Evaluation of physiological response and yield function to bio-fertilizer and potassium consumption in melon (Cucumis melo L.) under water deficit conditions.

Document Type : Research Paper

Authors

Department of Horticulture Science and Engineering, Faculty of Agriculture and Animal Science, University of Torbat-e-Jam, Torbat-e-Jam, Razavi Khorasan, Iran

Abstract

Tarbat-e Jam is one of the major areas of melon production. Recent droughts and shortage of water have reduced melon yield. In this research, the role of nitroxin bio-fertilizer and potassium on mitigating the adverse effects of drought stress on melon yield was evaluated during the years of 2019 and 2020. This experiment was designed as a split-plot factorial with three replicates based on a randomized complete block design. The factors in the split-factorial design including: irrigation (I), bio-fertilizer (B) and Potassium (K). Irrigation levels (I100, I80, and I60) were kept at 60%, 80%, and 100% of crop evapotranspiration. The Nitroxin was used as seed coating (B1) and none seed coating (B0). The highest proline content and electrolyte leakage were obtained in I60 whit combination of B0 and K0. The highest and the lowest value of CAT activity were obtained in I60 + B0 and K2+B1 treatments respectively. The highest peroxidase activity was achieved in the I60. The seeds inoculated with nitroxin and Potassium application significantly decreased POD activity. Relative water content and total chlorophyll were decreased under drought stress but they increased significantly by using bio-fertilizer and potassium. The highest TSS was obtained in the K2 and in the I80+B1 treatment. Potassium application increased the yield significantly. The highest and lowest yields were recorded in the I100+B1 and I60+B0 respectively. In this research, the use of bio-fertilizer and potassium moderated the effect of drought stress and reduced its negative effects, and the yield improved under drought stress.

Keywords


References
Aksu, G., & Altay, H. (2020). The Effects of Potassium Applications on Drought Stress in Sugar Beet. Sugar Tech, 22, 1092–1102. https://doi.org/10.1007/s12355-020-00851-w
Alagarsamy, R., & Kumar, N. (2008). Studies on the efficacy of sulphate of potash (SOP) on the physiological, yield and quality parameters of banana cv. Robusta (Cavendish AAA). Eur Asian Journal of BioSciences, 2(12), 102-109. https://www.researchgate.net/publication/242290134
Alam, A., Hariyanto, B., Ullah, H., Salin, K. R., & Datta, A. (2021). Effects of Silicon on Growth, Yield and Fruit Quality of Cantaloupe under Drought Stress. Silicon, 13, 3153–3162. https://doi.org/10.1007/s12633-020-00673-1.
Al-Fraihat, A. (2011). Effect of mineral nitrogen and biofertilizer on the productivity and quality of melon plants in south ghor area, jordan. International Journal of Current Research, 3(6), 295–303.
Amujoyegbe, B. J., Opbode, J. T., & Olayinka. A. (2007). Effect of organic and inorganic fertilizer on yield and chlorophyll content of Zea mays and sorghum bicolour. African Journal of Biotechnology, 6(16), 1869-1873. https://doi.org/10.5897/AJB2007.000-2278
Bacilio, M., Rodriguez, H., Moreno, M., Hernandez, J. P., & Bashan, Y. (2004). Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biology and Fertility of Soils, 40, 188–193. https://doi.org/10.1007/s00374-004-0757-z
Bahrami-Rad, S., & Hajiboland, R. (2017). Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: Comparison of root with foliar application. Annals of Agricultural Sciences, 62(2), 121-130. https://doi.org/10.1016/j.aoas.2017.08.001
Bajji, M., Kinet, J. M., & Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36, 61–70. https://doi.org/10.1023/A:1014732714549
Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31, 11–38. https://doi.org/10.1111/j.1365-3040.2007.01727.x
Barzegar, T., Lotfi, H., Rabiei, V., Ghahremani, Z., & Nikbakht, J. (2017). Effect of water deficit stress on fruit yield, antioxidant activity and some physiological trait of four Iranian melon genotypes. Iranian Journal of Horticultural Science, Special Issue 13-25. http://doi.org/:10.22059/ijhs.2017.63643
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/BF00018060
Behzad Nejad, J., Tahmasebi Sarvestani, Z., Aien, A., & Mokhtassi Bidgoli, A. (2018). Effect of Drought Stress and Straw Mulch of Wheat on Morpho-Physiological Characteristics of Sesame. Journal of Crop Ecophysiology, 12, 393–410.
