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Abstract 

 
     Urbanization is developing unprecedentedly on a global scale. One of the chief repercussions of urbanization, 

caused by man-made alterations in land-use/land-cover (LULC), is the formation of urban heat islands. Albeit, 

differences among landscape structures and its accompanied effects on the environment are mostly neglected. 

Accordingly, the main objective of this study is to survey the various effects of LULC on urban heat island in terms 

of landscape metrics. For this purpose, Landsat-8 images and land-use maps extracted for the study region (Urmia) 

were employed. Landscape metrics were calculated from Landsat images with spatial resolution of 30 m for five 

varying scenarios (residential lands of five-floors and more, residential lands with less than five-floors, 

administrative-commercial lands, industrial lands, educational and health lands). The metrics were then investigated 

with respect to two types of land-cover (vegetation and impervious lands). Analysis results indicate that following 

industrial use, administrative-commercial use is the most significant factor contributing to the formation of heat 

islands. Results also stipulated the indirect relationship between vegetation and land surface temperature for all 

scenarios, with the exception of industrial use; in contrast impervious surfaces showed a direct relationship with 

earth temperature. Study results further determined the effectiveness of human factors in conjunction with LULC as 

amongst key factors influencing urban LST. Finally, the study specified how different effects of LULC on heat 

island of Urmia can be well defined with reference to landscape metrics. 
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1. Introduction 

 

     Urban heat island is a phenomenon by which 

urban environments tend to show higher 

temperatures than their surrounding rural 

environments (Liu and Zhang, 2011; Yousefi et 

al., 2015). The phenomenon is itself known to be 

caused by other urban environmental events as 

well as increases in human population (Li et al., 

2011; Nonomura et al., 2009), expansion of built 

up lands (Ezimand et al., 2018) and LULC 

transformations in urban areas (Li et al., 2016; 

Alavipanah et al., 2017). Generally, there are two 

approaches to the study of urban heat islands 

(Streutker, 2003). The first method proceeds  
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towards measuring temperature data at 

meteorological stations. Although differences in 

temperature between urban and suburban areas 

can be measured using weather station data, it is 

not possible to generalize the measured heat 

difference as a single point for all areas. On this 

ground, use of satellite images have been 

considered for the study of heat islands and LST 

(de Faria Peres et al., 2018) as they 

simultaneously provide a comprehensive 

coverage of the entire city as well as the suburbs 

(Streutker, 2003). 

     Remote sensing images have also been 

considered as satisfactory sources of information 

for the preparation of thermal maps and other 

applications regarding the accurate examination 

of climate change, urban heat island and land-use 

in urban and suburban areas, due to their various 

features including extensive and continuous 
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coverage, regular time series, timeliness, and the 

ability to obtain information in the reflectance 

and thermal fields of electromagnetic waves 

(Hakimzadeh Ardakani and Vahdati, 2018; 

Weng et al., 2004; Weng, 2009). 

     Vegetation and impervious surfaces are two 

major areas of interest in urban structure (Rimal 

et al., 2018). Estimation of impervious land 

surfaces (walkways, roads, parking lots) is 

monumental and extremely functional for 

determining heat differences in urban 

environments (Arnold and Gibbons, 1996). 

Vegetation, through evaporation and 

transpiration-perspiration reduces the effects of 

urban heat island (Weng, 2001; Goward et al., 

2002) and therefore has significant effects on 

land surface temperature (LST) (Yuan and 

Bauer, 2007; Quan et al., 2014). 

     Time-space changes of LULC also influence 

temperature processes (Shen et al., 2016). Urban 

landscapes encounter diverse surface features 

due to complex heterogeneity of LULC (Kourosh 

Niya et al., 2019; Rimal et al., 2019a). This 

heterogeneity in spatial patterns and physical, 

environmental, social, and economical processes 

inside urban borders can affect heat patterns 

within a city (Luck and Wu, 2002). Therefore, it 

is necessary to consider the relation of urban 

spatial patterns in conjunction with 

environmental processes to help better 

understand urban ecosystems. 

     Different methods have been investigated for 

the study of spatial and temporal variations of 

thermal patterns (Cenedese and Monti, 2003). 

Some studies have employed island heat 

intensity to understand temporal changes (Han-

qiu and Ben-qing, 2004), while others have 

employed regression and hotspots to examine 

heat islands (Bruns and Simko, 2017). Statistical 

analysis methods have also been used to identify 

spatial variations of heat islands (Xunqiang et al., 

2011). Advanced numerical and physical models 

are amongst other methods developed to study 

surface temperature of cities (Streutker, 2002).  

     Numerous studies have focused on the effects 

of LULC on patterns of temperature change. 

