
DESERT
Desert

Online at http://desert.ut.ac.ir

Desert 20-1 (2015) 11-21

Daily river flow forecasting in a semi-arid region using twodata-
driven

M. Motamedniaa*, A. Nohegarb, A. Malekianc, H. Asadid, A. Tavasolia, M. Safarie,
K. Karimi Zarchif

a Range and Watershed Management Dept., Hormozgan University, Bandarabas, Iran
b Programming and Environment Management Dept., Environment Faculty, University of Tehran, Tehran, Iran

c Faculty of Natural Resources, University of Tehran, Karaj, Iran
d Watershed Management Dept., Trabiat Modares University, Noor, Iran

e Faculty of Agriculture, Engineering, Bahonar Kerman University, Kerman, Iran
f Department of Natural Resources, Bafgh, Yazd, Iran

Received: 2 December 2013; Received in revised form: 5 October 2014; Accepted: 27 October 2014

Abstract

Rainfall-runoff relationship is very important in many fields of hydrology such as water supply and water resource
management and there are many models in this field. Among these models, the Artificial Neural Network (ANN) was
found suitable for processing rainfall-runoff and opened various approaches in hydrological modeling. In addition,
ANNs are quick and flexible approaches which provide very promising results, and are cheaper and simpler to
implement than their physically based models. Therefore, this study evaluated the use of ANN models to forecast
daily flows in Bar watershed, a semi-arid region in the northwest Razavi Khorasan Province of Iran. Two different
neural network models, the multilayer perceptron (MLP) and the radial basis neural network (RBF), were developed
and their abilities to predict run off were compared for a period of fifty-five years from 1951 to 2006. The best
performance was achieved based on statistical criteria such as RMSE, RE and SSE. It was found that MLP showed a
good generalization of the rainfall-runoff relationship and is better than RBF. In addition, 1-day antecedent runoff
affected river flow, such that the statistical criteria decreased but the 5-day antecedent rainfall remained unaffected.
Furthermore, considering MLP, RE and RMSE, the best model produced the values 46.21 and 0.75 while the RBF
model recorded 177.60 and 0.82, respectively.
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1. Introduction

Since the nineteenth century, the rainfall-runoff
process has been explained quantitatively
(Dawson and Wilby, 2001). Rainfall-runoff
models are much researched in the area of
hydrological engineering and play a key role in
water resource management planning,
hydropower generation, irrigation and water
supply. Hence, different types of models with
various degrees of complexity have been
developed for this purpose (Dooge, 1977; Harun
et al., 2002; Solaimani, 2009; Fernando et al.,
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2011). Indeed, the relationship between rainfall-
runoff is known to be highly non-linear and
complex. The rainfall-runoff relationship is one
of the most complex hydrological events to
comprehend, due to the tremendous spatial and
temporal variability of watershed
characteristics, precipitation patterns, and the
number of variables involved in the modeling of
the physical processes (Tokar and Johnson,
1999; Buch et al., 1993). Hydrologists are often
confronted with problems of prediction and
estimation of runoff, precipitation, water stages,
and so on (Harun et al., 2002).

Although many watersheds have been
gauged to provide continuous records of stream
flow, hydrologists are often faced with
situations where little or no information is
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available. In such situation, simulation models
are often used. The available rainfall-runoff
models are HEC-HMS, MIKE-11, etc. These
models are useful for hydrologic and hydraulic
engineering planning and designing, as well as
water resources management; e.g., flood
protection and irrigation. The existing popular
model is considered as not flexible and require
many parameters. Obviously, the models have
their own weaknesses (Harun et al., 2002).
However, system theoretic models do not
consider the physical characteristics of the
parameters; they illustrate the data from input to
output using transferred functions. Artificial
neural network (ANN) models are examples of
system theoretic models that have gained
considerable popularity in recent years, for
describing rainfall–runoff processes (Abrahart
and See, 2007; Mutlu et al., 2008).

Nowadays, artificial neural networks
(ANNs) have become one of the most
promising tools in the modeling of complex
hydrological processes, such as the rainfall-
runoff process. In many fields, ANNs have been
proven to be good in simulating complex, non-
linear systems (Campolo et al., 1999; Cannon
and Whitfield, 2002). For this reason, ANNs
have been used for forecasting in many areas of
science and engineering and are applied in
many fields like financial management,
manufacturing, control systems, design,
environmental science and pattern recognition
in, for instance, remote sensing (Dawson and
Wilby, 2001). The main advantage of this
approach over traditional methods is that, it
does not require the complex nature of the
underlying process under consideration to be
explicitly described, in a mathematical form.
This makes ANN an attractive tool for modeling
water table fluctuations (Minns and Hall, 1996).

