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Abstract 

 

     After collecting data, in researches, the type of data distribution must be determined; since any analysis requires 

the distribution of its own data. Soil properties, such as salinity, are also the same case. Due to its direct and indirect 

effects on plant growth, soil salinity is an important feature that has always been investigated in agriculture and 

natural resources, leading to a lot of researches. These researches have often focused on the mapping of salinity using 

different interpolation methods and their accuracy. But the effect of the data distribution on the analysis process has 

been less considered. Accordingly, the purpose of this study is to investigate the effect of the distribution of soil 

salinity data on soil salinity mapping using Kriging method. For this purpose, 610 soil samples were taken from 0-50 

cm soil depth based on a grid method and their salinity (Electrical Conductivity, EC) was determined in saturated 

paste extracts. Variography operations for data were performed based on both, the original distribution of the data and 

the usual data distribution employed for Kriging i.e. normal distribution. Salinity maps were obtained for both data 

distributions. Estimations were made using cross-validation approach. According to the findings, only the fitness 

criterion (R2) is not enough to select the optimal variogram model, while other criteria such as the proportion of the 

spatial structure, residual sum of square (RSS) and the nugget effect should be analyzed as well. The results showed: 

1- the accuracy of the estimation based on the original distribution of the data, (i.e. non-normal distribution) which 

was greater than the accuracy of the estimated data using normal distribution; 2- the predictions and errors from the 

both, normally and non-normally distributed data did not have the normal distribution and 3 - data transformation had 

no effect on the normalization of the distribution of the predictions and the errors. Therefore, it is suggested that in 

the Kriging, in addition to the conventional method, i.e., performing Kriging using normal distribution data, the 

original data with non-normal distribution should also be analyzed. Finally, the type of data distribution and the 

optimal variogram model could be selected by comparing the obtained results. 
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1. Introduction 

 

     Researches need data. Since each statistical 

test or model requires the distribution of its own 

specific data, when the data is collected, the 

distribution of data should be determined for 

analysis purposes. Using a model or performing 

a statistical test, regardless of its assumptions or 

the distribution of data, makes the results vague 

or even invalid. The distribution of soil data 

should also be determined before analysis. 

     Soil salinity is one of the most important soil  
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properties that can directly or indirectly affect 

plant growth as a limiting factor. Thus, it has 

always been considered in agriculture and 

natural resources, causing a lot of studies in this 

regard (Bagheri Bodaghabadi et al., 2006). 

Among these studies, the mapping of soil 

salinity, and the methods used to analyze them 

have a high proportion of researches. There are 

a lot of investigations in which various methods 

of mapping and/or interpolating have been 

compared. The geostatistical approach is one of 

the methods and models which many researches 

have adopted. In Iran, geostatistical methods 

were first investigated by Hajrasuliha et al. 

(1980), which was carried out to study the 

spatial variations of soil salinity. These methods 
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have then continued in various fields such as 

soil salinity (for example: Javari, 2017; Farajnia 

and Yarahmadi, 2017; Shahabi et al., 2016; 

Emadi and Baghernejad, 2014; Hosseini et al., 

2013). According to the researches, to prepare 

soil salinity map, a comparison between 

different methods is done and the accuracy of 

each method has been carried out and a method 

or model which has minimum evaluation 

criteria (such as root mean squared error 

(RMSE), absolute square error (ASE) and Etc.) 