Xiao and Moody (2005) studied the relation 

between LULC and LST patterns in Southern 

China using TM and ETM+ images. The results 

indicated that higher temperatures in urban areas 

had a direct relationship with LULC. Weng et al. 

(2007) proposed a successful method for 

determining the relationship between LST, land-

use patterns and land-cover using remote sensing 

data and ecologic landscape methods. Nonomura 

et al. (2009) surveyed heat island effects of 

Takamatsu with regard to vegetation and 

increased human population. They concluded 

that heat island formation elevates in areas with 

decreased vegetation and expanding human 

population. In Iran, Amiri et al. (2009) studied 

the spatial and the temporal variations of surface 

temperature in relation to land-use and changes 

in vegetation in Tabriz. The results indicate the 

effective role of vegetation in modulating land 

surface heat and how land-use changes caused by 

urbanization lead to the increase of urban 

temperatures. The focal point for most previous 

studies on heat islands was LULC, however, 

considering the significant effects of economic 

and social activities of human beings on the 

urban environment, vegetation and land-use 

patterns alone cannot provide sufficient grounds 

for the accurate examination of heat islands.  

Urmia has been developing horizontally and 

irrationally in recent years, which in turn has led 

to the loss of green space and the transformation 

of natural lands into built up lands, followed by 

the expansion of urbanization and increased LST. 

Therefore, this study seeks to identify and 

investigate the varying effects of different types 

of LULC on urban heat islands, specifically, the 

effects of human activities on the heat island of 

Urmia. 

 

2. Materials and Methods 

 

2.1. Study area 

 

     Urmia, the capital of West Azerbaijan 

province, is located alongside the Urmia Lake. 

This city is located in 37º 4' latitude and 45º, 4' 

longitude (Fig. 1). According to the 2011 census, 

with a population of 667,499, Urmia is the tenth 

most populated city in Iran. With an elevation of 

1332 m, it is located on the western side of Urmia 

Lake. The climate of the city, mainly influenced 

by latitude, vicinity to Urmia Lake, elevation and 

moist Mediterranean air currents, is hot during 

the summers and cold during winters (Javan and 

Malazadeh, 2013). In recent years, irregular 

growth of urban population as a result of 

immigration has led to vertical developments 

within the city based on no particular pattern. 
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Fig. 1. Introduction of the study area (a) location of west Azerbaijan province (b) location of Urmia city regarding the province (c) 

false color composition of Urmia city 

 

2.2. Data collection and pre-processing 

 

     Landsat-8 images were used as the main 

source of data for this study. The images are 

located in route 169 and in row 34 of Worldwide 

Reference System (WRS). OLI/TIRS sensory 

images from July 18, 2015 including 11 

radiometric bands were also selected. Image 

selection was carried out by considering certain 

inclusion criteria including time constraints 

(summer), desirable quality and lack of cloud 

cover on image. Different effects of LULC on 

land surface temperature changes were examined 

for summer using images from July 18th, 2015, 

mainly due to the fact that the heat island of 

Urmia peaks in intensity during this season. 

     This image was atmospherically corrected in 

course of pre-processing (Keshtkar et al., 2017). 

All pre-processing steps were processed in an 

ENVI 5.3 environment (Exelis Visual 

Information Solutions, Boulder, Colorado). In 

this study, L1T image was converted from digital 

number (DN) to radiance and image processing 

functions were conducted applying the 

radiometric calibration model. The FLAASH 

atmospheric correction model was employed 

using radiance image by applying the appropriate 

model on the location of the study area (Rimal et 

al., 2019b). Geometric adjustments were initially 

performed in accordance with topographic maps 

of Urmia city at a 1:25000 scale and the 

positional root mean square (RMS) error of 

geometric rectification was not more than 0.5 

pixels. 

     In order to analyze different effects of land-

uses on heat islands, information layers of five 

built-up features – i.e. five-floors and more 

(FFM), less than five-floors (LFF), workshops-

industrial, administrative-commercial, 

educational and health-care departments- were 

used. The corresponding data were procured 

from the municipality of Urmia (Fig. 2). 

Ultimately, 528 health education units, 199 

industrial workshop units, 7287 administrative 

commercial units, 9619 residential buildings of 

LFF, and 90 units of FFM were considered for 

further investigations. 

 

2.3. Estimation of LST 

 

     Spectral radiance is defined as the amount of 

reflected energy observed by a sensor above the 

atmosphere. Spectral radiance for all Landsat-8 
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bands was calculated using equation 1 (USGS, 

2013). 

 

L cal LL M Q A   
                                 (1) 

 

, where ML and AL are the band-specific 

multiplicative and additive rescaling factors from 

the metadata, respectively; and Qcal is the 

quantized and calibrated standard product pixel 

values (DN). 

