Ecological Insights from Spatial Pattern Analysis: Halocnemum strobilaceum and Climacoptera turcomanica in Golestan's Saline and Alkaline Rangelands

Document Type : Research Paper

Authors

1 Department of Rangeland Management, Faculty of Rangeland and Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Department of Natural Resources and Environmental Engineering, Faculty of Agriculture, Shiraz University, Shiraz, Iran

3 Department of Range and Watershed Management, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

4 Schools of Biosciences and Veterinary Medicine- Plant Diversity and Ecosystems Management Unit, University of Camerino, Italy

Abstract

Halophytes and other salt-tolerant plants in rangeland ecosystems play an important role in environmental protection and food security. The spatial point pattern analyses of these plants in arid and semi-arid areas provide valuable information about how they affect each other and how we can preserve plant species as well as restore and manage the rangeland ecosystems. This advanced tool to interpret ecological processes can provide valuable information on plant coexistence patterns and biodiversity maintenance in arid and semi-arid regions. This research focuses on the investigation of spatial patterns and interactions occurring with two crucial species (Halocnemum strobilaceum (Pall.) M.Bieb and Climacoptera turcomanica (Litv.) Botsch) characterizing the Inchehboroun rangelands, in Golestan province, Iran. These two salty species dominate the rangeland and influence plant diversity and the relative conservation of rangeland productivity. We used the RTK GPS (Real Time Kinematic Global Positioning System) to record the position of each species in the study area during the field survey. Then, the spatial distribution and interactions between H. strobilaceum and Cl. turcomanica were determined by summary statistics methods including univariate and bivariate functions; g(r) and O-ring. The results showed that: 1) both investigated species have aggregated spatial patterns. 2) H. strobilaceum has a significantly positive correlation with Cl. turcomanica. Furthermore, according to the results of this study and the fact that most rangelands in the country are in moderate to poor condition, spatial pattern analyses using statistical functions can be useful in the development of restoration programs and ecological management of rangelands.

