Soil Quality Assessment in the Mashhad Plain, Northeast Iran (A Minimum Data Set and Spatial Analysis Approach)

Document Type : Research Paper

Authors

1 Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Remote Sensing & GIS, Faculty of Geography, University of Tehran, Tehran, Iran

3 Department of Agriculture, Payame Noor University, Tehran, Iran

Abstract

Soil quality assessment is crucial for sustainable land management. Given the high cost and time required to measure all soil quality indicators, minimum data set (MDS) selection offers an efficient approach for accurate evaluation. This study identifies an optimal MDS and examines its spatial distribution in the Mashhad Plain. A total of 180 soil samples (0-10 cm depth) were analyzed for physical and chemical properties. The soil quality index (SQI) was computed using the weighted additive integrated quality index (IQIw) in four scenarios: total dataset-linear (IQIwL_TDS), total dataset-nonlinear (IQIwNL_TDS), minimum dataset-linear (IQIwL_MDS), and minimum dataset-nonlinear (IQIwNL_MDS). Among 11 physical and chemical properties, principal component analysis (PCA) identified sand, electrical conductivity (EC), pH, soil organic carbon (SOC), calcium carbonate equivalent (CCE), and nickel (Ni) as the MDS. IQIwL_MDS yielded the highest SQI, while IQIwNL_MDS produced the lowest. The nonlinear model (R² = 0.89) showed a stronger correlation between MDS and TDS than the linear model (R² = 0.76), underscoring the nonlinear model’s predictive accuracy. Global Moran’s I revealed a clustered spatial pattern, while Getis-Ord Gi* identified low-quality hotspots in the southern and southeastern regions, predominantly in barren lands. This study presents an innovative framework by integrating MDS selection and spatial analysis, offering a robust methodology for soil quality assessment in semi-arid regions. The findings provide valuable insights for sustainable soil management and conservation strategies in vulnerable landscapes.

