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The Turfgrass industry in saline soil is expanding, making it important to use 

salinity-tolerant turfgrasses. In this experiment, the effect of salinity stress on 

some biochemical content in salt-sensitive and salt-tolerant tall fescue was 

evaluated. The Sanandaj and Daran populations with commercial tall fescue (TF) 

were evaluated as salt-tolerant tall fescues and the Sanajan population was used 

as salt-sensitive TF. Five salinity levels of irrigation water (0, 45, 90, 135, and 

180 mM NaCl) were applied to turfgrasses to identify the tolerance mechanisms 

in tolerant tall fescue under salinity stress. Results showed that salinity affected 

all turfgrasses in proline, chlorophyll, 1-1-diphenyl-2-picrylhydrazyl (DPPH) 

radical scavenging activity, as well as sodium and potassium in their shoots. 

Sanajan population in 90, 135, and 180 mM salinity had the lowest chlorophyll 

content among all turfgrasses. Salt stress leads to an increase in the activity of 

proline compared to the control at the first stage (for evaluating osmotic stress) 

of measurement. In the second stage (to evaluate ionic stress), at concentrations 

of 135 and 180 mM NaCl, maximum proline was recorded in Daran and Sanandaj 

populations, respectively. The interaction effect of salinity and TF was significant 

for DPPH activity. The Na+/ K+ ratio in the Sanajan population was the highest at 

all salinity levels. In conclusion, the growth and antioxidant capacity of Festuca 

arundinaceae populations differ in their response to NaCl treatments. In salt-

tolerant TF, proline and antioxidant activity increased with increasing NaCl. 

These may be a mechanism to protect tolerant TF in salt stress, leading to lower 

accumulated Na+ in tolerant TF, high K+ uptake, and high chlorophyll content. 

Based on these results, proline content, DPPH radical scavenging activity, 

chlorophyll contents, and potassium content could use to distinguish tolerant TF 

from sensitive TF. 
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1. Introduction 

Quality and quantity of water in water shortage areas are legitimate concerns worldwide (Lee 

et al., 2005). The higher amount of NaCl causes osmotic and ionic stresses in plants leading to 

photosynthetic damage (Rezazad Bari et al., 2022), so in order to develop turfgrass industry in 

arid and semiarid regions, there is a need to use salinity tolerant turfgrasses (Mousavi Bazaz et 

al., 2015). Salinity causes much damage to plants, such as growth inhibition, necrosis, impaired 

metabolism, loss of production and quality, (Miladinova et al., 2013) and decreasing uptake of 

other nutrients, especially K+ as an essential and necessary element (Mousavi Bazaz et al., 

2015). Salinity stress interferes with ion homeostasis by increasing Na+ and decreasing K+ 

(Munns and Tester, 2008). The excessive accumulation of Na+ in plants under salinity stress 

causes leaf damage (Rezaei et al., 2017). Salinity stress decreased K+ and increased Na+ in tall 

fescue (Pan et al., 2021). In the presence of salinity, in many plant species, photosynthetic 

ability is reduced, which is related to stomatal closure, structural damages and destructive 

effects of excessive energy on photosynthetic systems (Lee et al., 2004). One of the main 

reasons for the impact of salinity on plants is the reduction of photosynthesis activity which is 

due to chlorophyll reduction and the reduction of Co2 absorption and photosynthesis capacity 

(Namrudi et al., 2014).  

In some plants, there are different bio-physical and biochemical strategies to cope with 

salinity stress on plant growth, such as the production of proline which can act as a protective 

agent for cellular organelles and enzymes as well as being a compatible solute. Moreover, 

proline can be a membrane stabilizer and scavenger for free radicals (Shakeri and Emam, 2018). 