Keywords


References
Amiri, M., Tarkesh, M., Jafari, R., & Jetschke, G. (2020). Bioclimatic variables from precipitation and temperature records vs. remote sensing-based bioclimatic variables: Which side can perform better in species distribution modeling? Ecological Informatics, 57, 101060. https://doi.org/10.1016/j.ecoinf.2020.101060
Arrekhi, A., Niknahad Gharmakher, H., Bachinger, J., Bloch, R., & Hufnagel, J. (2021). Forage quality of Salsola turcomanica (Litv) in semi-arid region of Gomishan, Golestan province, Iran. Journal of Rangeland Science, 11(1), 76-88.
Bakhshi Khaniki, G., & Mohammadi, B. (2012). Ecological study of some species of the genus Salsola (Chenopodiaceae) in Golestan province. New Cellular and Molecular Biotechnology, 2(6), 45-52.
Cysneiros, V., Dalmaso, C., Pelissari, A., de Mattos, P., Souza, L., & Machado, S. (2018). Spatial patterns and interactions of dominant tree species in an Amazon tropical forest. Revista de Biologia Tropical, 66(3), 1009-1017. https://doi.org/10.15517/rbt.v66i3.31216
Dale, M. (2003). Spatial pattern analysis in plant ecology (Cambridge studies in ecology). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511612589
Dianati Tilaki, G., Rahmani, R., Hoseini, S., & Vasenev, I. (2022). The effect of land management on carbon sequestration in salty rangelands of Golestan province, Iran. Acta Ecologica Sinica, 42(1), 82-89. https://doi.org/10.1016/j.chnaes.2021.03.001
Ferrante, D., Oliva, G., & Fernández, R. (2014). Soil water dynamics, root systems, and plant responses in a semiarid grassland of Southern Patagonia. Journal of Arid Environment, 104, 52-58. https://doi.org/10.1016/j.jaridenv.2014.01.009
Getzin, S., & Wiegand, K. (2007). Asymmetric tree growth at the stand level: Random crown patterns and the response to slope. Forest Ecology and Management, 242(2), 165-174. https://doi.org/10.1016/j.foreco.2007.01.009
Getzin, S., Wiegand, K., Wiegand, T., Yizhaq, H., Hardenberg, J., & Meron, E. (2015). Adopting a spatially explicit perspective to study the mysterious fairy circles of Namibia. Ecography, 38, 1-11. https://doi.org/10.1111/ECOG.00911
Getzin, S., Worbes, M., Wiegand, T., & Wiegand, K. (2011). Size dominance regulates tree spacing more than competition within height classes in tropical Cameroon. Journal of Tropical Ecology, 27(1), 93-102. https://doi.org/10.1017/S0266467410000453
Gintzburger, G. (2003). Rangelands of the arid and semi-arid zones in Uzbekistan. CIRAD. https://books.google.com/books?id=fPzoQAsxGj4C
GNWM. (2015). Reports of Atrak river basin project.
Gu, L., O'Hara, K., Li, W., & Gong, Z. (2019). Spatial patterns and interspecific associations among trees at different stand development stages in the natural secondary forests on the Loess Plateau, China. Ecolody and Evolution, 9(11), 6410-6421. https://doi.org/10.1002/ece3.5216
Gürsoy, M., Harris, M., Downing, J., Barrientos-Palomo, S., Carletto, A., Yaprak, A., Karaman, M., & Badyal, J. (2017). Bioinspired fog capture and channel mechanism based on the arid climate plant Salsola crassa. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 195-202. https://doi.org/10.1016/j.colsurfa.2017.05.071
Hai, N., & Hung, L. (2016). Distance correlations do not scale with size correlations of tree species in a tropical rain forest stand. Silviculture, 5, 18-30.
He, C., Jia, S., Luo, Y., Hao, Z., & Yin, Q. (2022). Spatial distribution and species association of dominant tree species in Huangguan plot of Qinling mountains, China. Forests, 13(6). https://doi.org/10.3390/f13060866
Heshmati, G. (2007). Vegetation characteristics of four ecological zones of Iran. International Journal of Plant Production, 1(2), 215-224.
Hosseinalizadeh, M., Kariminejad, N., Campetella, G., Jalalifard, A., & Alinejad, M. (2018). Spatial point pattern analysis of piping erosion in loess-derived soils in Golestan Province, Iran. Geoderma, 328, 20-29. https://doi.org/10.1016/j.geoderma.2018.04.029
Hosseini, S., & Shahmoradi, A. (2011). Autecology of Halocnemum strobilaceum (Pall.) M. Bieb. in saline and alkaline rangelands of Golestan province. Iranian Journal of Plant Science Researches, 22(6), 18-30.
Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. (2008). Statistical analysis and modeling of spatial point patterns. John Wiley and Sons Inc. https://doi.org/10.1002/9780470725160
Jiao, L., Zhang, Y., Sun, T., Yang, W., Shao, D., Zhang, P., & Liu, Q. (2021). Spatial analysis as a tool for plant population conservation: A case study of Tamarix chinensis in the Yellow River Delta, China. Sustainability, 13(15), 8291. https://doi.org/10.3390/su13158291
Kariminejad, N., Erfanifard, S., Fallah Shamsi, S., & Sadeghi, H. (2017). Analyzing the effect of clustered spatial distribution of mount Atlas mastic (Pistacia atlantica Desf.) trees on their biometric characteristics using mark-correlation function in Baneh Research Forest, Fars province. Iranian Journal of Forest and Popular Research, 25(2), 264-274. https://doi.org/10.22092/IJFPR.2017.111761    
Khatir Namani, J. (2008). Final report of project: Rangeland assessment program in Golestan province, Iran: Golestan agricultural and natural research center.
Lan, G., Getzin, S., Wiegand, T., Hu, Y., Xie, G., Zhu, H., & Cao, M. (2012). Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China. PLoS One, 7(9), e46074. https://doi.org/10.1371/journal.pone.0046074
Li, R., Han, R., Yu, Q., Qi, S., & Guo, L. (2020). Spatial heterogeneous of ecological vulnerability in arid and semi-arid area: A case of the Ningxia Hui autonomous region, China. Sustainability, 12(11). https://doi.org/10.3390/su12114401   