Keywords


References
Alavipanah, S. K., Damavandi, A. A., Mirzaei, S., Rezaei, A., Hamzeh, S., Matinfar, H. R., ... & Javadzarrin, I. (2016). Remote sensing application in evaluation of soil characteristics in desert areas. Natural Environment Change, 2(1), 1-24.
Alavipanah, S. K., Weng, Q., Gholamnia, M., & Khandan, R. (2017). An analysis of the discrepancies between MODIS and INSAT-3D LSTs in high temperatures. Remote Sensing, 9(4), 347. https://doi.org/10.3390/rs9040347
Andrews, S. S., Karlen, D. L., & Mitchell, J. P. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, ecosystems & environment90(1), 25-45. https://doi.org/10.1016/S0167-8809(01)00174-8
Arshad. M. A and S. Martin. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems and Environment, 88(2), 153–9160. https://doi.org/10.1016/S0167-8809(01)00252-3
Askari, M. S., & Holden, N. M. (2015). Quantitative soil quality indexing of temperate arable management systems. Soil and Tillage Research, 150, 57-67. https://doi.org/10.1016/j.still.2015.01.010
Ayoubi, S., Emami, N., Ghaffari, N., Honarjoo, N., & Sahrawat, K. L. (2014). Pasture degradation effects on soil quality indicators at different hillslope positions in a semiarid region of western Iran. Environmental Earth Sciences, 71, 375-381. https://doi.org/10.1007/s12665-013-2440-x
Aziz, I., Ashraf, M., Mahmood, T., & Islam, K. R. (2011). Crop rotation impact on soil quality. Pakistan Journal of Botany43(2), 949-960.
Azizsoltani, E., Honarjoo, N., & Ayoubi, S. (2019). How soil pore distribution could help in soil quality studies as an appropriate indicator. Eurasian Soil Science, 52, 654-660. https://doi.org/10.1134/S1064229319060036
Bashtian, M. H., Karimi, A., Sepehr, A., Lakzian, A., & Bol, R. (2024). Functional roles of biocrusts in enhancing soil quality in a semi-arid environment. Geoderma Regional, 37, e00787. https://doi.org/10.1016/j.geodrs.2024.e00787
Bhaduri, D., Sihi, D., Bhowmik, A., Verma, B. C., Munda, S., & Dari, B. (2022). A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Frontiers in Microbiology, 13, 938481. https://doi.org/10.3389/fmicb.2022.938481
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., De Goede, R., ... & Brussaard, L. (2018). Soil quality–A critical review. Soil biology and biochemistry120, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
Chen, W., Cai, Y., Zhu, K., Wei, J., & Lu, Y. (2022). Spatial heterogeneity analysis and source identification of heavy metals in soil: a case study of Chongqing, Southwest China. Chemical and Biological Technologies in Agriculture, 9(1), 50. https://doi.org/10.1186/s40538-022-00313-3
Das, S., & Angadi, D. P. (2020). Land use-land cover (LULC) transformation and its relation with land surface temperature changes: A case study of Barrackpore Subdivision, West Bengal, India. Remote Sensing Applications: Society and Environment19, 100322. https://doi.org/10.1016/j.rsase.2020.100322
Dhose, T., Cougnon, M., De Vliegher, A., Vandecasteele, B., Viaene, N., Cornelis, W., ... & Reheul, D. (2014). The positive relationship between soil quality and crop production: A case study on the effect of farm compost application.  Applied Soil Ecology, 75, 189-198. https://doi.org/10.1016/j.apsoil.2013.11.013
do Nascimento, Í. V., Fregolente, L. G., de Araújo Pereira, A. P., do Nascimento, C. D. V., Mota, J. C. A., Ferreira, O. P., ... & Costa, M. C. G. (2023). Biochar as a carbonaceous material to enhance soil quality in drylands ecosystems: A review. Environmental Research, 233, 116489. https://doi.org/10.1016/j.envres.2023.116489
Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. Defining soil quality for a sustainable environment, 35, 1-21. https://doi.org/10.2136/sssaspecpub35.c1
Gee, G.W., & Bauder, J.W. (1986). Partical-size analysis. In: Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and Mineralogical Methods, second ed. Agronomy Monogroph No. 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp 383–411
Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical analysis24(3), 189-206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
Ghahramanpoor, R., Gorji, M., Pourbabaee, A. A., & Farahbakhsh, M. (2019). Investigating the effects of conservation and reduced tillage systems on soil quality indices. Iranian Journal of Soil and Water Research49(6), 1355-1364. https://doi.org/10.22059/ijswr.2018.235131.667693
Guillot, E., Bertrand, I., Rumpel, C., Gomez, C., Arnal, D., Abadie, J., & Hinsinger, P. (2021). Spatial heterogeneity of soil quality within a Mediterranean alley cropping agroforestry system: Comparison with a monocropping system. European Journal of Soil Biology, 105, 103330. https://doi.org/10.1016/j.ejsobi.2021.103330