has been selected as the optimal method and/or 

model. Usually, in all studies, normalizing data 

has traditionally been used to run kriging 

operations in dealing with non-normal 

distribution data (for example, Al-Kuisi et al., 

2009; Khaksaran et al., 2013; Bazrafshan et al., 

2017). A primary question, therefore, arises 

concerning how data distribution can affect the 

results of kriging when the data collection has a 

non-normal distribution and whether the 

normality of the data is a prerequisite for 

kriging. It is mentioned that "Kriging, has the 

best result when the data has a normal 

distribution" (Gorai and Kumar, 2013; Wu et 

al., 2006; Glacken and Snowden, 2001; Isaaks 

and Srivastava, 1989; Armstrong and Boufassa, 

1988; Goovaerts, 1997). In other words, a 

normal distribution of data is useful only for the 

best results of kriging. On the other hand, the 

normal distribution of data is not required for 

kriging estimations (Negreiros et al., 2010), so 

in kriging, the normal distribution of data is not 

a basic condition, but an essential condition in 

the Kriging process "stationary 

assumption"(Webster and Oliver, 2001). The 

normal distribution of data, however, improves 

the stationary assumption of the data (Wu et al., 

2006). But this does not mean that the non-

normal distribution of the data violates their 

stationary condition. Therefore, it can be 

expected that kriging will predict the accurate 

results when the data is not normal. Thus, the 

aim of the present study is to investigate the 

effect of data distribution of soil salinity on the 

estimation of salinity using the ordinary kriging 

method and to compare the results of Kriging 

predictions in both, normal and non-normal 

distributions of salinity. 

 

2. Materials and Methods 

 
2.1. Study Area 

 

     The study area is located in the center of 

Iran, the east of Isfahan city, Isfahan province, 

between 32 30' to 32 45' N and 51 40' to 51 

59' E, with an area of about 238000 hectares 

(Fig. 1). The climate is arid and the soil 

moisture and temperature regimes are Aridic 

and Thermic, respectively. The soils of the 

region originate mainly from the sediments of 

the Zayandehrood River and are deposited on 

different terraces. According to USDA Soil 

Taxonomy (2014), soils in the study area can be 

classified as Fluventic Haplocambids, Fluventic 

Aquicambids, Typic Calcigypsids, Typic 

Haplocalcids, and Typic Torriorthenrs 

subgroups. 610 soil samples were collected at 

the distance of 450 to 1000 m and taken at 

depths of 0 to 50 cm based on a grid method 

(Fig. 1). The air drying samples were passed 

from the 2 mm sieve and then salinity or 

electrical conductivity (EC) was determined in 

the saturated paste extract. 

 

 
Fig. 1. Study area and locations of sampling points 

 

2.2. Kriging and Variography 

 

     The Kriging technique is a basic 

geostatistical approach that provides the best 

linear unbiased estimation (BLUE) for spatially 

dependent variables. The Kriging technique 

weights the surrounding measured values to 

derive a prediction for an unmeasured location. 
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The general formula for this interpolators is 

formed as a weighted sum of the data (Oliver, 

2010) 

 

                                            (1) 

 

where: 

Z(si) = the measured value at the ith location; 

λi =  a weight obtained from the ordinary 

kriging system; On the other hand λi is a weight 

for the measured value at the ith location; 

S0 = the prediction location; and 

N = the number of measured values. 

     λi is calculated using spatial variability 

models (variograms). Spatial variability is often 

modeled as a function of distance between 

sample locations called semi-variogram (γ) 

which was originally defined by Matheron 

(1969). Locations that are closer to each other 

are often more similar than locations that are 

farther apart, and are thus more highly 

correlated. Semi-variogram (γ) is defined as: 

                          (2) 

 

where: 

γ(h) is semi-variogram; 

N(h) is the number of pairs separated by a lag 

(h) between i and j; 

|N(h)| is the number of distinct pairs in N(h), 

and zi and zj are data values at locations i and j, 

respectively.  

     Semi-variograms or variograms are defined 

through three particularly important parameters 

(Fig. 2): 

1- The nugget: It represents micro-scale 

variation or local variance component 

and is the estimate of the variance at 

distance (h) equal to 0. 

2- The sill (threshold):  It shows the 

variance of the random field or total 

variance; and  

3- The range (length): It is the distance at 

which data is no longer auto-correlated 

 

 

 
Fig. 1. Parameters of a variogram and/or a semi-variogram 

 

2.3. Statistical calculations 

 

     Descriptive statistics including minimum and 

maximum, mean, skewness, kurtosis and 

standard deviation of salinity variable or EC 

were calculated using SPSS software version 

22. The spatial structure of EC was analyzed 

using the variogram function in GS+ 9 software. 