     Obtaining LST requires the calculation of 

brightness temperature related to Landsat 

thermal bands, which can be obtained according 

to the following (equation 2) (USGS, 2013): 

 

2

1( 1)

K
TB

K
Ln

L





                                                   (2) 

 

, where TB is the at-satellite brightness 

temperature (K); 𝐿𝜆 is the spectral radiance at the 

sensor’s aperture in w/(meter squared  sr  μm); 

and K1 and K2 are the band-specific thermal 

conversion constants from the metadata. LST 

was then calculated as so (equation 3) (Artis and 

Carnahan, 1982): 

 

1 ( / ) ( )

TB
LST

TB Ln  


 
                      

(3) 

 

, in which TB is the satellite brightness 

temperature in K; λ is the wavelength of the 

emitted radiance in meters; α=1.438×10−2 mK; 

and ε is the surface emissivity. 

     Emissivity for water (NDVI less than zero), 

soil (NDVI between zero and 0.15) and plants 

(NDVI over 0.15) were 0.9925, 0.923, 0.727, 

respectively (Xie et al., 2012). Other values of 

NDVI were modelled using equation 4 (Van de 

Griend and Owe, 1993). 

 

1.0094 0.047 ( )Ln NDVI  
                   (4) 

 

2.4. Land-cover map preparation 

 

     Urban landscapes in this study have been 

categorized into different LULC, using Images 

from OLI/TIRS sensors related to 18th July 

2015. Impervious surfaces (asphalt, concrete, 

brick and so on) and vegetation were the two 

main categories of land-cover (Fig. 2). Signals 

registered by the sensor in urban environments 

were related to different reflections of several 

sensors. There are several methods for elicitation 

of built up lands or impervious land-cover based 

on remote sensing images (Ezimand et al., 2018), 

each of which lead to different results depending 

on the type of area and signature of each 

spectrum (Estoque and Murayama, 2015). 

Moreover, these methods use a specific band for 

classification. Accordingly, this study used the 

Normalized Spectral Mixed Analysis (NSMA) 

method proposed by Wu (2004) to extract 

impervious lands. The method works by 

calculating the average of all bands and then 

dividing each band by their corresponding 

average value in order to reduce the brightness 

difference in the spectra of a given material. Pixel 

values are normalized according to equations 5 

and 6. 
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                                                           (5) 

 

1

1 N

b

b

R
N




 
                                                              (6) 

 

, where bR
 is the normalized reflectance for 

band b in a pixel; bR
  is the original reflectance 

for band b; 


  is the average reflectance for the 

corresponding pixel; and N is the total number of 

bands. After normalization, NSMA can be 

calculated using equations 7 and 8 as so: 
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, where bR
    is the normalized reflectance for 

each pixel in band i ; ,i bR
 is  the normalized 

reflectance of endmember i in band b for that 

pixel; if
 is the fraction of endmember i and be

is the residual (Wu, 2004). 

     NDVI index was used to extract vegetation 

regions. The NDVI index is perhaps the most 

popular, straightforward and practical indicator 

used in numerous studies to analyze changes in 

land-cover, including vegetation (Keshtkar et al., 

2013). To estimate this index, infrared bands 

(band 4) and infrared bands near to band 5 of 
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Landsat-8 images were used. NDVI was 

calculated using equation 9 as follows (Rouse Jr 

et al., 1974). 

 

Re

Re

NIR d

NIR d

NDVI
 

 





                                          (9) 

 

, where 
NIR is reflectance values of near 

infrared band and
Red  is reflectance values of 

the red band. The vegetation index ranges from -

1 and +1, with negative values indicating areas 

with no vegetation and values over 0.15 used for 

areas with vegetation (Keshtkar, 2008). 

The accuracy assessment process, as with 

previous studies, has been performed using 

reference points in a random manner. These 

points vary in numbers from several hundred 

(Estoque and Murayama, 2013) to several 

thousand (Du et al., 2014). For this study, 500 

points were obtained using panchromatic images 

which provide higher spatial resolution 

compared to multispectral bands and can be used 

to evaluate accuracy (Du et al., 2014). A random 

sampling method was used to select the data. The 

classification accuracy of the land-cover map 

was evaluated using confusion matrix. The 

overall accuracy of the classification for land-

cover was obtained as 88.8%. 

 

 
Fig. 2. (a) data layers of different land-uses (b) land-cover map prepared by NSMA method 

 

2.5. Calculation of landscape metrics 

 

     Since landscape ecology emphasizes on 

interaction between spatial patterns and 

ecological processes, proving methods in which 

spatial patterning can be defined and 

quantitatively determined is necessary (Turner et 

al., 2001). Quantitative surveys of composition 

and spatial distribution of landscape structural 

elements is possible through the use of landscape 

metrics. Landscape metrics are algorithms for 

quantifying special spatial characteristics of 

patches, classes or overall landscapes 

(McGarigal et al., 2002). Selecting the proper 

metrics is highly dependent on landscape 

properties and ecological characteristics of an 

area (Kong and Nakagoshi, 2006). Selection of 

the metrics in this research is based on their 

importance, landscape properties and also recent 

similar studies (e.g., Li et al., 2011; Li et al., 

2014; Li et al., 2013). This study used five 

landscape metrics as shown below (Table 1).  