Hematifard, A., Naderi, M., Karimi, A., & Mohammadi, J. (2019). Assessment quantitative of soil quality in different uses of Shahrekord plain using the Analytical Hierarchical Process (AHP). https://doi.org/ 10.29252/jstnar.23.1.22
Hemmati, S., Yaghmaeian Mahabadi, N., Farhangi, M. B., & Sabouri, A. (2019). Assessing soil quality indices and their relationships with rice yield in paddy fields of central Guilan province. Journal of Soil Management and Sustainable Production9(1), 135-150. https://doi.org/10.22069/ejsms.2019.15065.1818
Islamic Republic of Iran Meteorological Organization (IRIMO) (2017). Tehran, Iran
ISO/CD 11466, 1995. Soil Quality-extraction of Trace Elements Soluble in Aqua-regia. The international Organization for Standardization, Switzerland, pp. P12.
Jian, J., Lester, B. J., Du, X., Reiter, M. S., & Stewart, R. D. (2020). A calculator to quantify cover crop effects on soil health and productivity. Soil and Tillage Research, 199, 104575. https://doi.org/10.1016/j.still.2020.104575
Karimi, A., Haghnia, G. H., Safari, T., & Hadadian, H. (2017). Lithogenic and anthropogenic pollution assessment of Ni, Zn and Pb in surface soils of Mashhad plain, northeastern Iran. Catena, 157, 151-162. https://doi.org/10.1016/j.catena.2017.05.019
Khormali, F., Ajami, M., Ayoubi, S., Srinivasarao, C., & Wani, S. P. (2009). Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran. Agriculture, ecosystems & environment, 134(3-4), 178-189. https://doi.org/10.1016/j.agee.2009.06.017
Kowe, P., Mutanga, O., Odindi, J., & Dube, T. (2021). Effect of landscape pattern and spatial configuration of vegetation patches on urban warming and cooling in Harare metropolitan city, Zimbabwe. GIScience & Remote Sensing58(2), 261-280. https://doi.org/10.1080/15481603.2021.1877008
Liebig, M. A., Varvel, G., & Doran, J. (2001). A simple performance‐based index for assessing multiple agroecosystem functions. Agronomy Journal, 93(2), 313-318. https://doi.org/10.2134/agronj2001.932313x
Liu, J., Wu, L., Chen, D., Yu, Z., & Wei, C. (2018). Development of a soil quality index for Camellia oleifera forestland yield under three different parent materials in Southern China. Soil and Tillage Research176, 45-50. https://doi.org/10.1016/j.still.2017.09.013
Liu, W., Ma, L., Smanov, Z., Samarkhanov, K., & Abuduwaili, J. (2022). Clarifying Soil Texture and Salinity Using Local Spatial Statistics (Getis-Ord Gi* and Moran’s I) in Kazakh–Uzbekistan Border Area, Central Asia. Agronomy12(2), 332. https://doi.org/10.3390/agronomy12020332
Maghami Moghim, F., Karimi, A. R., Bagheri Bodaghabadi, M., & Emami, H. (2022). Evaluating the role of different management systems on soil quality index using crop yield (case study: neyshabour plain, iran). Water and Soil, 36(1), 95-112. https://doi.org/10.22067/jsw.2022.74026.1120
Maghami Moghim, F., Karimi, A., Bagheri-Bodaghabadi, M., Emami, H., & Duraisamy, V. (2024). Evaluation of soil quality and land suitability in different management systems. Archives of Agronomy and Soil Science, 70(1), 1-19. https://doi.org/10.1080/03650340.2023.2298851
Mahajan, G., Das, B., Morajkar, S., Desai, A., Murgaokar, D., Kulkarni, R., ... & Patel, K. (2020). Soil quality assessment of coastal salt-affected acid soils of India. Environmental Science and Pollution Research27(21), 26221-26238. https://doi.org/10.1007/s11356-020-09010-w
Mesfin, D., Assefa, E., & Simane, B. (2022). Variability of soil quality indicators along with the different landscape positions of Choke Mountain agroecosystem, upper Blue Nile Basin, Ethiopia. Heliyon8(7). https://doi.org/10.1016/j.heliyon.2022.e09850
Mir Mousavi, S. H., Raispour, K., & Kamangar, M. (2020). Monitoring and evaluation of spatial variations in soil electrical conductivity using remote sensing. Iranian journal of Ecohydrology, 7(4), 1113-1126. https://doi.org/10.22059/ije.2020.308585.1374
Mirkhani, R., Vaezi, A. R., & Rezaei, H. (2020). Investigation of the Soil Quality Indices in Irrigated Wheat Farms of Nazarabad Region in West of Alborz Province. Water and Soil34(5), 1125-1139. https://doi.org/10.22067/jsw.v34i5.85526
Mousavi, A., Karimi, A., Maleki, S., Safari, T., & Taghizadeh-Mehrjardi, R. (2023). Digital mapping of selected soil properties using machine learning and geostatistical techniques in Mashhad plain, northeastern Iran. Environmental Earth Sciences, 82(9), 234. https://doi.org/10.1007/s12665-023-10919-x
Muñoz-Rojas, M. (2018). Soil quality indicators: critical tools in ecosystem restoration. Current Opinion in Environmental Science & Health, 5, 47-52. https://doi.org/10.1016/j.coesh.2018.04.007