Blaha, D., Prigent-Combaret, C., Mirza, M. S., & Moënne-Loccoz, Y. (2006). Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain  biogeography. FEMS Microbiology Ecology, 56, 455–470. https://doi.org/10.1111/j.1574-6941.2006.00082.x
Bouzo, C. A., Céccoli, G., & Muñoz, F. (2018). Effect of potassium and calcium upon the yield and fruit quality of Cucumis melo. AgriScientia 1, 35. https://doi.org/10.31047/1668.298x.v1.n35.20450
Burme, L., Moallemi, N., & Mortazavi, S. M. H. (2011). Anti-Transpiration Effect of Kaolin on Some Physiological Traits of Four Olive Cultivars. Journal of Crop Production and Processing 1, 11–23. http://jcpp.iut.ac.ir/article-1-1347-en.html
Bybordi, A. (2012). Study effect of salinity on some physiologic and morphologic properties of two grape cultivars. Life Science Journal, 9, 1092–1101. https://api.semanticscholar.org/CorpusID:18157305
Cabello, M. J., Castellanos, M. T., Romojaro, F., Martínez-Madrid, C., & Ribas, F. (2009). Yield and quality of melon grown under different irrigation and nitrogen rates. Agricultural Water Management, 96, 866–874. https://doi.org/10.1016/j.agwat.2008.11.006
Cui, J., & Tcherkez, G. (2021). Potassium dependency of enzymes in plant primary metabolism. Plant Physiology and Biochemistry, 166, 522–530. https://doi.org/10.1016/j.plaphy.2021.06.017
Cui-hua, H., Xian, X., QuanGang, Y., Li, Z., & Jun, L. (2016). Effects of irrigation frequency on yield and quality of melon under field conditions in Minqin oasis. International Research Journal of Public and Environmental Health, 3, 293–299. http://dx.doi.org/10.15739/irjpeh.16.036
Damon, P. M., & Rengel, Z. (2007). Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Australian Journal of Agricultural Research, 58, 816–825. https://doi.org/10.1071/AR06402
Dar, J. S., Cheema, M. A., Rehmani, M. I. A., Khuhro, S., Rajput, S., Virk, A. L., Hussain, S., Bashir, M. A., Alghanem, S. M., Al-Zuaibr, F. M., Ansari, M. J., & Hessini, K. (2021). Potassium fertilization improves growth, yield and seed quality of sunflower (Helianthus annuus L.) under drought stress at different growth stages. PloS One 16(9), e0256075. https://doi.org/10.1371/journal.pone.0256075
de Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P., & Schjoerring, J. K., (2021). The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 229, 2446–2469. https://doi.org/10.1111/nph.17074
del Amor, F. M., Cuadra-Crespo, P., Walker, D. J., Cámara, J. M., & Madrid, R. (2010). Effect of foliar application of antitranspirant on photosynthesis and water relations of pepper plants under different levels of CO2 and water stress. Journal of Plant Physiology, 167, 1232–1238. https://doi.org/10.1016/j.jplph.2010.04.010
Eliaspour, S., Sharifi, S., Shirkhani, A., & Farzaneh, S. (2020). Effects of biofertilizers and iron nano‐oxide on maize yield and physiological properties under optimal irrigation and drought stress conditions. Food Science & Nutrition, 8, 5985–5998 https://doi.org/10.1002/fsn3.1884
Fageria, N. K., de Morais, O. P., & dos Santos, A. B. (2010). Nitrogen use efficiency in upland rice genotypes. Journal of Plant Nutrition, 33, 1696–1711. https://doi.org/10.1080/01904167.2010.496892
German, M. A., Burdman, S., Okon, Y., & Kigel, J. (2000). Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biology and Fertility of Soils, 32, 259–264. https://doi.org/10.1007/s003740000245
