References
Abbasian, M. S., Moghim, S., & Abrishamichi, A. (2018). Performance of the general circulation models in simulating temperature and precipitation over Iran. Theoretical and Applied Climatology, 135(3-4), 1465- 1483. https://doi:10.1007/s00704-018-2456y
Abuzaid, A. S., & Abdelatif, A. D. (2022). Assessment of desertification using modified MEDALUS model in the north Nile Delta, Egypt. Geoderma, 45, 115400. https://doi.org/10.1016/j.geoderma.2021.115400
Ahmadi, H. (2006). Calibration of measurement and standards of desertification in Iran, IMDPA model, Client: Department of Pasture and Soil of Forest, Rangeland and Watershed Management.
Akbari, M., Ownegh, M., Asgari, H. R., Sadoddin, A., Khosravi. H. (2016). Desertification risk assessment and management program.
Global Journal Environmental Science Management, 2(4), 365-380.
https://doi.org/10.22034/gjesm.2016.02.04.006
Almazroui, M., Nazrul Islam, M., Saeed, F., Alkhalaf, A. K., & Dambul, R. (2017). Assessing the robustness and uncertainties of projected changes in Temperature and Precipation in AR5 Global Climate Models Over the Arabian Peninsula. Atmospheric research, 194, 202-213. https://doi.org/10.1016/j.atmosres.2017.05.005
Alori, E.T., Emmanuel, O. C., Glick, B. R., & Babalola, O. O. (2020). Plant–archaea relationships: a potential means to improve crop production in arid and semi-arid regions. World Journal of Microbiology and Biotechnology, 36, 1–10. https://doi.org/10.1007/s11274-020-02910-6
Arami, A. H., Ownegh, M., Sheikh, B., & Honardoust, F. (2012).
Desertification assessment and mapping desertification
severity using IMDPA with emphasis on vegetation and soil
criteria in the GIS environment (Case study: Alagol Plain,
Golestan Province. First national desert Conference. Tehran,
International Research Center for desert. Tehran University,
Iran.
https://civilica.com/doc/160382
Arami. S. A., & Ownagh, M. (2017). Assessment of desertification hazard, risk and development of management plans. Desert, 22(1), 51-67. https://sid.ir/paper/716366/en
Gulacha, M., & Mulungu, D. M. M. (2017). Generation of climate change scenarios for precipitation and temperature at local scales using SDSM in Wami-Ruvu River Basin Tanzania. Physics and Chemistry of the Earth, 100, 62-72. https://doi.org/10.1016/j.pce.2016.10.003
Intergovernmental Panel on Climate Change (IPCC). (2014). AR5 Climate Change 2014: Mitigation of Climate Change. Working group III contribution to the IPCC Fifth Assessment Report. 1-49.
Javaherian M. R., Ebrahimi, H., & Aminnejad, B. (2021). Prediction of changes in climatic parameters using CanESM2 model based on RCP scenarios (case study: Lar dam basin). Ain Shams Engineering Journal, 1, 445-454. https://doi.org/10.1016/j.asej.2020.04.012
Lee, E. J., Piao, D., Song, C., Kim, J., Lim, H., Kim, E., Moon, J., Kafatos, M., Lamchin, M., Jeon, S. W., & Lee, W. (2019). Assessing environmentally sensitive land to desertification using MEDALUS method in Mongolia. Forest Science and Technology, 15(4), 210-220. https://doi.org/10.1080/21580103.2019.1667880
Leon-Sobrino, C., Ramond, J. B., Maggs-Kolling, G., & Cowan, D. A. (2019). Nutrient acquisition, rather than
stress response over diel cycles, drives microbial transcription in a hyper-arid Namib Desert soil.
Frontiers in Microbiology, 10, 1054.
https://doi.org/10.3389/fmicb.2019.01054
Mahmood. R., & Babel, M. S. (2013). Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India.
Theoretical and Applied Climatology, 113, 27-44. https://doi.org/10.1007/s00704-012-0765-0
Pellegrini. S., Agnelli, A. E., Andrenelli, M. C., Barbetti, R., Lo Papa, G., Priori, S., & Costantini, E. A. C. (2018). Using present and past climosequences to estimate soil organic carbon and related physical quality indicators under future climatic conditions. Agriculture, Ecosystems and Environment, 266, 17–30. https://doi.org/10.1016/j.agee.2018.07.015
Perez-Marin, A. M., Cavalcante, A. M. B., De Medeiros, S. S., Tinoco, L., Salcedo, I. H. (2012). Nucleos de desertificacao no semiarido brasileiro: Ocorrencia natural ou antropica? Parcer. Estrategica.