Some scientists have worked on ANNs
specifically on rainfall–runoff modeling (Halff
et al., 1993; Hjemfelt and Wang, 1993;
Karunanithi et al., 1994; Hsu et al., 1995; Smith
and Eli, 1995; Minns and Hall, 1996; Dawson,
1996; Jain and Chalisgaonkar, 2000; Rajurkar et
al., 2002; Wilby et al., 2003; Giustolisi and
Laucelli, 2005; Jain and Srinivasulu, 2006;
Abrahart and See, 2007; Mutlu et al., 2008;
Solaimani, 2009; Fernando et al., 2011). The
interest of applying ANNs for rainfall-runoff
modeling grew greatly in the 1990s (Hsu et al.,
1995; Zhang and Govindaraju, 2003; Solaimani,
2009). ANNs were usually assumed to be
powerful tools for functional relationship
establishment or nonlinear mapping in various
applications and perhaps, the ANN could be
regarded as the ultimate black-box model

(Amorocho and Hart, 1964; Kalteh, 2008;
Solaimani, 2009).

Additionally, there are no strict rules for
governing the design of a neural network. More
complex problems generally require a more
complex solution. When there are many free
parameters, the network will be slower to train
and more susceptible to over fitting. Factors
such as number of inputs, number of hidden
nodes, and their arrangement into layers are
often determined by using systematic “trial and
error” (Fischer and Gopal, 1994) or based on
reasonable but subjective opinion (Cheng and
Noguchi, 1996).

Testing optimum inputs and architectures
can be a time-consuming process, and the end
result may be neither informative nor
convincing. The particular advantage of the
ANN is that, even if the exact relationship
between sets of input and output data is
unknown but is acknowledged to exist, the
network can be trained to learn that relationship,
without requiring prior knowledge of the
catchment's characteristics (Minns and Hall,
1996; Dawson, 1996). Furthermore, they are
also well suited to dynamic problems and are
parsimonious in terms of information storage
within the trained model (Thirumalaiah and
Deo, 1998). Therefore, in accordance to the
importance of the relationship between rainfall-
runoff, the present study was undertaken in
order to develop rainfall-runoff models that can
be used to provide reliable and accurate
estimates of runoff.

1.1. About artificial neural network

The human brain has more than one hundred
billion neurons and each is connected to ten
thousand others and is therefore a dense and
highly complex structure (Minns and Hall,
1996). Every biological neuron has three parts:
1) the cell body, 2) the axon and 3) the
dendrites. The axon is usually highly branched
and attached to the cell body. Synapses are the
termination points for the axons and play the
role of interfaces, connecting some axons to the
spines of the dendrites, which input that
information can be transferred through axon to
dendrite in synapse (Varoonchotikul, 2003).

The ability of the human brain to perform
difficult and complex operations to recognize
patterns, has captivated scientists for centuries.
The particular capability of the brain to learn
from experience without a predefined
knowledge of the underlying physical
relationships, makes it an exceptional and
powerful calculating device. Therefore,
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scientists have been attempting to produce or
model these physical phenomena, using
electronic computational machines. This can
prove useful in solving ever complex partial
differential equations as well as empirical
relationships by rapidly increasing the
computational capacity of modern computers
and recognition of emerging advantages of
parallel computationcapable of performing the
required calculations with ever-increasing speed
(Minns and Hall, 1996). ANNs are based on the
highly interconnected structure of brain cells.
This approach is fast and robust in noisy
environments, flexible in different range of
problems solving, and highly adaptive to new
environments (Jain et al., 1999; Jeong and Kim,
2005).

For the first time, McCulloch and Pitts in the
1940s have had modern look to artificial neural
network. Actually, they showed that the
network of neurons have the calculation
capability of every mathematical and logical
function. Therefore, their activity can be
considered as the birth and start of the artificial
neural network. However, the first application
of a neural network was at the end of the 1950s,
by Frank Rosenblatt. He and his colleague built
a perceptron network and proved these networks
have the capability of pattern recognition and
therefore, various relatively successful neural
computers were built during the following two
decades. After a period of little development,
interest in ANNs increased significantly in the
late 1980s, due to improvements on existing
techniques in combination with the increase of
computational resources. By achieving these
successes in neural network, numerous
investigations were done all over the world, for
neural network improvement. Since that time,
the fields of ANNs have rapidly developed, and
the numerous applications of ANNs show that
their potentials have been recognized in many
fields such as the earth sciences, economics,
health sciences etc.