The ordinary kriging operation was performed 

in ArcGIS version 10.4.1. All calculations and 

operations were performed for two data 

distribution modes, namely, the main 

distribution of data (abnormal distribution) and 

normal distribution. The goodness of fit for the 

variogram models was evaluated by the spatial 

structure contribution criteria, the residual sum 

of square (RSS) coefficient of determination 

(R
2
). The cross valid method was employed for 

analysis of estimations using mean error (ME), 

square The Root Mean Square Error (RMSE), 

the Root Mean Square Standardized (RMSS) 

and the Absolut Square Error (ASE) (Ding Yu, 

2014, Li et al. 2015). The stronger the spatial 

structure, the smaller RSS, and the larger R
2
 

represent better variogram model (Robinson and 

Metternicht, 2006). To evaluate the estimates, 

the smaller the criteria is, the better and the 

more accurate the estimates. 

(2) 
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3. Results and Discussion 

 

     Table 1 shows the descriptive statistics of 

salinity data for the two non-normal and normal 

distributions of salinity data. As it can be seen, 

the range of salinity changes in the soils of the 

study area is very high and is about 87.23 dS/m. 

Therefore, the limitation of the salinity in the 

area changes from no limitation to very severe 

limitation. Figure 3 shows the cumulative graph 

of salinity values. According to the results, 25, 

50 and 75 percent of the data have salinity less 

than 1.50, 2.74 and 5.76 dS/m, respectively. It is 

worth noting that although about 64% of the 

data has a salinity of less than 4 dS/m (see Fig. 

3), classified to class S0 or without salinity 

limitation (EC<4.00 dS/m), but due to the high 

amounts of salinity for some of the samples, the 

average salinity of the soils is about 4.93 dS/m 

classified in the class S1 or low salinity 

limitation class (8> EC> 4 dS m
-1

). The 

standard deviation of 7.7 and the variance of 

about 59.1 also indicate a strong variability of 

salinity values. High values of skewness (5.85) 

and kurtosis (44.71) demonstrate non-normal 

distribution of salinity data, as well.

 
    Table 1. The descriptive statistics of salinity data for Non-normal distribution and normal distribution 

Data 

Distribution 

Range Min. Max. Mean Std. Dev.* Variance Skewness Kurtosis 

Stat.* Stat. Stat. Stat. Std.Er.* Stat. Stat. Stat. Std.Er. Stat. Std.Er. 

Non-Normal 87.23 0.17 87.40 4.932 0.311 7.690 59.132 5.850 0.099 44.704 0.198 
Normal 2.715 -0.773 1.942 0.466 0.017 0.424 0.180 0.202 0.099 0.400 0.198 

* :Stat.   = Statistic ؛Std.Er.   = Standard Error Std. Dev.  =  Standard Deviation 

 

 
Fig. 3. Cumulative distribution of salinity values 

 

In order to better understand the distribution 

of the data, histogram charts and Q-Q (quantile-

quantile) plots were plotted. A Q–Q plot is 

a probability plot, which is a graphical 

method for comparing two probability 

distributions by plotting their quantiles against 

each other. So, it's worth noting that normal Q-

Q plots can be used to check whether data is 

normal or not. A normal Q–Q plot compares 

randomly generated, independent standard 

normal data on the vertical axis to a standard 

normal population on the horizontal axis. The 

linearity of the points suggests that the data is 

normally distributed. However, the closer the 

data is to this line, it indicates that the 

distribution of the data is close to the normal 

distribution. Figure 4a shows the frequency of 

the data. Regarding this figure, it can be seen 

that the distribution of the data is highly skewed 

to the right (positive skew). As shown in the Q-

Q diagram (Fig. 5a), the data points are very 

contradictory to the normal standard line.In 

other words, such data cannot have normal 

distribution. This data distribution that has a 

strong skewness to the right (positive skew) 

typically represents a logarithmic distribution. 