     The PD metric is used to study the density of 

pieces (patches) and is equal to the total number 
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of patches related to one kind of patch divided by 

total area of landscape multiplied by 10000 to 

convert to hectares and is always bigger than zero 

(Li et al., 2014). This facilitates the comparison 

of different uses with different surfaces. As the 

distance between density and used pieces 

decrease, LST rises and the effects of 

unfavorable atmospheric conditions (including 

fire,...) on land-uses increases resulting in 

inappropriate environmental conditions (Turner 

et al., 2001). The ED metric is defined as the 

perimeter of each piece of land relative to the 

area of the landscape, which is used to measure 

the complexity of the shape of a piece in the 

landscape. Increasing values of this metric will 

cause further tears in natural land-cover and 

dispersion of applications in the region as well as 

different heat patterns (Turner et al., 2001). 

PLAND metric represents landscape percentage. 

It is obtained as the total area (m2) of all pieces 

related to a single type of piece divided by the 

total area of the landscape (m2) multiplied by 100 

to convert to percentage (Li et al., 2011). The LPI 

metric (the area of biggest latches) shows the 

spatial area of land-cover in landscape surface 

(Turner et al., 2001).  

 
   Table 1. Five landscape metrics used in this study 

 

     The MPS metric is defined as the average area 

of the pieces for each particular user. Higher 

values for the range of the area of the pieces 

around the average, indicate that the pieces are 

composed of more varied surfaces, and the 

disposition and human involvement in these uses 

has been high over time (Li et al., 2014). 

Landscape metrics, depending on the type of 

land-cover, have a different relationship with the 

thermal pattern (Maimaitiyiming et al., 2014; Li 

et al., 2013). 

 

3. Results 

 

3.1. Variety of LST for different LULC 

 

     The LST map for different LULC of Urmia 

city is presented in figure 3. As can be seen from 

the figure, temperatures changes varied from 

20.60 to 39.3ºC in 18th July, 2015 (Fig. 3). The 

average temperatures for different land-uses are 

shown in table 2. It can be observed that among 

five different land-uses, industrial area has the 

highest thermal average (30.50ºC), followed by 

administrative-commercial type (30.45ºC), 

educational-health (30.40ºC), FFM residential 

(29.4ºC) and LFF residential with the least 

thermal average (27.65ºC) (Table 2).  

     Most lands in the study region were of LFF 

residential type, which has the lowest average 

temperature, whereas lands with FFM residential 

cover showed the least contribution, ranked 

fourth in terms of average temperature. Industrial 

land-uses contribute to the smallest area 

following FMM residential lands and have the 

highest temperature. In this regard, large 

contributions of administrative-commercial 

covers with high temperatures can play an 

important role in the heat island of Urmia. 

 

Variable Unit Range Description Formulas 

Percentage of Landscape 

area (PLAND)  
% 0<PLAND<100 

Percentage of the area of a particular 

patch type of total landscape area  
1

100 n

i

i

a
A 

 

Patch density (PD)  
Number 

per ha 
PD > 0 

Number of all patches at the given class 

divided by total landscape area  
410

n

a
 

Mean patch size (MPS) ha MPS>0 Average patch size  1 1
( )
10000

n

i

i

aij

n

 

Largest patch index 

(LPI) 
% 0<LPI<100 

Percent of the total landscape that is 

made up by the largest patch  

max

1,
(100)

ija

j n

A


 

Edge density (ED) m/ha ED>0 
Amount of edge relative to the 

landscape area 
1

10000 n

ik

k

e
A 

 
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Fig. 3. Temperature of LULC of Urmia city related to 18th July, 2015 

 
                     Table 2. The standard deviation and temperature of five different land-uses 

Land-use types Area (ha) Mean (°C) Standard deviation 

Industrial 50.01 30.50 3.54 

Administrative-commercial 413.29 30.45 2.62 

Educational-health care 207.12 30.40 2.52 

FFM residential 42.79 29.04 1.35 

LFF residential 2462.56 27.65 1.89 

 

3.2. Relationship between LST and different 

LULC types 

 

     As shown in figure 2, impervious surfaces 

(%79.75) expand much further compared to 

vegetation (%6.02), which could intensify the 

impact of impervious surfaces on LST compared 

to vegetation cover. In addition, the layout of the 

land-cover is significantly effective on LST. 

