loamy - - - - 1.00 

Less than 60 percent clay (Fine) - - - - 1.11 

Skeletal - - - - 1.11 

Less than 18 percent clay (Coarse) - - - - 1.00 

18 to less than 35 percent clay (Fine) - - - - 1.00 

Clayey - - - - 1.05 

Auxiliary parameters 

Geologic map 0.10 0.43 1 1 1.00 

Landform map 0.14 0.34 1 1 1.00 

Landform phase map 0.20 0.17 1 1 1.00 

Soil map 0.25 0.35 1 1 1.00 

NDVI 0.10 0.17 1 1 1.03 

Longitudinal curvature 0.15 0.24 1 1 1.00 

Cross-sectional curvature 0.30 0.28 1 1 1.00 

Aspect 0.11 0.17 1 1 1.00 

Elevation 0.42 0.33 1 1 1.00 

Slope 0.33 0.41 1 1 1.00 

Analytical hill shading 0.24 0.18 1 1 1.00 

Convergence index 0.36 0.10 1 1 1.00 

Closed depressions 0.18 0.31 1 1 1.00 

Catchment area 0.10 0.27 1 1 1.00 

Topographic wetness index 0.23 0.26 1 1 1.00 

LS factor 0.44 0.37 1 1 0.95 

Channel network base level 0.26 0.22 1 1 1.00 

Vertical distance to channel network 0.16 0.10 1 1 1.00 

Valley depth 0.14 0.16 1 1 1.00 

Relative slope position 0.15 0.26 1 1 1.00 

  - : shows nonuse of the considered properties for predicting the soil class in the relevant level 

  Inf : shows a condition that based on it the rate of prediction error is equal to zero (with special properties) 
 

     Table 4 presents the comparison of prediction 

errors of different levels of ST system by using 

soil properties, auxiliary parameters and 

combination of both features.  

 
                   Table 4. Amount of prediction error of soil classes at different levels of the ST system 

Percentage of prediction error 

Soil Taxonomy level Combination of soil properties and 

auxiliary parameters 

Auxiliary 

parameters 

Soil 

properties 

0.00 3.33 0.00 Order 

0.00 3.33 0.00 Suborder 

0.83 15.00 0.83 Great group 
3.33 22.50 3.33 Subgroup 

30.00 52.50 30.00 Family 
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Fig. 6. Scheme of decision tree for soil family level prediction by combining auxiliary parameters and soil properties 
CNBL: Channel-network base level; LC: Longitudinal curvature; LF: Landform map 

The statements of semiactive, active, silty, skeletal, fine and clayey show the presence and absence of classes of cation exchange activity of semiactive and active and particle size distribution classes of silty, 

skeletal, fine and clayey, respectively. The signs of cal. H and Bkm. H show presence and absence of calcic and pertrocalcic horizons, respective
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     It is observed that the prediction error values 

have increased from upper levels of classification 

(order) to lower levels (family). The probable 

cause of this issue can be the entry of more 

details into the soil classification at lower levels 

of the ST system, which increase the number of 

classes. Besides, role of the soil properties which 

have used at each taxonomic level maybe affect 

this issue. Heung et al. (2016) suggested that the 

reason for the decrease in the overall accuracy 

from order to great group level is due to the 

increasing details in great group rather than order 

level. They also introduced the decision tree as a 

suitable method for when the number of 

predictable classes is low. Brungard et al. (2015) 

also considered the reason of the decrease in the 

overall accuracy of their maps, prepared by the 

decision tree model, the large number of soil 

classes that must be predicted. This issue has also 

been concluded by Mosleh et al. (2017) and 

Taghizadeh-Mehrjardi et al. (2015). In addition, 

the calculated errors in Table 4 can implicitly 

show the high efficiency of the decision tree in 

applying the qualitative features (such as the 

presence or absence of a diagnostic horizon or 

property) to predict soil classes. In other words, 

a good agreement between the performed 

decision tree with the rules of Keys to ST (Soil 

Survey Staff, 2014) is understandable by this 

way.  

The amount of computed prediction error for 

conditions which have just used soil properties is 

lower than that of which have used the auxiliary 

parameters. This is shown in Table 4. 

Additionally, the amount of prediction error of 

the soil classes with the combined application of 

soil properties and auxiliary parameters are 

similar to those of the soil properties. With 

simultaneous application of soil properties and 

auxiliary parameters, the effect of soil qualitative 

properties in predicting soil classes were so high 

that the auxiliary parameters failed to show its 

effect in predicting soil classes.  

  
3.5. Soil Classes Prediction Using Kriging Maps 

of Soil Properties  

 

     To predict soil classes using kriging maps, the 

previously used properties to estimate soil 

classes (Table 2) were solely used. As shown in 

Table 5, the prediction error values had increased 

rather than the soil properties (Table 4) of the 

great group and subgroup levels. However, the 

error rate had decreased only in the family level. 

The probable cause of this reduction in error is 

the use of quantitative properties for the 

prediction of the soil family classes. 