The production of reactive oxygen species (ROS) is another consequence of salt stress which 

often causes oxidative damage (Parvaiz and Satyawati, 2008). The antioxidant system can 

protect against the toxic effects of ROS (Queirós et al., 2011). Antioxidant activity could be 

measured by scavenged DPPH radical. DPPH can be expressed as its magnitude of 

antioxidation ability (Sharma and Ramawat, 2014). The Rate and the peak value of DPPH 

disappearance can defines as the ability of radical scavenger (Deng et al., 2011). For turfgrass 

managers and breeders in saline sites, understanding the salinity tolerance mechanisms of the 

most  tolerant ecotypes as well as their maximum salinity tolerance range is important (Lee et 

al., 2005).  Tall fescue (Festuca arundinacea Schrub) is an important perennial cool-season 

grass in temperate regions and it is widely used for both forage and turf purposes (Mousavi 

Bazaz et al., 2015). This study aimed to evaluate the responses and mechanisms of salt-tolerant 

and sensitive tall fescue under different salinity levels. 

 

2. Material and Methods  

The greenhouse experiments were conducted at the Faculty of Agriculture, Ferdowsi University 

of Mashhad. In this study, the seeds of three tolerant tall fescues, including Sanandaj population, 

Daran population, commercial TF (C.TF) and a salinity-sensitive population named Sanajan 

were used. Tolerant and sensitive TF’s selected from earlier research by Mousavi et al. (2015). 

The seeds were planted in pots with a mixture of sand, humus and field-soil (in equal 

proportions). After germination, ten seedlings of TF were transplanted into plastic pots (20 cm 

diameter) for eight weeks with non-saline irrigation water. Pure sand used as the growing media 

and Hoagland solution (Hoagland and Arnon, 1950) used as nutrient. Grasses were clipped 

throughout the experiment to 5 cm. Irrigation waters of different salinities were prepared by 

addition of NaCl to the tap water. Saline waters of 45, 90, 135 and, 180 mM along with tap 

water as the control treatment were applied to TF. To avoid salinity shock, salinity levels were 

increased by 22.5 mM per day. Water was applied including 30% excess water as leaching 

requirement (400 ml). The irrigation water was applied on alternate-day basis for a period of 8 
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weeks. The treatments were set up by following a factorial experiment based on completely 

randomized design with four replicates per treatment.  

Data on proline, chlorophyll, DPPH radical scavenging activity, sodium and potassium in 

shoot tissues were recorded after the salinity treatment. 

2.1. Determination of Proline Content 

Samples for proline analysis were taken 2 (for osmotic stress) and 50 (for ionic stress) days 

after the initiation of salt stress. Proline was measured as described by Bates et al. (1973). 

2.2. Determination of Ion Content 

To measure ion concentrations (Na+ and K+), leaves were dried in an oven at 70oc and 100 mg 

of the dried plant materials was homogenized using a pestle. The powdered leaves were 

suspended in HNO3 for 24 hours for ion extraction and the mixture was incubated at 80oc for 1 

hour. It was then measured by flam-photometer (UK-Jenway,Masashi Miyama, 2010).  

2.3. Determination of Chlorophyll Content 

Samples were collected from the fully-developed leaves of each replication in varying 

concentrations of NaCl and control plants. One hundred mg of fresh material was extracted 

with 4 ml 80% acetone and centrifuged for 5 minutes in 3000 G. The pigment content was 

determined spectrophotometrically (Lightenthaler, 1987). 

2.4. Determination of DPPH radical scavenging activity 

The 1-1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was determined 

according to the method described by Abe et al. (1998). In brief, one hundred mg of fresh 

material was homogenized in ethanol 90% and then incubated at 4oc for 24 hours; insoluble 

materials were removed by centrifugation 3500 G for 5 minutes. Then, 20 ml of extracted 

material was mixed with 800 µl DPPH in ethanol (0.5 mM). The remaining DPPH was 

measured by absorbance at 517 nm. The radical scavenging activity was calculated in 

percentage (Abe et al., 1998).  