Therefore, the main determinant of surface 

temperature in the city of Urmia is impervious 

lands, which are large in area and form 

interconnected parts. 

     LST in industrial areas, with 3% vegetation 

and 94% impervious surfaces is quite different 

from educational-health care lands with the same 

amount of vegetation and impervious surfaces. 

The temperature inconsistency between these 

two factors is the result of the heat obtained from 

burning fossil fuels as well as the pollution 

produced by industries, which increase the 

affectivity of impervious surfaces in industrial 

areas compared to educational-health lands. 

     The percentage of green space in commercial 

use (18%) is significantly more than industrial 

use (3%) and the percentage of impervious 

surfaces in administrative-commercial use (81%) 

is less than the percentage of impervious surfaces 

in industrial use (94%); however, considering the 

difference in vegetation percentages among these 

two land-uses as well as the percentage of 

impervious lands, there seems to be no 

significant difference in LST level among these 

land-covers, which itself looks to be the results 

of increased human activities in administrative-

commercial areas compared to industrial lands. 

This indicates the importance of human activities 

in creating urban heat islands. 
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Comparison of the temperature of LFF 

residential and FFM residential lands shows that 

vegetation percentage in LFF residential (2%) is 

considerably (five times) less than vegetation in 

FFM residential (10%). In addition, the 

percentage of impervious surfaces in LFF 

residential (98%) is considerably and clearly 

more than the percentage of FFM residential 

lands (89%). Based on these results, LST in LFF 

residential lands should be higher than LST of 

FFM residential lands, which contradicts the 

results of table 2. This difference is obviously 

due to vertical growth of buildings (FFM 

residential areas), followed by the impact and 

significance of various human activities (body 

metabolism, ventilation, and more heating 

equipment, etc.) on LST in residential areas with 

high-rise buildings of more than 5 stories. These 

results are also indicative of the contraction of 

land-cover in different land-uses (FFM 

residential to LFF residential areas). 

     As shown in table 2, administrative-

commercial land-uses has a higher thermal 

average compared to educational-health land-

use. Due to high temperatures in administrative-

commercial lands, in addition to wide impervious 

lands, which have a high thermal capacity, 

populations are also high, as a result of which 

heat emission from human activity in 

administrative-commercial lands is higher than 

educational-health care lands. Also, the 

percentage of vegetation in educational-health 

lands is greater than administrative-commercial 

areas. Due to the effect of vegetation on reducing 

temperatures, educational-health care lands show 

a lower thermal average compared to 

administrative-commercial lands.  

     It should also be taken into account that 

educational-health lands contribute more in total 

area and green spaces (Table 2) compared to 

administrative-commercial lands with less 

population density, which has lowered the 

average temperature in educational-health lands. 

Vertical growth of structures, types of materials, 

anthropogenic heat production, increasing 

number of floors in residential and expanding 

human resources all contribute to the increase of 

LST. This thermal difference is completely 

obvious in LFF and FFM residential areas. This 

considerable impact has resulted in a higher 

priority for FFM residential areas compared to 

LFF lands. These results indicate the impact of 

human activity as well as increases in the number 

of floors of buildings on surface temperature. 

Table 3 shows Pearson correlation analysis 

between LULC to identify contradicting effects 

of LULC on LST. 

 
  Table 3. Partial correlation between LST and land cover composition and configuration metrics of the five land-use types 

  Educational-
Health 

Ministerial-
Commercial 

Industrial FFM LFF 

 Vegetated land-cover      

 PLAND -0.290 -0.073 0.103 -0.176 -0.024 

 PD -0.285 -0.135 0.152 -0.269 -0.090 

 MPS -0.447 -0.058 0.613 -0.191 -0.276 

 ED -0.294 -0.089 0.096 -0.190 -0.022 

 LPI -0.285 -0.035 0.152 -0.269 -0.099 

 Impervious land-cover      

 PLAND 0.177 0.473 0.044 0.140 0.015 

 PD 0.099 -0.324 0.041 0.093 0.019 

 MPS 0.316 0.214 0.155 0.056 0.011 

 ED 0.065 0.272 -0.047 0.148 0.015 

 LPI -0.099 0.324 0.041 0.093 0.019 

 