Ghosh, S., Penterman, J. N., Little, R. D., Chavez, R., & Glick, B. R. (2003). Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiology and Biochemistry, 41, 277–281. https://doi.org/10.1016/S0981-9428(03)00019-6
Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119, 329–339. https://doi.org/10.1007/s10658-007-9162-4
Hasanpour, R., Pirdashti, H., Esmaeili, M. A., & Abbasian, A. (2011). Response of yield and yield components of three sesame (Sesame indicum L.) cultivars to application of nitrogen and supernitroplus biofertilizer. Journal of Agroecology, 3, 9–16. https://doi.org/10.22067/jag.v3i1.9966
Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants, 9 (8), 681. https://doi.org/10.3390/antiox9080681
Havir, E. A., & McHale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84, 450–455. https://doi.org/10.1104/pp.84.2.450
Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Moller, I. S., & White, P. (2012). Chapter 6 - Functions of Macronutrients, in: Marschner, P. (Ed.), Marschner’s Mineral Nutrition of Higher Plants (Third Edition). Academic Press, San Diego, pp. 135–189. https://doi.org/10.1016/B978-0-12-384905-2.00006-6
Hontzeas, N., Saleh, S. S., & Glick, B. R. (2004). Changes in gene expression in canola roots induced by ACC-deaminase-containing plant-growth-promoting bacteria. Molecular Plant-Microbe Interaction 17, 865–871. https://doi.org/10.1094/MPMI.2004.17.8.865
Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168, 541–549. https://doi.org/10.1002/jpln.200420516
Karlidag, H., Esitken, A., Turan, M., & Sahin, F. (2007). Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Scientia Horticulturae, 114, 16–20. https://doi.org/10.1016/j.scienta.2007.04.013
Kord zangeneh, R., & Marashi, S. K. (2018). Studying the effects of combined application of chemical and biological fertilizers of potassium on yield and yield components of wheat (Triticum aestivum L.) under soil moisture shortage. Environmental Stresses in Crop Sciences, 11(4), 863-872. https://doi.org/10.22077/escs.2018.935.1183
Korkmaz, A., Uzunlu, M., & Demirkiran, A. R. (2007). Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiologiae Plantarum, 29, 503–508. https://doi.org/10.1007/s11738-007-0060-3
Levent Tuna, A., Kaya, C., & Ashraf, M. (2010). Potassium sulfate improves water deficit tolerance in melon plants grown under glasshouse conditions. Journal of Plant Nutrition, 33(9), 1276-1286. https://doi.org/10.1080/01904167.2010.484089
Lin, D., Huang, D., & Wang, S. (2004). Effects of potassium levels on fruit quality of muskmelon in soilless medium culture. Scientia Horticulturae, 102, 53–60. https://doi.org/10.1016/j.scienta.2003.12.009
Lotfi, R., Abbasi, A., Kalaji, H. M., Eskandari, I., Sedghieh, V., Khorsandi, H., Sadeghian, N., Yadav, S., & Rastogi, A. (2022). The role of potassium on drought resistance of winter wheat cultivars under cold dryland conditions: Probed by chlorophyll a fluorescence. Plant Physiology and Biochemistry, 182, 45–54. https://doi.org/10.1016/j.plaphy.2022.04.010
Merghany, M. M., Ahmed, Y. M., & El-Tawashy, M .K .F. (2015). Response of some melon cultivars to potassium fertilization rate and its effect on productivity and fruit quality under desert conditions. Journal of Plant Production, 6, 1609–1618. https://doi.org/10.21608/jpp.2015.52039
Moftah, A. E., & Al-Humaid, A. R. I. (2005). Effects of antitranspirants on water relations and photosynthetic rate of cultivated tropical plant (Polianthes tuberosa L.). Polish Journal of Ecology, 53, 165–175.  https://api.semanticscholar.org/CorpusID:85348340