The experimental data was analyzed using the JMP 8 software. Treatment were compared 

by Fisher’s protected LSD. Before analysis of variance, the assumption of normality, 

homogeneity of variance of treatments, etc., been checked. 

 

3. Results 

3.1. Leaf chlorophyll content 

Interaction effect of salinity and population was not significant for chlorophyll-b content (Table 

1). In all tall fescue chlorophyll content decreased as salinity increased. Sanajan population in 

salnity levels of 90, 135 and 180 mM had the lowest amount of chlorophyll-a content among 

all turfgrasses (Fig.1). In all tall fescues, the greatest content for chlorophyll-b was seen in 

commercial tall fescue (Fig.2). For salinity levels, no significant difference was observed at 135 

and 180 mM salinity (Fig.3). Total chlorophyll content decreased under salt stress in all TF’s. 

Interaction effect of salinity and all TF’s was significant for total chlorophyll (Table 1). Sanajan 

population had least total chlorophyll content among all turfgrasses at 90, 135 and 180 mM 

salinity (Fig 4). Commercial TF had greatest total chlorophyll content at 45, 90, 135 and 0 mM 

salinity, but at 180 mM salinity, Daran population had highest total chlorophyll content among 

all TF’s (Fig 4). 
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Table 1. Main and interaction effects on different variables by salinity and population in Turfgrasses 

Variable Salinity Population Salinity × Species 

Chlorophyll-a 82.56** 12.14** 2.07* 

Chlorophyll-b 31.56** 6.15** 0.60 ns 

Total chlorophyll 146.61** 23.16** 2.15* 

Proline (Stage 1) 665.53** 285.62** 198.60** 

Proline (Stage 2) 297.73** 310.35** 60.05* 

DPPH activity 2443.13** 3529.77** 1211.88** 

Potassium 38.47** 17.42** 4.08** 

Sodium 68.32** 3.00 ns 1.91 ns 

Na+/ K+ ratio 5.65** 2.35** 0.56** 

ns, * and ** show non-significant at 5% and 1% probability levels, respectively. 

 

Fig. 1. Comparison of the mean interaction effect of tall fescue populations and different salinity 

levels for the trait of chlorophyll-a content. (Vertical bars including standard error) 

 

 

Fig. 2. Comparison of the mean main effect of tall fescue populations for the trait of chlorophyll-b 

content. (The data with the same letter are not significantly different at P˂1%) 
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Fig. 3. Comparison of the mean main effect of salinity levels for the trait of chlorophyll-b content. 

(The data with the same letter are not significantly different at P˂1%) 

 

 

Fig. 4. Comparison of the mean interaction effect of tall fescue populations and different salinity 

levels for the trait of total chlorophyll content. (Vertical bars including standard error). 
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and 50 days (second stage) of salinity treatment (Table 1). Salt stress resulted in an increase in 

the activity of proline especially at 180 mM NaCl compared to the control at the first stage of 

measurement (Fig. 5). Maximum proline content was seen in Sanandaj population at 45 and 90 
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Fig. 5. Comparison of the mean interaction effect of tall fescue populations and different salinity 

levels for the trait of proline content after 2 days of salinity treatment.  

(Vertical bars including standard error) 

 

 

Fig. 6. Comparison of the mean interaction effect of tall fescue populations and different salinity 

levels for the trait of proline content after 50 days of salinity treatment.  

(Vertical bars including standard error) 
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Potassium content was evidenced in commercial tall fescue at 90, 135 and 180 mM salinity and 

Daran population at 45 mM salinity, although at 135 and 180 mM salinity levels, there were no 

significant difference with following TF (Fig. 8). 

 

Fig. 7. Comparison of the mean interaction effect of tall fescue populations and different salinity 

levels for the trait of DPPH radical scavenging activity. (Vertical bars including standard error). 