The data that has a logarithmic distribution, a 

logarithm transformation usually transforms 

them to a normal distribution. 

     The descriptive statistics of log-transformed 

data of EC are presented in Table 1. As it can be 

seen, the values of skewness and kurtosis have 

changed from 5.85 to 4.70 for the raw (non-

normal) data to 0.202 and 0.400, respectively. 

Therefore, it is probable a normally distributed 

data of log-transformed data. This is also 

obvious with the data histogram in Fig. 4b. As 

the histogram shows, using a logarithmic 

transformation of salinity data, the data is 

closely related to a normal distribution. The Q-

Q plot (Fig. 5B) also shows the normality of the 

transformed data, since the data is placed on the 

normal reference line as well. 

https://en.wikipedia.org/wiki/Probability_plot
https://en.wikipedia.org/wiki/List_of_graphical_methods
https://en.wikipedia.org/wiki/List_of_graphical_methods
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Quantile
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Fig. 4. Histograms of data in Non-normal (left) and normal (right) distributions with normal curve 

 

 
Fig. 5. Q-Q Plot of the data in non-normal distribution (left) and normal distribution (right) 

 

In addition to the abovementioned, in which 

non-normal distribution of the original data and 

normal distribution of the log-transformed one 

were shown, the normality test was done using 

Kolmogorov-Smirnov test. In the normality test, 

the null hypothesis assumes the data distribution 

is normal. Therefore, if the significance level (p-

value) of the statistic is greater than 0.05, then 

the null hypothesis cannot be rejected, 

indicating the data distribution is normal. The 

results of the normality test are presented in 

Table 2. As it can be seen, the p-value of the 

test for the original and transformed data is 

0.000 and 0. 200 respectively, indicating the 

original data is not normally distributed, but the 

log-transformed data has a normal distribution. 

Since, this data is normally distributed using a 

logarithmic transformation, the distribution of 

the raw or original data is a logarithmic 

distribution. 

 
                          Table 2. Normality test of salinity data for non-normal distribution and normal distribution 

Data 

Kolmogorov-Smirnov 

Statistic No. Sig. 

EC50 0.268 610 0.000 

LogEC50 0.031 610 0.200* 

                               *: This is a lower bound of the true significance. 

 

In this study, three models used in most 

researches namely spherical, exponential and 

Gaussian models were employed in kriging 

operations and their results were compared for 

non-normal distribution and normal distribution 

of data. Parameter values for variograms and the 

employed models are presented in Table 3. In 

optimal mode and theoretically, the nugget 

effect (C0) should be zero, but in reality it is 

less because of some errors in measurements 

and stochastic process. So, the more C0 is for a 

smaller model, the better it is. Because 

considering C0 alone can be misleading, 

typically the proportions of spatial structure of 

the data, i.e. the ratio of the scale (C) to the sill 

(C + C0), is used. The closer it is to one, the 
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stronger is the spatial structure of the data in 

that model. The values, greater than 0.75, 0.25 

to 0.75 and less than 0.25, respectively, indicate 

a strong, moderate, and weak spatial structure 

(Cambardella et al., 1994; Wang et al., 2009, 

Hu et al. ., 2014). Based on the findings, the 

exponential model in both data distributions has 

a strong spatial structure, although in non-

normal distribution, the spatial structure 

contribution is equal to 0.998 and in the normal 

distribution it is equal to 0.778, which 

represents a stronger spatial structure in non-

normal conditions. Spherical and Gaussian 

models in both data distributions have an 

average spatial structure, although it is stronger 

for the spherical model than Gaussian. Also, the 

RSS and R2 values for the exponential model in 

both non-normal distribution and normal 

distribution are greater than these values for the 

other two models (Table 3). These values also 

indicate that the exponential model is more 

appropriate than the other two models. Figure 6 

shows the semi-variograms of the exponential 

model for non-Normal distribution (6a) and 

normal distribution (6b). Moreover, kriging 

operations were used for the both, normal 

distribution and non-normal distribution, in all 

three spherical, exponential and gaussian 

models, and the criteria for evaluating the 

estimates or the estimation error values were 

obtained (Table 3). 