Mohammad Ghasemi, H., Ghorbani Javid, M., Akbari, G., & Mortazavian, S. M. M. (2022). Effect of application of biological and chemical potassium fertilizer and corm weight on physiological traits and flower yield of saffron (Crocus sativus L.). Journal of Saffron Research, 10(2), 215-230. https://doi.org/10.22077/jsr.2022.2566.1102
Munsif, F., Farooq, U., Arif, M., Shah, T., Jehangir, M., Zaheer, S., Akhtar, K., Khan, M. S., Ahmad, I., Ahmad, W., Ali, S., & Amir, R. (2022). Potassium and salicylic acid function synergistically to promote the drought resilience through upregulation of antioxidant profile for enhancing potassium use efficiency and wheat yield. Annals of Applied Biology, 180, 273–282. https://doi.org/10.1111/aab.12731
Najafi, S., Nazari Nasi, H., Tuncturk, R., Tuncturk, M., Sayyed, R. Z., & Amirnia, R. (2021). Biofertilizer Application Enhances Drought Stress Tolerance and Alters the Antioxidant Enzymes in Medicinal Pumpkin (Cucurbita pepo convar. pepo var. Styriaca). Horticulturae 7(12), 588. https://doi.org/10.3390/horticulturae7120588
Nastari Nasrabadi, H., Nemati, S. H., Sobhani, A., & Sharifi, M. (2012). Study on morphologic variation of different Iranian melon cultivars (Cucumis melo L.). African Journal of Agricultural Research, 7, 2764–2769. https://doi.org/10.5897/AJAR11.2159
Nastari Nasrabadi H., Nemati, H., Kafi, M., & Arouei, H. (2015). Effect of foliar application with salicylic acid on two Iranian melons (Cucumis melo L.) under water deficit. African Journal of Agricultural Research, 10(33), 3305-3309. https://doi.org/10.5897/AJAR2015.10057
Nastari Nasrabadi, H., & Saberali, S. F. (2020). Effect of Bio-fertilizer and Salicylic Acid on Some Physiological Traits of Melon under Salinity Stress. Journal of Horticultural Science, 34, 131–144. https://doi.org/10.22067/jhorts4.v34i2.82028.
Nastari Nasrabadi, H., Saberali, S. F., & Shirmohammadi Aliakbarkhani, Z. (2023). Improving Growth and Fruit Yield of Watermelon Using Mycorrhizal Fungi and Salicylic Acid under Different Irrigation Regimes. Journal of Crop Production and Processing, 13(3), 109-124. https://doi.org/10.47176/jcpp.13.3.37791
Nazari Nasi, H., Amirnia, R., & Zardashti, M. (2018). Effect of drought stress and biofertilizers on some physiological characteristics and grain yield of medicinal pumpkin plants. Journal of crops improvement, 20, 205–217. https://doi.org/10.22059/jci.2018.222466.1608
Omar, M. N. A., Osman, M. E. H., Kasim, W. A., & A. Abd El-Daim,  I. (2009). Improvement of Salt Tolerance Mechanisms of Barley Cultivated Under Salt Stress Using Azospirillum brasilense. pp. 133–147. https://doi.org/10.1007/978-1-4020-9065-3_15
Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
Rashki, P., Piri, H., & khammari, E. (2020). Determination of Production Function and Optimal Depth of Irrigation of roselle under Water Deficit and Potassium Fertilizer. Journal of Water and Irrigation Management, 10, 189–202. https://doi.org/10.22059/jwim.2020.298299.769
Rezaienia, N., Ramroudi, M., Galavi, M., & Forouzandeh, M. (2017). Effects of Bio-fertilizers on Physiological Traits and Absorption of Some Nutrients of Chicory (Cichorium intybus L.) in Response to Drought Stress. Iranian Journal of Field Crops Research, 15, 925–938. https://doi.org/10.22067/gsc.v15i4.59774
Richard, G. A., Pereira, L. S., Dirk, R., & Smith, M. (1998). Crop evapotranspiration : guidelines for computing crop water requirements. Journal of Hydrology, 285, 19-40.