     As noted above, PLAND examines the 

percentage of different coatings. The relationship 

between green vegetation and all land-use with 

LST, with the exception of industrial use, has 

been negative. With increasing green vegetation 

cover, PLAND value has increased and the 

highest correlation between vegetated land-cover 

and surface temperature in Educational-Health 

has been due to increasing vegetation percentage 

at this site. The cause of the positive correlation 

between vegetation and the LST in industrial use 

is due to the decrease in the percentage of 

vegetated land-cover relative to the impervious 

surface. The relationship between urban 

impervious surfaces in different land-use based 

on the PLAND scale is positive for all land-use, 

and as a result of increases in the percentage of 

impervious surfaces of the city, LST has 

increased. 
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     LPI has negative implications for vegetation 

in all land-use except industrial, resulting in less 

percentage and less land-coverage. Removing 

and reducing the size of the green patches will 

increase the number of patches in the impacted 

surfaces of the city. By reducing the size of the 

green cover, conditions for creating thermal 

islands are met. On the other hand, with the 

increase of patches of impervious surfaces of the 

urban regions, the intensity of thermal islands 

will rise. ED actually examines the complexity 

and simplicity of urban spots. Whatever the 

complexity of the impervious lands, its 

relationship with the surface temperature will be 

positive and will be negative for vegetation 

(Table 3).  

     The results of this measure have shown that, 

with increasing complexity of shape and density 

of edges in impervious surfaces, LST has also 

increased. The results showed that the highest 

edge density for impervious surfaces was for the 

Ministerial-Commercial land-use, which had the 

highest positive correlation with LST and for 

vegetation cover. The highest edges were 

observed in the Educational-Health land-use and 

had the most negative correlation with LST. 

     Increasing PD in impervious surfaces means 

less variation of other land-covers. The 

relationship between compression and surface 

temperature in impervious surfaces is positive, in 

other words, increases in number of impervious 

surfaces as well as the density of their patches 

will result in further increment in surface 

temperature. However, this relationship has been 

negative in administrative-commercial lands due 

to low number of impervious lands. The 

relationship between PD for vegetated land-

cover and surface temperature was negative in all 

land-uses (Table 3).  

     Increases in MPS value are indicative of high 

integral patches, whereas reductions in MPS, 

show the need for splitting the patches, causing 

heterogeneity in the spikes, thereby increasing 

the average temperature variation in land-use. 

This is the best interpreter for patch 

interconnection on the surface of the land. The 

negative relationship between green vegetation 

in different uses other than industrial indicates 

that the level of surface temperature decreases as 

the amount of MPS increases. The main reason 

behind the positive correlation between 

vegetation in industrial use and the surface 

temperature of the earth is due to increased 

fragmentation of vegetation and the very low 

area of vegetation in this land-use. The 

relationship between impervious surfaces based 

on MPS measurements exists in all land-use with 

surface temperature, which results in the integrity 

of impervious surfaces in different land-use. 

 

4. Discussion 

 

4.1. Relationship between LST and land-cover 

 

     The map of impervious surfaces and 

vegetation is shown in Fig. 2. As can be observed 

from this figure, impervious surfaces and 

vegetation are the dominant land-covers in 

Urmia. Temperatures for impervious surfaces 

vary as shown in Fig. 3 from 29°C to 39.38°C, 

whereas temperatures for vegetation covers 

range between 20.60°C and 29°C. The reason for 

low temperatures in vegetation covers is due to 

the high energy demand of plants for solar energy 

as a means for their transpiration processes, 

which reduces the temperature as well as the 

amount of water present in the plants and the 

higher thermal capacity of the water compared to 

the other levels, and ultimately the effect of the 

shadow of buildings on vegetation, which 

reduces the average temperature in this land-

cover (Li et al., 2011). The average temperature 

of impervious surfaces is high, due to lower 

thermal capacity of impervious surfaces 

compared to other land-cover, such as 

vegetation, as well as industrial use and fossil 

fuels, and ultimately human activities in these 

types of land-cover. 

     The results of Table 3 and the relationship 

between vegetation and impervious surfaces with 

LST are indicative of the negative correlation 

between vegetation and LST (Weng et al., 2004; 

Yuan and Bauer, 2007) as well as the positive 

correlation between impervious surfaces and 

surface temperatures (Yuan and Bauer, 2007; Li 

et al., 2011). However, the correlation coefficient 

of the land-cover in various land-uses was 

different from LST. 

     The analysis of the land-cover area and the 

shape of the regions alongside the dispersion of 

patches, as shown in Figure 2, indicates 

impervious lands as highest in terms of surface 

area. These levels are patches of great 

connectivity. Therefore, according to the positive 

relationship between impervious surfaces and 

surface temperature, shape, area and distribution 

of impervious surfaces in Urmia, impervious 

surfaces can be said to be the main factor in 

increasing the city’s average temperature. 

Vegetation cover, due to its relationship with 

impervious surfaces is an effective factor in 

reducing the city's average temperature, however 

it should be noted that the surface area of this 

land-cover is significantly important in reducing 

the urban thermal island (Chang et al., 2007; Lee 
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et al., 2009). Vegetation surface area is very low 

compared to impervious surfaces, and the size of 

its parts are small and the connection between the 

parts is very sparse. Therefore, its role in 

reducing the average temperature is weak. 