Every ANN is an interconnected network of
many processing units called neuron. Neurons
are the smallest unit in the artificial neural
network. These neurons are very similar to the
biological neuron and cells of the human brain.
Despite the fact that these neurons function at a
higher speed, compared to biological neurons,
they possess lower ability and capacity.
Neurons in every layer are connected through
weights to neurons in the next layer. The
parameters associated with each of these
connections are called weights. These weights
represent information which is used by the net
to solve a problem (Varoonchotikul, 2003).

During the training network these weights,
constant amount of that assemble with them,
and bias changed consecutively, until the target
function reached a favorite amount. We used
activation functions (sometimes called a transfer
function or threshold function) to transfer output
from every layer to the next layer
(Varoonchotikul, 2003).

These activation functions may be logistic
sigmoid, linear, threshold, Gaussian or
hyperbolic tangent functions, depending on the
type of network employed during the training
algorithm (Norgaard et al., 2000; Dawson and
Wilby, 2001; Jeong and Kim, 2005). On the
other hand, the method used for achieving
weights and biases are learning to rule for
favorite and terminal amounts. In fact, this rule
is a complex mathematical algorithm. Every
network needs to create two groups of data and
be acceptable: 1) training series and 2) testing
series. About 80% of the data belonged to the
training series and the rest of it was used for
testing. The duration of learning time, and
amount of network learning were evaluated
continually by target function. The optimal
network was selected through the least error and
highest correlation. The other evaluation criteria
such as RE, RMSE and SSE are explained in the
next section of this paper.

Normally, the ANNs formed three layers
with many nodes in each layer. Input data are
fed into the first layer called the input layer,
while the outputs are taken from the last layer,
which is called the output layer, and the layers
in between are hidden layers. Every layer has
many nodes that are neurons. There are two
connections or weighted connection: 1) the
forward and 2) the backward connection
(recurrent connection). In the forward
connection, signals are fed only in the forward
direction from the input to output layer.
However, in the backward connection (recurrent
connection) information is fed from the top
layer to the bottom layer and therefore, the
output layer is used as input in the same layer
(Hertz et al., 1991; Imrie et al., 2000;
Varoonchotikul, 2003; Solaimani, 2009).
Forward selection is the most commonly used
approach and begins by finding the best single
input and selecting it for the final model. In
each subsequent step, given a set of selected
inputs, the input improves the performance
ofmodels added mostly to the final model.
Backward elimination starts with a set of inputs,
and sequentially deletes the input that reduces
the least performance (Bowden et al., 2002). In
addition, there are two models in ANN, the
multi-layer perceptron (MLP) and the radial
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basis function (RBF). In all cases, a multi-layer
perceptron (MLP) ANN was employed for
rainfall–runoff modeling, and the weights were
determined by error back-propagation. Sigmoid
activation functions were used at all nodes in
the hidden and output layers. Before
presentation to the networks, all series of events
were converted into time series (Hettiarachchi et
al., 2005). The objectives of this study were to
develop and evaluate the ability of MLP and

RBF models to predict rainfall-runoff
relationship. Multi-layer perceptron (MLP) is
used in many complicated mathematical
problems which result to nonlinear equations.
Indeed, this method is the most commonly used
artificial neural network in hydrological
application. Training in this network is back
propagation. Figure 1 shows the structure of a
three layer forward connection in multi-layer
perceptron.

Fig. 1. Structure of a three layer forward connection in multi-layer perceptron

Today MLP networks have special
importance in many fields and are a quick and
safe way to solve different categories of
problems. The main difference between MLP
and RBF is that RBF has a middle layer and
neurons activation functions that are radial (for
example Gaussian function) along with center
and special width. In addition, MLP is the
distance every pattern from vector of center in
middle layer of every neuron is computed to as

entrance of radial activation function. Another
difference is that the exit neurons activation
function in this network is a simple linear
function and for this reason, this study can use
linear optimization algorithm which has high
speed processing and preventing from falling in
local pits that exist in almost MLP (Poggio and
Girosi, 1990). Activation functions in MLP and
RBF is shown in Figure 2.