ReaserchGate, 17, 87–106.
https://bibliotecasemiaridos.ufv.br/jspui/handle/123456789/2561
Perez-Marin, A. M.,
Vendruscolo, J., Zárate-Salazar, J. R.,
De Araújo Queiroz, H. A.,
Magalhães, D. L.,
Menezes, R. S. C., &
Médice Fernandes, R. (2022). Monitoring Desertification Using a Small Set of Biophysical Indicators in the Brazilian Semiarid Region.
Soil Conservation and Sustainability, 14(15), 9735. https://doi.org/10.3390/su14159735
Pinheiro Junior, C. R., Pereira, M. G., Oseas de Filho, J., & Beutler, S. J. (2019). Can topography affect the restoration of soil properties after deforestation in a semiarid ecosystem? Journal of Arid Environments, 162, 45–52. https://doi.org/10.1016/j.jaridenv.2018.11.004
Purkey, D. R., Joyce, B., Vicuna, S., Hanemann, M. W., Dle, L. l., Yates, D., & Dracup. J. A. (2008). Robust Analysis of Future Climate Change Impacts on Water for Agriculture and Other Sectors: A Case Study in the Sacramento Valley. Climatic Change, 87, 109–122. DOI 10.1007/s10584-007-9375-8
Refsgaard, J.C., Arnbjerg-Nielsen, K., Drews, M., Halsnaes, K., Jeppesen, E., Madsen, H., Markandya, A., Olesen, J. E., Porter, J. R., & Christensen, J. H. (2013). The role of uncertainty in climate change adaptation strategies– A Danish water management example.
Mitigation and Adaptation Strategies for Global Change, 18, 337-359. https://doi.org/10.1007/s11027-012-9366-6
Sadeghiravesh, M. H., Khosravi, H., Abolhasani, A., Ghodsi, M., & Mosavi, A. (2021). Fuzzy logic model to assess desertification intensity based on vulnerability indices. Acta Polytechnica Hungarica, 18(3), 6-24. https://acta.uni-obuda.hu/Sadeghiravesh_Khosravi_Abolhasani_Ghodsi_Mosavi_110.pdf
Semenov, M. A., & Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate change scenarios.
Climatic Change, 35, 397–414.
Sepehr, A., Hassanli, A. M., Ekhtesasi, M. R.,
& Jamali, J. B. (2007). Quantitative assessment of desertifcation in south of Iran using MEDALUS method.
Environmental Monitoring and Assessment, 134(3), 243-254. DOI 10.1007/s10661-007-9613-6
Sharafati, A., Pezeshki, E., Shahid, S., & Motta, D. (2020). Quantifcation and uncertainty of the impact of climate change on river discharge and sediment yield in the Dehbar river basin in Iran. Journal of Soils and Sediments, 20, 2977–2996. https://doi.org/10.1007/s11368-020-02632-0
Shrestha, A., Babel, M. S., Weesakul, S., & Vojinovic, Z. (2017). Developing Intensity Duration Frequency (IDF) Curves under Climate Change Uncertainty: The Case of Bangkok, Thailand.
Journal of Water, 145, 1-22.
https://doi.org/10.3390/w9020145
Tanarhte, M., Hadjinicolaou, P., & Lelieveld, J. (2012). Intercomparison of temperature and precipitation data sets based on observations in the Mediterranean and the Middle East
. Journal of Geophysical Research: Atmospheres, 117(D12), 1- 24.
https://doi.org/10.1029/2011JD017293
UNCCD (United Nations Convention to Combat Desertification). (1994). Convention to Combat Desertification in Countries Experiencing Serious Drought and/or Desertification, particularly in Africa; ONU: Paris, France, 56p.
Zhang, C., Xunming, W., Jinchang, L., & Ting, H. (2020). Identifying the effect of climate change on desertification in northern China via trend analysis of potential evapotranspiration and precipitation. Ecological Indicators, 112, 106-141. https://doi.org/10.1016/j.ecolind.2020.106141.