 

 

Fig. 8. Comparison of the mean interaction effect of tall fescue populations and different salinity 

levels for the trait of potassium content. (Vertical bars including standard error) 
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Fig. 9. Comparison of the mean main effect of salinity levels for the trait of sodium content.  

(The data with the same letter are not significantly different at P˂1%.) 

 

 

Fig. 10. Comparison of the mean interaction effect of tall fescue populations and different salinity 

levels for the trait of Na+/ K+ ratio. (Vertical bars including standard error) 
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were higher than Salt-sensitive TF, especially 50 days after salinity treatment. It is consistent 

with other reports such as cucumber and bean (Naliwajski and Skłodowska, 2014), (Stoeva and 

Kaymakanova, 2008). Proline, increases faster than other amino acids in plants under stress 

(Bates et al., 1973). In salt stress, one of the first modifications in plants is proline accumulation, 

and it is often considered to be involved in stress-tolerance mechanisms (Mousavi Bazaz et al., 

2015). It is assumed that in F. arundinacea, the proline concentration is a genetically-

determined factor, because this hypothesis was confirmed in a series of cultivars of F. 

arundinacea examined by variation in proline accumulation (Abernethy and McManus, 1998). 

Proline is a signaling molecule which can activate some responses for adaptation process 

(Ashraf and Harris, 2004). Proline is considered to be involved in the protection of cellular 

structures, enzymes, and to act as a free radical scavenger (Aghaleh et al., 2011). In this 

experiment, results showed that as NaCl increased, DPPH increased in salt tolerant TF. It is 

consistent with some reports (Shabala and Mackay, 2011); (Sharma and Ramawat, 2014); 

(Cheng et al., 2018). Basically, under salinity stress, it was seen that the activity of antioxidant 

systems is noticeably higher than normal conditions (Sharma and Ramawat, 2014). However, 

in some plants, no significant changes, or sometimes decreasing in activity of some antioxidant 

enzymes have been observed (Shabala and Mackay, 2011), which is consistent with sensitive 

TF’s in this experiment. The correlation between antioxidant capacity and salt tolerance was 

shown in a large group of plants such as Beta maritime, Cassia angustifolia and Crithmum 

maritimum (Alam et al., 2015). Sharma and Ramawat (2013) suggested elevated antioxidant 

potentials in callus culture of Salvadora persica under salinity conditions (Sharma and 

Ramawat, 2013). Increasing antioxidant capacity can decrease reactive oxygen species, because 

salt stress may increase in secondary metabolites (Sharma and Ramawat, 2014). Our results 

revealed that with increasing NaCl potassium decreased, which is consistent with (Tarchoune 

et al., 2010), (Salehi and Bahadoran, 2015) and (Iqbal et al., 2006). In soils, the basic compound 

contributing salinity is sodium chloride, which salt-tolerant TF must endure. High concentration 

of Na+ competes with the uptake of other nutrients, especially K+ as a necessary element 

(Mousavi Bazaz et al., 2015). High NaCl produces effects that negatively affect plant growth 

and development. Osmotic stress and ionic toxicity are the primary effects. High concentrations 

of Na+ and Cl- in cells disturb several biochemical and physiological processes and lead to 

Ionic toxicity (Salehi and Bahadoran, 2015).  

 

5. Conclusion 
In conclusion, the growth and antioxidant capacity of Festuca arundinaceae populations differ 

in their response to NaCl treatments. Sanajan population had the most sensitive TF. It was seen 

that chlorophyll content was lower in sensitive TF compared to tolerant TF. In salt-tolerant TF, 

proline content and DPPH radical scavenging activity increased with increasing NaCl. Based 

on these results proline content, DPPH radical scavenging activity, chlorophyll contents and 

potassium content could be used to distinguish tolerant TF from sensitive TF. These may be a 

mechanism to protect tolerant TF in salt stress, leading to lower accumulated Na+ in tolerant 

TF, high K+ uptake and high chlorophyll content. 
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