Fig. 2. Sigmoid Function in Gaussian Function in RBF (A) and MLP (B) are as activation function (Varoonchotikul, 2003)

2. Material and methods

2.1. Study area

Measured data from Bar-Arieh watershed were
used to develop and compare the ability of both
MLP and RBF models to predict stream flow.
Bar-Arieh watershed is located in Neyshabur
district in Razavi Khorasan province. The area
of this watershed is 113 km2 and located

between 36º 27´ 38´´ and 36º 36´ 32´´ N-latitude
and 58º 40´ 46´´ and 58º 49´ 31´´E-longitude
(Jafari et al., 2012). Elevation ranges in the
watershed is from approximately 2861 to 1580
m in watershed outlet as well as in stream–
gauging station. Annual average of total
precipitation is approximately 330.4m. The
value of evaporation is about 2035 mm because
of very high temperature. Moreover, every year
this area has faced to many flood events because

AB
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of its physical characters. The length of Bar
seasonal river is 22.5 km and average slope is
4.2 percent and in the end it reaches to
Neyshabur plain. Bar-Arieh stream–gauging
station is located in the outlet of this watershed
and Marusk and Neyshabur ghand recording

stations are outside of Bar-Arieh watershed
(Sadeghi et al., 2010). It is noticeable that in
this article the data used was from Bar-Arieh
station. Figure 3 shows general view of this
watershed in Neyshabur and Iran respectively.

Fig. 3. General view of Bar-Arieh watershed in Iran and Neyshabur plain

2.2. Artificial network methods

In this study, daily runoff in conjunction with
rainfall data was observed and measured for a
period of fifty- five years from 1951 to 2006.
One of the most important steps in the model
development process is the determination of
significant input variables. Usually, not all of
the potential input variables will be equally
informative since some may be correlated, noisy
or have no significant relationship with the
output variable that are being modeled (Maier
and Dandy, 2000; Nayak et al., 2006).
Accordingly, some solutions such as cross-auto

and partial autocorrelation analysis of data are
often used (Sudheer et al., 2002; Srinivasulu
and Jain, 2006; Wu et al., 2009; Huo et al.,
2012). In this study Cross-autocorrelation
analysis between rainfall and runoff in different
lag time series were informed to get the
important factors for stream flow estimation.
According to the results obtained, five and one
lag time of rainfall and runoff were significant
respectively. In addition, the concept of the time
marching scheme is to keep the lag structure
among the input constant data. In the case of the
Bar-Arieh Watershed, the inputs for predicting
one time step ahead (QPt+i) were composed of

15
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twelve inputs: (i) the concurrent rainfall and
runoff (QP), (ii) the concurrent rainfall and
runoff and one antecedent rainfall (QPP1), (iii)
the concurrent rainfall and runoff, one and two
antecedent rainfall (QPP1P2), (iv) the concurrent
rainfall and runoff, one to three antecedent
rainfall (QPP1P2P3), (v) the concurrent rainfall
and runoff, one to four antecedent rainfall
(QPP1P2P3P4), (vi) the concurrent rainfall and
runoff, one to five antecedent rainfall
(QPP1P2P3P4P5), (vii) the concurrent rainfall and
runoff and one antecedent runoff (QPQ1), (viii)
the concurrent rainfall and runoff and one
antecedent rainfall and runoff (QPP1Q1), (ix) the
concurrent rainfall and runoff, one and two
antecedent rainfall and antecedent runoff
(QPP1P2Q1), (x) the concurrent rainfall and
runoff, one to three antecedent rainfall
antecedent runoff (QPP1P2P3), (xi) the
concurrent rainfall and runoff, (xii) one to four
antecedent rainfall antecedent runoff
(QPP1P2P3P4Q1), the concurrent rainfall and
runoff, one to five antecedent rainfall
antecedent runoff (QPP1P2P3P4P5Q1). The
training and testing patterns had better be
representative of similar physical system for
development of ANN models (Sudheer et al.,
2002; Srinivasulu and Jain, 2006; Huo et al.,
2012). In this research 70% of available data
had separated for training and 30% for testing.
Furthermore, ANNs with one hidden layer are
commonly used in hydrologic modeling
(Dawson and Wilby, 2001; Varoonchotikul,
2003; Wu et al., 2009). However, a three-layer
ANN is considered to provide enough
complexity to accurately simulate nonlinear
behaviors process in a watershed models
developed. Nevertheless the number of hidden
layer and its nodes is selected through trial and
error (Hettiarachchi et al., 2005). The
Levernberg-Marquardt (lm) training algorithm
is a modification of Back propagation (BP) and
is used in this study for adjusting the weight and
base. Furthermore, to increase network speed
and network accuracy, data presented to the
network normalized values between 0 and1 by
equation 1 (Sarangi and Bhattacharya, 2005).