 
 Table 3. Parameters related to variograms of models and evaluation criteria for estimates 

Model 
Data 

Distribution 

Model Parameters  Prediction Errors 

C0 C+C0 
C/C+

C0 

Range 

(m) 

Effective 

Range (m) 
RSS R2 ME RMSE RMSS ASE 

Sperical 
Non-Normal 18.3 52.81 0.653 4770 4770 261 0.804 -0.07 6.28 1.15 5.44 

Normal 0.062 0.17 0.646 6660 6660 0.002 0.916 -0.34 6.54 1.14 6.63 

Exponential 
Non-Normal 0.6 53.06 0.989 1330 3990 268 0.859 -0.03 6.27 1.16 5.34 

Normal 0.04 0.18 0.778 2580 7740 0.001 0.943 -0.23 6.28 1.17 5.65 

Gaussian 
Non-Normal 35.7 71.41 0.500 8430 14601 902 0.478 -0.1 6.32 0.96 6.56 

Normal 0.08 0.17 0.529 3140 5438 0.002 0.896 0.56 6.78 1.21 7.21 

 

 

 
Fig. 6. The semi-variogram of data in non-normal distribution (left) and normal distribution (right) for exponential model 

 

     The goodness of fitting a mathematical or 

theoretical model with the experimental model 

(points) is indicated by the coefficient of 

determination of R2. As R2s in Table 3 show, 

for the normally distributed data, the value of 

R2 is greater than the non-normally distributed 

data. This indicates that the experimental 

distribution for the normally distributed data is 

more consistent with theoretical or 

mathematical models (spherical, exponential, 

and Gaussian). For example, as shown in Fig. 6, 

the exponential model for normally distributed 

data has a better fit than the non-normally 

distributed one (original data). The value of R2 

for normal and non-normal distribution for the 

exponential model is 0.943 and 0.859 

respectively (Table 3). However, although the 

normally distributed data has a greater R2 than 

non-normally distributed data, the estimates 

from the exponential model for normally 

distributed data are not only less accurate, but 

also more error-prone. For example, non-

normally distributed data has an ME = -0.03, 

but it has been increased to -0.23 (absolute 

value) in normally distributed data, indicating 

more error in estimations. This result is also 

supported by other criteria, RMSS, RMSE and 

ASE. Therefore, it is not possible to ensure that 

estimates are better using R2 alone, since this 

coefficient is the only criterion for optimizing 

the fitting of the model to empirical data and not 

a criterion for better estimates. Given that the 

estimates of spherical and gaussian models have 

more errors in the normal distribution than in 

the non-normal one, it can be concluded that for 

salinity variables in the study area, the raw or 
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original data although not normally distributed, 

presents better estimates rather than the 

normally distributed data. Therefore, the choice 

of whether to use the original data with any 

distribution in a research, or to transform it into 

a specific distribution such as normal 

distribution, can also depend on the research 

purpose. For example, in the current research, 

the accuracy of estimates has been considered 

only, and in all models the non-normal 

distribution data has better results. However, if 

the purpose of the study is to obtain an error 

map or the confidence interval of each estimate, 

the data that is normally distributed may be 

used, although its estimates are less accurate. In 

the present study, given that there is an 

incremental error in all estimation criteria, it can 

be said that the estimation of the data obtained 

from the normal distribution data has less 

accuracy than the original data which has a non-

normal distribution. 