Nelson, D.W., & Sommers, L.E. (1982) Total carbon, organic carbon, and organic matter. p.539–577. In: Page AL (ed) Methods of Soil Analysis. Part 2, second ed. Agron. Monogr. 9 ASA and SSSA, Madison, WI. https://doi.org/10.3390/ijgi6090283
Nosrati, K., & Majdi, M. (2018). Soil quality assessment in western part of Tehran using minimum data set method. https://doi.org/10.29252/jstnar.21.4.177
Orlandi, F., Marrapodi, S., Proietti, C., Ruga, L., & Fornaciari, M. (2023). Ecosystem functions of fruit woody species in an urban environment. Environmental Monitoring and Assessment, 195(1), 118. https://doi.org/10.1007/s10661-022-10717-1
Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis. Part 2. American Society of Agronomy, Inc and Soil Science Society of America, Inc. Madison. https://doi.org/10.1002/jpln.19851480319
Perović, V., Čakmak, D., Jakšić, D., Milanović, M., Matić, M., Pavlović, D., ... & Pavlović, P. (2025). Development and evaluation approach of soil quality in agricultural soils: Integrated system for a more reliable delineation of homogeneous management zones. Applied Soil Ecology206, 105860. https://doi.org/10.1016/j.apsoil.2024.105860
Pusch, M., Oliveira, A. L., Fontenelli, J. V., & Amaral, L. R. D. (2021). Soil properties mapping using proximal and remote sensing as covariate. Engenharia Agrícola, 41(6), 634-642. https://doi.org/ 10.1590/1809-4430-eng.agric.v41n6p634-642/2021
Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W., & Gu, Z. (2009). Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma149(3-4), 325-334. https://doi.org/10.1016/j.geoderma.2008.12.015
Rahmanipour, F., Marzaioli, R., Bahrami, H. A., Fereidouni, Z., & Bandarabadi, S. R. (2014). Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological indicators40, 19-26. https://doi.org/10.1016/j.ecolind.2013.12.003
Samie, F., Yaghmaeian Mahabadi, N., Abrishamkesh, S., & Maslahatjou, A. (2022). Impact of land use change on erodibility and soil quality indicators (case study: Sidasht, Guilan Province). Agricultural Engineering45(1), 57-78. https://doi.org/10.22055/agen.2022.39858.1630
Santos-Francés, F., Martínez-Graña, A., Ávila-Zarza, C., Criado, M., & Sánchez, Y. (2019). Comparison of methods for evaluating soil quality of semiarid ecosystem and evaluation of the effects of physico-chemical properties and factor soil erodibility (Northern Plateau, Spain). Geoderma354, 113872. https://doi.org/10.1016/j.geoderma.2019.07.030
Saygın, F., Şavşatlı, Y. U. S. U. F., Dengiz, O., Namlı, A., Karataş, A. R. Z. U., Şenol, N. D., ... & Demirkaya, S. (2023). Soil quality assessment based on hybrid computational approach with spatial multi-criteria analysis and geographical information system for sustainable tea cultivation. The Journal of Agricultural Science161(2), 187-204. https://doi.org/10.1017/S0021859623000138
Scherer, T. F., Seelig, B., & Franzen, D. (1996). Soil, water and plant characteristics important to irrigation.
Shakouri, M., Shabanpour, M., Davatgar, N., & Vazifehdoust, M. (2021). Assessment of Soil Quality in Paddy Soils with Different Yields (A Case Study: Kouchsfahan, Guilan Province). Iranian Journal of Soil and Water Research51(12), 3161-3176. https://doi.org/10.22059/ijswr.2020.305420.668660
Shao, G., Ai, J., Sun, Q., Hou, L., & Dong, Y. (2020). Soil quality assessment under different forest types in the Mount Tai, central Eastern China. Ecological Indicators115, 106439. https://doi.org/10.1016/j.ecolind.2020.106439
Thomas, G.W. (1996) Soil pH and soil acidity. In: Sparks DL (ed) Methods of Soil Analysis. Part 3 Chemical Methods. Soil Science Society of America Agronomy Book Series 5.3, Madison, WI, USA. pp 475–490.
USDA Soil Survey Staff. (1972). Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples Report NO. 1.
Yemefack, M., Jetten, V. G., & Rossiter, D. G. (2006). Developing a minimum data set for characterizing soil dynamics in shifting cultivation systems. Soil and Tillage Research86(1), 84-98. https://doi.org/10.1016/j.still.2005.02.017
Zhang, R., Aljumah, A. I., Ghardallou, W., Li, Z., Li, J., & Cifuentes-Faura, J. (2023). How economic development promotes the sustainability targets? Role of natural resources utilization. Resources Policy, 85, 103998. https://doi.org/10.1016/j.resourpol.2023.103998
Zhang, Y., Wang, L., Jiang, J., Zhang, J., Zhang, Z., & Zhang, M. (2022). Application of soil quality index to determine the effects of different vegetation types on soil quality in the Yellow River Delta wetland. Ecological Indicators141, 109116. https://doi.org/10.1016/j.ecolind.2022.109116