Finally, it can be said that the role of impervious 

surfaces in increasing the mean surface 

temperature is much higher than the effect of 

vegetation in reducing the city’s average 

temperature. 

 

4.2. Land-use analysis and its relationship with 

LST 

 

     The range of LST alterations is extremely 

variable based on land-use (Fig. 3). Thus, land-

cover is not an accurate measure of changes in 

LST, highlighting the need to consider land-use 

as a means for showing changes in LST. As 

mentioned in previous studies, LULC are 

effective on thermal islands, however, LULC 

configurations should also be considered 

(Connors et al., 2013). The configuration 

features are in fact related to the type of parts, 

spots and the type of LULC (Connors et al., 

2013; Turner et al., 2001). A review of the 

configuration features is possible using 

Landscape Metrics (Gustafson, 1998), which 

was considered in this study. 

     Area analysis and land-use have been 

investigated with respect to increasing and 

decreasing effects on the city’s average 

temperature (Table 2). As shown in table 2, LFF 

residential and industrial users have the lowest 

temperature and the highest average temperature, 

respectively, underlining the importance of land-

use in changes in LST. Administrative-

commercial and Educational-health care, with a 

high average temperature and a higher surface 

area, play an important role in increasing the 

average LST. The use of FFM residential, which 

largely reflects the role of urban geometry, has a 

higher average temperature than that of LFF 

residential, which in addition to the role of higher 

altitude, results in higher population density and 

human activity. 

     Impervious land-cover in LFF and FFM, 

based on all Landscape Metrics, had a positive 

relationship with LST, in contrast to vegetation, 

which had a negative relation with LST. The 

mean negative correlation of vegetation in FFM 

was greater compared to LFF, which is the result 

of the shadow effect of higher buildings in the 

vegetated land-cover (Li et al., 2011). Also, the 

mean positive correlation between impervious 

surfaces with LST in FFM was greater than LFF, 

chiefly due to higher population densities and the 

effect of height and urban geometry on the 

increase in mean LST (Nakata-Osaki et al., 

2018). 

     According to all Landscape Metrics for the 

Industrial use, there is a positive relationship 

between vegetation and surface temperature. In 

the industrial use, vegetation has little impact on 

impervious lands, as well as increased human 

activity and fossil fuels due to the increase in 

average temperature. Therefore, industrial use at 

the city level is one of the important factors in 

creating thermal island. The results of LULC 

analysis have shown that in addition to 

impervious lands, which have led to an increase 

in the average temperature of Urmia, the 

existence of industrial lands, high population 

density in administrative-commercial 

applications, and the effect of height and 

geometry in FFM use have also been major 

contributors to the creation of thermal island. 

     Table 3 shows how the average temperature 

varies based on each kind of land-use, which is 

due to the different effects of each type of land-

cover; therefore, the identification of the effects 

of land-use and the different covers on changes 

in LST with respect to landscape metrics, as in 

previous studies (Li et al., 2013; Connors et al., 

2013) is needed for urban management and 

planning. The results of table 3 show little 

correlation between land-cover type in different 

land-uses and LST, which is consistent with the 

results of other studies (Zhou et al., 2011; Li et 

al., 2011; Li et al., 2013). The highest average 

temperature is related to industrial use. Industrial 

uses, consume a lot of energy and therefore 

generate a lot of heat (Sailor, 2011) resulting in 

higher temperatures compared to other uses. 

Industrial uses have a lower percentage of 

vegetation than commercial-administrative uses; 

hence, the average temperature, caused by the 

inverse effect of vegetation on LST is higher (Hu 

and Jia, 2010). 

     Energy consumption and heat emission as a 

result of human activities are also effective on 

LST and in some land-uses have caused 

differences in thermal mean. In previous studies 

it was mentioned that human activities, human 

body metabolism and traffic caused a 

considerable increase in the temperature of urban 

environments (Sailor, 2011; Smith et al., 2009). 

The effects of human activities were significantly 

influential on increased mean temperature in 

FFM residential lands compared to LFF 

residential lands. 

      In comparing LFF residential lands with 

FFM residential lands, vertical development of 

buildings, increasing number of floors and as a 

result, and increased density of human activity 

have resulted in rising LSTs (Li et al., 2014) of 
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FFM residential areas compared to LFF 

residential lands. Therefore, human activities in 

different land-uses are considered as one of the 

effective factors in intensifying the thermal 

island effect. 

Finally, the results indicate that there are similar 

temperatures in land-uses with similar land-

cover. This suggests that, in addition to land-

cover, other conditions also control the surface 

temperature, which are more related to the types 

of land-uses and population density and relevant 

activities. The results also showed that 

impervious surfaces had a direct relationship 

with surface temperature in all land-uses, while 

vegetation was only directly related to surface 

temperature for industrial use and indirectly 

related to LST for other land-uses. 