 
         Table 5. Prediction error percentage of soil classes using kriging maps of soil properties  

Soil Taxonomy level prediction error by previous inputs (Table 2) 
prediction error by new inputs 

(qualitative and quantitative) 
 

Order 0.000 0.000  

Suborder 0.000 0.000  

Great group 2.880 0.002  

Subgroup 9.530 0.006  

Family 0.014 0.014  

 

     In order to reduce the prediction error for 

higher levels of classification, in addition to the 

qualitative characteristics, quantitative 

properties including calcium carbonate 

percentage, sand percentage and clay percentage 

were considered as inputs. Table 6 shows the 

sensitivity analysis values of using kriging maps 

of soil properties for predicting soil classes at 

different levels of the ST system. 

     According to Table 6, the presence and 

absence of argillic horizon and aquic conditions 

were only effective for order and suborder levels, 

respectively. The presence and absence of calcic 

horizon and the percentage of sand and clay were 

effective for great group level. The presence and 

absence of argillic, calcic, petrocalcic horizons, 

aquic conditions, chroma of 1-2, and the 

percentage of sand, clay, and calcium carbonate 

equivalents were effective in the subgroup level. 

To predict the soil family classes based on Keys 

to ST (Soil Survey Staff, 2014), a number of new 

properties, such as the percentage of a particle 

size greater than 1mm, percentage of particle size 

greater than 2mm, percentage of clay-size 

carbonates, cation exchange capacity, and the 

presence and absence of a root-limiting layer at a 

50cm depth from the mineral soil surface (as 

many as 125000 records) were also added. It has 

been observed that, in addition to these 

properties, the presence and absence of argillic, 

calcic, cambic, petrocalcic horizons, aquic 

conditions and the percentage of clay and 

calcium carbonate equivalents were effective for 

predicting soil family classes. These results are 

entirely consistent with the principles of the ST 

System. In other words, the same properties used 

for the classification of pedons were considered 

as influential in predicting soil classes. 
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     As shown in Table 5, the input of kriging 

maps of quantitative data to the decision tree 

model at higher levels of soil family, 

significantly reduced the amount of prediction 

error for great group and subgroup levels. Thus, 

the error value at the great group level dropped 

from 2.88 to 0.002% and the value in the 

subgroup level decreased from 9.53 to 0.006%. 

     Of the 125,000 records in the great group, 

subgroup, and family levels, only 2, 8, and 17 

records were incorrectly predicted, respectively.  

 
  Table 6. Sensitivity analysis results for predicting soil classes using kriging maps of soil properties 

Properties’ name 
Soil Taxonomy levels 

Order Suborder Great group Subgroup Family 

Calcic horizon 0.25 0.34 2 1.30 1.18 

Cambic horizon 0.36 0.36 1 1.00 1.06 
Argillic horizon Inf Inf 1 1.63 1.37 

Secondary carbonates 0.29 0.32 0 1.00 0.87 

Chroma 1-2 0.18 0.36 1 1.50 1.00 
Chroma <=1 0.27 Inf 1 1.63 1.12 

Petrocalcic horizon 0.43 0.28 1 3.25 1.19 

Shallow depth - - - - 0.94 
Sand - - 2 15.50 0.87 

Clay - - 2 16.75 1.62 

CaCO3 - - 1 12.75 1.31 

clay-size carbonates - - - - 1.81 

Particles more than 1 mm - - - - 1.44 
CEC - - - - 1.37 

Rock fragments (≥ 2 mm) - - - - 1.19 

- : shows nonuse of the considered properties for predicting the soil class in the relevant level. 

Inf : shows a condition that based on it the rate of prediction error is equal to zero (with special properties). 

 

4. Conclusion 

 

     The results of this study showed that the 

decision tree model had a good performance in 

predicting soil classes at different levels of the 

ST system in the Shahrekord plain. The usage of 

the StatSoft sensitivity analysis method and the 

decision tree model well illustrated the effects of 

different inputs in predicting soil classes. It was 

seen that the prediction error values have 

increased from upper levels of classification 

(order) to lower levels (family). The probable 

cause of this issue can be the entry of more 

details into the soil classification at lower levels 

of the ST system, which increase the number of 

classes. It was also observed that the soil class 

prediction error along with the simultaneous use 

of soil properties and auxiliary parameters were 

similar to the soil class prediction error using soil 

properties. Auxiliary parameters did not 

influence the decrease of the soil class prediction 

error. In other words, the effect of soil qualitative 

properties in predicting soil classes was 

considerable and the auxiliary parameters could 

not properly show their effects in this regard. 

Therefore, it seemed that the effect of auxiliary 

parameters, relative to soil properties, in 

predicting soil classes in low relief variation 

areas were not significant. The usage of kriging 

maps for quantitative and qualitative properties 

of soil in the decision tree model resulted in a 

significant reduction in the prediction error of 

soil classes. Due to the fact that low relief areas 

(plains) are widely used for agricultural purposes 

and that there is a strong demand for accurate 

information on its soil and the variability of these 

regions, the results of this research can respond 

to users' needs in order to understand these 

variations.  
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