Lv, X., Zuo, Z., Sun, J., Ni, Y., & Dong, G. (2019). Spatial patterns of dominant species and their implication for natural secondary forest ecosystem dynamics in a reserved forest of north China. Ecological Engineering, 127, 460-467. https://doi.org/10.1016/j.ecoleng.2018.12.023
Mamoon, A., & Rahman, A. (2019). Uncertainty analysis in design rainfall estimation due to limited data length: A case study in Qatar. In Extreme hydrology and climate variability: Monitoring, modelling, adaptation and mitigation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815998-9.00004-X
Miao, N., Liu, S., Yu, H., Shi, Z., Moermond, T., & Liu, Y. (2014). Spatial analysis of remnant tree effects in a secondary Abies-Betula forest on the eastern edge of the Qinghai–Tibetan Plateau, China. Forest Ecology and Management, 313, 104-111. https://doi.org/10.1016/j.foreco.2013.11.008
Mittelbach, G. G., & McGill, B. J. (2019). Species coexistence and niche theory. In G. G. Mittelbach & B. J. McGill (Eds.), Community ecology. Oxford University Press. https://doi.org/10.1093/oso/9780198835851.003.0008
Mohammadi Jahromi, N., Jonoubi, P., Majd, A., & Dehghani, M. (2019). Investigation the anatomy of the halophyte Salsola crassa and the impact of industrial wastewater on its vegetative and generative structures. Turkish Journal of Botany, 43(6), 785-797. https://doi.org/10.3906/bot-1812-46
Nasernakhaei, F., & Zahraei, M. (2021). Halocnemum strobilaceum (Pall.) M.Bieb.: a review of its botany, phytochemistry, pharmacology and ethnobotany. Journal of Medicinal Plants, 20(80), 1-12. https://doi.org/10.52547/jmp.20.80.1
Peralta, A. L., Escudero, A., de la Cruz, M., Sánchez, A. M., & Luzuriaga, A. L. (2023). Functional traits explain both seedling and adult plant spatial patterns in gypsum annual species. Functional Ecology, 37(5), 1170-1180. https://doi.org/10.1111/1365-2435.14304
Pourghasemi, H., Kariminejad, N., & Hosseinalizadeh, M. (2019). 33 - A conceptual model of the relationship between plant distribution and desertification trend in rangeland ecosystems using R software. In H. R. Pourghasemi & C. Gokceoglu (Eds.), Spatial modeling in GIS and R for earth and environmental sciences (pp. 733-746). Elsevier. https://doi.org/10.1016/B978-0-12-815226-3.00033-8
Qu, X., Huang, Z., Baskin, J., & Baskin, C. (2008). Effect of temperature, light and salinity on seed germination and radicle growth of the geographically widespread halophyte shrub Halocnemum strobilaceum. Ann Bot, 101(2), 293-299. https://doi.org/10.1093/aob/mcm047
Ripley, B. D. (1976). The second-order analysis of stationary point processes. Journal of Applied Probability, 13(2), 255-266. https://doi.org/10.2307/3212829
Ripley, B. D. (1981). Spatial statistics. John Wiley & Sons.
Rudge, M., Levick, S., Bartolo, R., & Erskine, P. (2022). Developing landscape-scale forest restoration targets that embrace spatial pattern. Landscape Ecology, 37(7), 1747-1760. https://doi.org/10.1007/s10980-022-01461-5
Safrel, I., Julianto, E. N., & Usman, N. O. (2018). Accuracy comparison between GPS Real Time Kinematic (RTK) method and total station to determine the coordinate of an area. Jurnal Teknik Sipil Perencanaan, 20(2), 123-130. https://doi.org/10.15294/jtsp.v20i2.16284
Shaw, J., Roche, L., & Gornish, E. (2020). The use of spatially-patterned methods for vegetation restoration and management across systems. Restoration Ecology, 28(4), 766-775. https://doi.org/10.1111/rec.13198
Shin, S., Lee, S., & Kang, H. (2017). Spatial distribution patterns of old-growth forest of dioecious tree Torreya nucifera in rocky Gotjawal terrain of Jeju Island, South Korea. Journal of Ecology and Environment, 41(1), 31. https://doi.org/10.1186/s41610-017-0050-3
Stoyan, D., & Penttinen, A. (2000). Recent applications of point process methods in forestry statistics. Statistical Science, 15, 61-78. https://doi.org/10.1214/SS/1009212674
Thornley, R., Verhoef, A., Gerard, F., & White, K. (2022). The feasibility of leaf reflectance-based taxonomic inventories and diversity assessments of species-rich grasslands: A cross-seasonal evaluation using waveband selection. Remote Sensing, 14(10), 2310. https://doi.org/10. 3390/rs14102310
van Mantgem, P., Stephenson, N., Knapp, E., & Keeley, J. (2011). Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California. Forest Ecology and Management, 261(6), 989-994. https://doi.org/10.1016/j.foreco.2010.12.013
Wang, M., Jiang, P., Niu, P., & Chu, G. (2016). Changes in spatial distribution and interactions of two woody plants during the sandy desertification process in the south margin of Junggar basin, northwest China. Applied Ecology and Environmental Research, 14(4), 269-284. https://doi.org/10.15666/aeer/1404_269284
Wiegand, T., He, F., & Hubbell, S. (2013). A systematic comparison of summary characteristics for quantifying point patterns in ecology. Ecography, 36(1), 92-103. https://doi.org/10.1111/j.1600-0587.2012.07361.x
Wiegand, T., & Moloney, K. (2004). Rings, circles, and null-models for point pattern analysis in ecology. OIKOS, 104(2), 209-229. https://doi.org/10.1111/j.0030-1299.2004.12497.x
Zarka, H., Hafiz, H. A., Ghulam, R., Asif, T., & Bhagirath, S. C. (2018). Genus Salsola: Its benefits, uses, environmental perspectives and future aspects - a review. Journal of Rangeland Science, 8(3), 315-328.
Zhang, L., Gao, Y., Li, J., Zhang, C., Li, M., Hu, Z., & Cui, X. (2022a). Effects of grazing disturbance of spatial distribution pattern and interspecies relationship of two desert shrubs. Journal of Forestry Research, 33(2), 507-518. https://doi.org/10.1007/s11676-021-01353-5
Zhang, M., Wang, J., & Kang, X. (2022b). Spatial distribution pattern of dominant tree species in different disturbance plots in the Changbai Mountain. Scientific Reports, 12(1), 14161. https://doi.org/10.1038/s41598-022-18621-x