 

4.3. Urban planning and land-use/land-cover 

management 
 

     Urban heat island is one of the most alarming 

environmental hazards in urban areas, with direct 

and indirect impacts on urban climate. 

Unfortunately, in most countries, the 

phenomenon of urban heat is not considered as a 

serious threat.  

     The relationship between LST and LULC 

with respect to Landscape Metrics is 

significantly important in urban planning and 

reduction of thermal islands (Li et al., 2011). 

Urbanization is complicated by land-use (Weng 

et al., 2007; Yu and Ng, 2007), which can have 

varying effects on LST changes. The results of 

this study showed that the island's thermal 

intensity is largely dependent on the area, the 

shape and the interconnectedness of impervious 

surfaces and vegetation cover. In Urmia, the 

largest part of the impervious surfaces includes 

the large and interconnected parts. The effects of 

these parts on increasing LST are much greater 

than the role of vegetation in reducing LST. The 

results from Landscape Metrics also show that 

impervious surfaces have a positive relationship 

with LST for almost all land-use, and the greater 

the density of parts. The percentage of 

impervious surfaces and the increased 

complexity of the parts, the higher the growth of 

the island. However, vegetation showed no 

negative relationship with LST in all land-uses, 

resulting in less area, smaller parts, and lack of 

interconnection of parts for this land-use, which 

as a result has caused further increases in the 

thermal island of Urmia. 

     According to the results, it is therefore 

necessary to present certain strategies to reduce 

the thermal island of Urmia. Replacing 

vegetation with impervious surfaces through the 

use of green roofs and green walls, which in 

addition to reducing the thermal islands in the 

city (Dwivedi and Mohan, 2018), reduce 

greenhouse gases, increases oxygen production 

and strokes the air as well as decreases poverty  

(Rowe, 2011; Li and Babcock, 2014). Increasing 

vegetation cover and the construction of parks 

alongside land-uses that have a high LST can 

also help reduce the thermal island (Šuklje et al., 

2016). Considering the role of the height of 

buildings and urban geometry in increasing the 

intensity of the thermal island (Nakata-Osaki et 

al., 2018; Rezaei Rad et al., 2017), it is possible 

to construct buildings of lower heights in the 

future. Finally, taking into account that 

impervious surfaces have a high surface area, the 

use of high reflection materials and white roofs 

will play an important role in reducing the 

average temperature of Urmia (Akbari et al., 

2007; Sharma et al., 2017). 

 

5. Conclusion 

 

     This study thoroughly analyzed the effects of 

land-cover and land-use on LST for the case of 

Urmia City. Impervious surfaces, as the 

dominant cover (79.75%) alongside vegetation, 

with a negligible percentage (6.02%) were the 

two main coatings of the city of Urmia which 

have had important impacts on the thermal island 

of the city (Given that we know Vegetation 

mitigates LST, while impervious increases it). 

On the other hand, LFF residential, FFM 

residential, administrative-commercial, 

industrial, and educational-health-care 

applications have had a different impact on LST 

changes with each of them including two major 

land-covers (impervious and vegetated land-

cover). The study shows that LULC have 

different impacts on LST. It was also shown that 

factors important affecting urban LST are not 

limited to only land-cover patterns, but also 

include other anthropogenic forces. 

 Therefore, to identify these effects and provide 

solutions, it was necessary to carefully examine 

the effects of LULC using Landscape Metrics 

and fine resolution images. The results showed 

that, given the area, shape and coherence of 

impervious surfaces and vegetation in the study 

area, the impact of impervious surfaces in 

increasing LST was significantly more than the 

effect of vegetation on LST reduction. These 

outcomes were further verified by the results 

obtained for different land-uses. 

     The average temperature variation of different 

uses has shown that industrial and 

administrative-commercial lands have the 

highest average temperature due to industrial 
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activities and the increase of fossil fuels in 

industrial applications as well as increases in 

population density and human activities in the 

administrative- commercial. The lowest average 

temperatures were observed in the LFF 

residential and FFM residential use. The higher 

average temperature of FFM residential 

compared to LFF residential was due to larger 

population density and the role of elevation and 

building morphology in increasing the average 

temperature of FFM residential lands. Therefore, 

high density high-rise residential areas should be 

avoided in urban planning. Furthermore, 

increasing vegetation by locating and 

constructing parks, covering concrete structures 

with green facades (Šuklje et al., 2016) and the 

use of reflecting surfaces in these structures can 

play a major role in absorbing and reflecting 

solar radiation and thus reducing island heat in 

the city. 
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