To determine the effect of data 

transformation on the predictions, errors and 

their distributions, the histogram and Q-Q plot 

were drawn, as shown in Figures 7 and 8, 

respectively. As it can be seen, both, predictions 

and errors from the both sets of data (i.e., 

normally and non-normally distributed data) do 

not have normal distribution. In other words, 

data transformation has no effect on the 

normalization of the distribution of the 

predictions and the errors. On the other hand, 

the mean of estimates in the original and the 

transformed data are 4.92 and 3.64 respectively 

and, as mentioned before, the mean of salinity 

in the region is 4.93 (Table 1). It is worth noting 

that any type of data transformation and back-

transformation usually causes errors, especially 

when nonlinear transformations such as 

logarithmic transformations occur. For example, 

the mean of the values of 10, 100 and 1000 is 

370. But the mean of the logarithm of these 

values is 2, and if it is back-transformed, the 

mean will be equal to 100. Therefore, the mean 

of data has been changed 270 units only by a 

transformations and a back-transformation.   

 

 
Fig. 7. Histograms (top) and Q-Q plots (down) of predictions of Kriging in non-normal distribution (7a-1 and 7a-2) and normal 

distribution (7b-1 and 7b-2) for exponential model 
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Fig. 8. Histograms (top) and Q-Q plots (down) of errors of Kriging in non-normal distribution (8a-1 and 8a-2) and normal 

distribution (8b-1 and 8b-2) for exponential model 

 

Figure 9 shows the obtained soil salinity 

maps for the exponential model for the both, 

normal distribution and non-normal 

(logarithmic) distributions. As it can be seen, 

the overall trend of salinity changes is almost 

the same in both maps, but in the created map 

using logarithmic or non-normal distribution 

data, areas with high salinity (EC> 32 dS m
-1

) 

are better mapped in the south of the study area, 

which is more coherent with the reality of the 

region. These areas are mapped to the high 

salinity class (EC of 16 to 32 dS m
-1

) using the 

normal distribution data which is not coherent 

with the reality of the region. These findings are 

in line with the error estimation criteria (Table 

3), indicating better accuracy of estimates for 

non-normally distributed data. It is worth noting 

that the soil in this area is classified in the great 

group of Fluventic Aquicambid, illustrating the 

high level of groundwater. Since the soil texture 

of this area is clay (clay content is more than 

55%), the capillary action is strong. Thus, the 

salts from the groundwater are raised by 

capillarity to the surface of the soil. Dayani et 

al. (2013) have also expressed such a process 

for salinization of soils in the western regions of 

the Karun River. At the end, it is necessary to 

note that, as the effect of the distribution of data 

on the kriging operation is less considered, in 

order to generalize these results to other regions 

or variables, more research is needed. 

 

4. Conclusion 

 

     In the Kriging operation, the basic condition 

for the truth is the stationary assumption. 

Normalizing the distribution of data can only 

improve the conditions for the stationary 

assumption. Therefore, the normal distribution 

of data is not a necessary condition for the 

kriging technique. According to the findings of 

this study, the optimum semi-variogram model 

for salinity variable was an exponential model 

with the original non-normally distributed data, 

although in terms of the goodness of fit, R
2
, 

another exponential model with normally 

distributed data seemed to be a better model. 

According to the results obtained from the 

estimates, it was found that in the study area for 

the salinity variable, the accuracy of the 
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estimates for the original non-normally 

distributed data was higher than those with 

normally distributed data. Therefore, if the 

purpose of the research is to predict a better 

estimation with higher accuracy, then the 

original data, although its distribution is not 

normal, can be used and it is not necessary to 

normalize the distribution of data. Also, the 

predictions and errors from both, normally and 

non-normally distributed data did not have the 

normal distribution. Therefore, data 

transformation had no effect on the 

normalization of the distribution of the 

predictions and errors. Of course this 

issue/finding may not always be true given the 

place and type of the variable. Therefore, in the 

kriging technique, in addition to the 

conventional method, i.e. performing this 

technique on normally distributed data, it is 

suggested that the original data (with their 

distribution not being normalized) be 

investigated. Finally, the optimal distribution 

and appropriate model should be selected using 

a comparison of the obtained results.  

 
Fig. 9. Soil salinity map with non-normal distribution (left) and normal distribution (right) for exponential model 
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