References
Atashpaz B., Khormali F., Malekzadeh E., Soleymanzadeh, M. (2023). Evaluating the Effect of Different Sequences of Biological Crusts on Loess Derived Soil Biophysiological Properties in the Semi‑arid Regions of Northern Iran,
Journal of Soil Science and Plant Nutrition, 23, 6777–6787.
https://doi.org/10.1007/s42729-023-01535-6.
Armin, M., Ahmadi, H., Rouhipour, H., Salajegheh, A., Mahdian, M. H. and Ghorban nia Kheybari, V. (2016). Assessment of aggregate stability and determination of instability mechanism of marly soils in Taleghan watershed.
Journal of Rangeland and Watershed Management, 68(4): 691-710.
https://doi.org/10.22059/jrwm.2015.56952.
Baldauf, S., Cant, Y., Cantón, Y., Tietjen, B. (2023). Biocrusts intensify water redistribution and improve water availability to dryland vegetation: insights from a spatially-explicit ecohydrological model,
Frontiers in Microbiology, 14, 1-15.
https://doi.org/10.3389/fmicb.2023.1179291.
Bastida, F., Jehmlich, N., Ondoño, S., von Bergen, M., García, C., Moreno, J.L. (2014). Characterization of the microbial community in biological soil crusts dominated by Fulgensia desertorum (Tomin) Poelt and Squamarina cartilaginea (With.) P. James and in the underlying soil.
Soil Biology and Biochemistry. 76, 70–79.
https://doi.org/10.1016/j.soilbio.2014.05.004.
Bastida, F., Jehmlich, N., Ondoño, S., von Bergen, M., García, C., Moreno, J..L. (2014). Characterization of the microbial community in biological soil crusts dominated by Fulgensia desertorum (Tomin) Poelt and Squamarina cartilaginea (With.) P. James and in the underlying soil.
Soil Biology and Biochemistry. 76, 70–79.
https://doi.org/10.1016/j.soilbio.2014.05.004.
Besalatpour, A.A., Ayoubi, S., Hajabbasi, M.A., Mosaddeghi, M.R., Schulin, R. (2013). Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed,
CATENA, 111, 72-79.
https://doi.org/10.1016/j.catena.2013.07.001.
Concostrina-Zubiri, L., Valencia, E., Ochoa, V., Gozalo, B., Mendoza, B.J., Maestre, F.T. (2021). Species-specific effects of biocrust-forming lichens on soil properties under simulated climate change are driven by functional traits.
New Phytologist, 230, 101–115.
https://doi.org/10.1111/nph.17143.
Cui, Z., Huang, Z., Luo, J., Qiu, K., López-Vicente, M., Wu, G.L. (2021). Litter cover breaks soil water repellency of biocrusts, enhancing initial soil water infiltration and content in a semi-arid sandy land.
Agricultural Water Management, 255, 107009.
https://doi.org/10.1016/j.agwat.2021.107009.
Dacal, M., García-Palacios, P., Asensio, S., Gozalo, B., Ochoa, V., Maestre, F.T. (2020). Abiotic and biotic drivers underly short- and long-term soil respiration responses to experimental warming in a dryland ecosystem. bioRxiv preprint, 2020.01.13.903880
https://doi.org/10.1101/2020.01.13.903880.
De Leenheer, L and de Boodt, M. (1959). Determination of Aggregate Stability by the Change in Mean Weight Diameter,” International Symposium on Soil Structure, Gent. Proceeding, 24, 290-300.
Delgado-Baquerizo, M., Maestre, F.T., Eldridge, D.J., Bowker, M.A., Ochoa, V., Gozalo, B., Berdugo, M., Val, J., Singh, B.K. (2016). Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands.
New Phytologist, 209, 1540–1552.
https://doi.org/10.1111/nph.13688.
Dou, W., Xiao, B., Yao, X., Kidron, G.J. (2023). Asymmetric responses of biocrust respiration to precipitation manipulation under a changing semiarid climate,
Geoderma, 430, 116318,
https://doi.org/10.1016/j.geoderma.2022.116318.