Rostami, M., Mohmmad Parast, B., & Golfam, R. (2015). The Effect of Different Levels of Salinity Stress on Some Physiological Characteristics of Saffron (Crocus Sativus L.). Saffron Agronomy and Technology, 3, 193–179. https://doi.org/10.22048/jsat.2015.10379
Samaila, A. A., Amans, E. b., & Babaji, B. (2011). Yield and fruit quality of tomato (Lycopersicon esculentum Mill) as influenced by mulching, nitrogen and irrigation interval. International Research Journal of Agricultural Science and Soil Science, 1(3), 90-95. http://www.interesjournals.org/IRJAS
Sangakkara, U., Frehner, M. & Nosberger, J. (2001). Effect of Soil Moisture and Potassium Fertilizer on Shoot Water Potential, Photosynthesis and Partitioning of Carbon in Mungbean and Cowpea. Journal of Agronomy and Crop Science, 185, 201–207. https://doi.org/10.1046/j.1439-037x.2000.00422.x
Sardans, J., & Peñuelas, J. (2021). Potassium Control of Plant Functions: Ecological and Agricultural Implications. Plants Basel Switzerland, 10, 1-32. https://doi.org/10.3390/plants10020419
Shaharoona, B., Arshad, M., Zahir, Z. A., & Khalid, A. (2006). Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biology and Biochemistry, 38, 2971–2975. https://doi.org/10.1016/j.soilbio.2006.03.024
Shokri, B., Ghaderi, N., & Javadi, T. (2015). Effect of plastic mulch on some physiological and morphological characteristics of strawberry under drought stress. Iranian Journal of Horticultural Science, 46(4), 535–547. https://doi.org/10.22059/ijhs.2015.56903
Strain, H. H., & Svec, W. A. (1966). Extraction, separation, estimation and isolation of chlorophylls. In: The Chlorophylls, eds. L. P. Vernon and G. R. Seely, pp. 21–66. New York: Academic Press.
Tang, M., Chen, H., Huang, J. C., & Tian, Z. Q. (2009). AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biology and Biochemistry, 41, 936–940. https://doi.org/10.1016/j.soilbio.2008.11.007
Timmusk, S., & Wagner, E. G. (1999). The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Molecular Plant-Microbe Interaction, 12, 951–959. https://doi.org/10.1094/MPMI.1999.12.11.951
Tuna, A., Kaya, C., & Ashraf, M. (2010). Potassium sulfate improves water deficit tolerance in melon plants grown under glasshouse conditions. Journal of Plant Nutrition, 33, 1276–1286. https://doi.org/10.1080/01904167.2010.484089
Tuna, A. L., Kaya, C., Dikilitas, M., & Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62, 1–9. https://doi.org/10.1016/j.envexpbot.2007.06.007
Wang, M., Zheng, Q. Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14, 7370–7390. https://doi.org/10.3390/ijms14047370
Yamasaki, S., & Dillenburg, L. C. (1999). Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiologia Vegetale, 11(2), 69–75. https://www.researchgate.net/publication/264876205
Yavuz, D., Seymen, M., Yavuz, N., Çoklar, H., & Ercan, M. (2021). Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon. Agricultural Water Management, 246, 1-11. 106673. https://doi.org/10.1016/j.agwat.2020.106673
Yildrim, O., Halloran, N., Cavusoglu, S., & Sengul, N. (2009). Effects of different irrigation programs on the growth, yield, and fruit quality of drip irrigated melon. Turkish Journal of Agriculture and Forestry, 33(3), 243-255. https://doi.org/10.3906/tar-0806-19
Zahedyan, A., Aboutalebi Jahromi, A., Zakerin, A., Abdossi, V., & Mohammadi Torkashvand, A. (2022). Nitroxin bio-fertilizer improves growth parameters, physiological and biochemical attributes of cantaloupe (Cucumis melo L.) under water stress conditions. Journal of the Saudi Society of Agricultural Sciences, 21, 8–20. https://doi.org/10.1016/j.jssas.2021.06.017
Zhang, L., Gao, M., Hu, J., Zhang, X., Wang, K., & Ashraf, M. (2012). Modulation Role of Abscisic Acid (ABA) on Growth, Water Relations and Glycinebetaine Metabolism in Two Maize (Zea mays L.) Cultivars under Drought Stress. International Journal of Molecular Sciences, 13, 3189–3202. https://doi.org/10.3390/ijms13033189
Zhao, D., Oosterhuis, D. M., & Bednarz, C. W. (2001). Influence of Potassium Deficiency on Photosynthesis, Chlorophyll Content, and Chloroplast Ultrastructure of Cotton Plants. Photosynthetica. 39, 103–109. https://doi.org/10.1023/A:1012404204910
Zhao, Y., Aspinall, D., & Paleg, L. G. (1992). Protection of Membrane Integrity in Medicago sativa L. by Glycinebetaine against the Effects of Freezing. Journal of Plant Physiology, 140, 541–543. https://doi.org/10.1016/S0176-1617 (11)80785-6
Zhu, X., Song, F., & SQ, L. (2011). Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. Journal of Food Agriculture and Environment, 9(2), 583–587.