Duchicela, J., Sullivan, T. S., Bontti, E., Bever, J. D. (2013). Soil aggregate stability increase is strongly related to fungal community succession along an abandoned acricultural field chronosequence in the Bolivian Altipano.
Journal of Applied Ecology, 50, 1266-1273.
http://dx.doi.org/10.1111/1365-2664.12130.
Eldridge, D. and Leys, J. F. (2003). Exploring some relationships between biological soil crust, soil aggregation and wind erosion.
Journal of Arid Environments, 53:457-466.
https://doi.org/10.1006/jare.2002.1068.
Eldridge, D.J. and Greene, R. S. B. (1994). Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia.
Australian Journal of Soil Research, 32: 389-415.
https://doi.org/10.1071/SR9940389.
Hasanzadeh Bashtian, M., Sepehr, A., Farzam, M. and Bahreini, M. (2018). Distribution of biological soil crust along surface evolution of an arid alluvial fan. Journal of Researches in Earth Sciences, 9(33):1-13 (In Persian).
Kakeh, J., Gorji, M., Sohrabi, M., Tavili, A., Pourbabaee, A. A. (2018). Effects of biological soil crusts on some physicochemical characteristics of rangeland soils of Alagol, Turkmen Sahra, NE Iran. Soil and Tillage Research, 181: 152-159.
Kelishadi, H., Mosaddeghi, M., Ayobi, S.H., Asadi, H. (2018). Evaluation of different methods of soil structural stability determination for predicting splash erosion. Journal of Agricultural Engineering, 41(4): 1-15 (In Persian).
Kome, G., Enang, R., Yerima, B., Lontsi, M. (2018). Models relating soil pH measurements in H2O, KCl and CaCl2 for volcanic ash soils of Cameroon. Geoderma Regional. 14, e00185.
Ladwig, L.M., Sinsabaugh, R.L., Collins, S.L., Thomey, M.L. (2015). Soil enzyme responses to varying rainfall regimes in Chihuahuan Desert soils.
Ecosphere, 6, art40.
https://doi.org/10.1890/ES14-00258.1.
Liu, X., RezaeiRashti, M., Dougall, A., Esfandbod, M., van Zwieten, L., Chen, C. (2018). Subsoil application of compost improved sugarcane yield through enhanced supply and cycling of soil labile organic carbon and nitrogen in an acidic soil at tropical Australia. Soil and Tillage Research, 180, 73–81.
Lucas-Borja, M.E., Candel, D., Jindo, K., Moreno, J.L., Andrés, M., Bastida, F. (2012). Soil microbial community structure and activity in monospecific and mixed forest stands, under Mediterranean humid conditions.
Plant and Soil, 354, 359–370.
https://doi.org/10.1007/s11104-011-1072-8.
Martínez, J.M., Galantini, J., Duval, M., López, F., Iglesias, J. (2018). Estimating soil organic carbon in Mollisols and its particle-size fractions by loss-on-ignition in the semiarid and semi humid Argentinean Pampas.
Geoderma Regional, 12, 49–55.
https://doi.org/10.1016/j.geodrs.2017.12.004.
Martínez, D.P., Panettieri, M., Palacios, P.G., Moreno, E., Plaza, C., Maestre, F.T. (2022). Biocrusts Modulate Climate Change Effects on Soil Organic Carbon Pools: Insights from a 9-Year Experiment,
Ecosystems, 26, 585–596.
https://doi.org/10.1007/s10021-022-00779-0.
Miralles, I., Ladrón de Guevara, M., Chamizo, S., Rodríguez-Caballero, E., Ortega, R., van Wesemael, B., Cantón, Y. (2018). Soil CO
2 exchange controlled by the interaction of biocrust successional stage and environmental variables in two semiarid ecosystems.
Soil Biology and Biochemistry, 124, 11–23.
https://doi.org/10.1016/j.soilbio.2018.05.020.
Miralles, I., Lázaro, R., Sánchez-Marañón, M., Soriano,M., Ortega, R. (2020a). Biocrust cover and successional stages influence soil bacterial composition and diversity in semiarid ecosystems.
Science Of Total Environment, 709, 134654.
https://doi.org/10.1016/j.scitotenv.2019.134654.
Miralles, I., Domingo, F., García-Campos, E., Trasar-Cepeda, C., Leirós, M., Gil-Sotres, F. (2012b). Biological andmicrobial activity in biological soil crusts fromthe Tabernas desert, a sub-arid zone in SE Spain.
Soil Biology and Biochemistry, 55, 113–121.
https://doi.org/10.1016/j.soilbio.2012.06.017.
Mocali, S., Pa_etti, D., Emiliani, G., Benedetti, A., Fani, R. (2008). Diversity of heterotrophic aerobic cultivable microbial communities of soils treated with fumigants and dynamics of metabolic, microbial, and mineralization quotients.
Biology and Fertility of Soils, 44, 557–569.
http://dx.doi.org/10.1007/s00374-007-0235-5.
Mohajer, R., Salehi, M.H. (2018). American Soil Taxonomy Compared to World Reference Base for Expressing Environmental Pollution, a Case Study: Lenjanat Region of Isfahan,
Journal of Water and Soil, 31, 1651-1664.
https://doi.org/10.22067/jsw.v31i5.61898.
Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., Renella, G. (2003). Microbial diversity and soil functions.
European Journal of Soil Science, 54, 655–670.
https://doi.org/10.1046/j.1351-0754.2003.0556.x.
Richards, L.A. (1954). Diagnosis and Improvement of, US Department of Agriculture Handbook, No. 60, Washington, DC.
Roncero-Ramos, B., Muñoz-Martín, M.Á., Chamizo, S., Fernández-Valbuena, L., Mendoza, D., Perona, E., Cantón, Y., Mateo, P. (2019). Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe. PeerJ. 3;7 e6169, https://doi.org/ 10.7717/peerj.6169.
Roncero-Ramos, B., Munoz-Martin, M. A., Canton, Y., Chamizo, S., Rodriguez-Caballero, E. and Mateo, P. (2020). Land degradation effects on composition of pioneering soil communities: An alternative successional sequence for dryland cyanobacterial biocrusts. Soil
Biology and Biochemistry, 146: 1-15,
https://doi.org/10.1016/j.soilbio.2020.107824.
Shibahara, F., Inubushi, K. (1995). Measurements of Microbial Biomass C and N in Paddy Soils by the Fumigation-Extraction Method, Soil Science and Plant,
Journal of Soil Science and Plant Nutrition, 41:4, 681-689.
https://doi.org/10.1080/00380768.1995.10417018.
Sparling, G.P. (1992). Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter,
Australian Journal of Soil Research, 30 (2), 195–207,
http://dx.doi.org/10.1071/SR9920195.
VanWesemael, B., Chartin, C., Wiesmeier, M., von Lützow, M., Hobley, E., Carnol, M., Krüger, I., Campion, M., Roisin, C., Hennart, S. (2019). An indicator for organic matter dynamics in temperate agricultural soils. Agric.
Agriculture, Ecosystems & Environment, 274 (15), 62–75.
https://doi.org/10.1016/j.agee.2019.01.005.
Vasiljevic, D. A., Markovic, S. B., Hose, T. A., Smalley, I., O'Hara-Dhand, K., Basarin, B., Lukic, T., Vujicic, M. D. (2011). "Loess Towards (Geo) Tourism – Proposed Application on Loess in Vojvodina Region (North Serbia),
Acta Geographica Slovenica (in Slovenian), 51 (2): 390–406.
https://doi.org/10.3986/AGS51305.
Wang, D., Fonte, S.J., Parikh, S.J., Six, J., Scow, K.M. (2017). Biochar additions can enhance soil structure and the physical stabilization of C in aggregates,
Geoderma, 303, 110-117.
https://doi.org/10.1016/j.geoderma.2017.05.027.
Walkley, A., Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method.
Soil Science, 37, 29–38,
http://dx.doi.org/10.1097/00010694-193401000-00003.