(1)
XN=

minXmaxX

XimaxX





where XN is the normalized data, Xmax is the
maximum data, Xi is the raw data and Xmin is
the minimized data.

For comparison, both multi-layer perceptron
(MLP) and radial basis function (RBF) is used.
Three parameters for criteria evaluation (RE,
RMSE and SSE) were used in this study.

2.3. Model evaluation criteria

There are many performance criteria which
have been used worldwide to evaluate rainfall-
runoff relationship models. But there is not any
standard measurement (Dawson and Wilby,
2001). Since there are various conditions in a
catchment such as climate, topography, and soil,
there exist a complicated relationships between
rainfall and runoff, and this should be used from
evaluation criteria (Legates and McCabe, 1999;
Dawson and Wilby, 2001; Huo et al. 2012).
Therefore, the performance of all models in this
article was evaluated by using a wide variety of
standard statistical performance evaluation
measures. Three different statistical
performance indexes were employed
(Srinivasulu and Jain, 2006): root-mean-square
error (RMSE), Relative error (RE %) and sum
squared error (SSE) and is used to assess the
predictive power of models. These statistical
parameters can be calculated using the
following expressions.

(2)
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where QO is the measured and observed amount
of variable, Qe is the estimated value and N is
the number of data. Relative error (RE) is
expressed in percent.

3. Results

Daily rainfall and runoff data in Bar watershed
was used for this study. For this aim about
10634 data (80%) and 4588 data for training
and (20%) for testing were used. In this research
two models of artificial neural network MLP
and RBF was considered and then compared
with evaluation criteria such as RE, RMSE, SSE
and CR. Sigmoid activation function was used
as transfer function at both hidden layer and
output layers. Also, the number of neurons in
the hidden layers was determined using a trial
and error procedure which was between 1 to 15.
In this method independent variables were P, P1,
P2, P3, P4, P5 and Q1and Q was dependent. The
results are shown in Table 1.

16



Motamednia et al. / Desert 20-1 (2015) 11-21 2

Table 1. The Value of evaluation criteria in artificial neuron networks (MLP and RBF)
MLP

Models SSERMSERE (%)
TestingTrainingTestingTrainingTestingTraining
2304.375233.251.202.53526.03758.89QP
2076.554304.861.202.50602.63850.36QPP1

1075.073503.641.191.98452.61710.39QPP1P2

973.462954.841.202.53453.83711.25QPP1P2P3

691.092008.621.212.53456.80718.58QPP1P2P3P4

1138.172458.791.283.90531.92800.14QPP1P2P3P4P5

1388.182119.190.790.8986.85123.56QPQ1

696.961818.410.770.8474.64115.89QPP1Q1

459.291450.910.750.8046.2190.01QPP1P2Q1

422.351271.420.770.8547.8090.59QPP1P2P3Q1

348.291004.110.780.8948.0892.58QPP1P2P3P4Q1

599.441095.370.940.9965.85100.71QPP1P2P3P4P5Q1

RBF
2294.685219.341.192.80527.50717.30QP
2067.654234.921.192.75508.34692.70QPP1

941.463458.291.192.80519.98719.98QPP1P2

1189.422880.361.202.80510.34700.01QPP1P2P3

767.452015.941.182.72495.38555.98QPP1P2P3P4

822.862371.681.272.85511.65698.60QPP1P2P3P4P5

1218.512831.810.880.95224.92324.10QPQ1

999.751968.290.840.92224.49301.98QPP1Q1

446.181778.730.921.09178.14275.29QPP1P2Q1

699.961657.010.911.00188.82295.02QPP1P2P3Q1

359.851340.600.820.90177.60270.00QPP1P2P3P4Q1

1223.391407.441.091.99283.89359.78QPP1P2P3P4P5Q1

rainfall (P), 1-day antecedent rainfall (P1), 2-day antecedent rainfall (P2), 3-day antecedent rainfall (P3), 4-day antecedent rainfall
(P4), 5-day antecedent rainfall (P5), runoff (Q) and 1-day antecedent runoff (Q1) were inputs and runoff (daily discharge) was output.

From Table 1 the least values of RE (%) in
MLP for training and testing data were 90.01
and 46.21% respectively for some inputs such
as Q1, P, P1, and P2 and the most values of
training and testing data, were 850.36 and
602.63% for the inputs such as P and P1.
However, RMSE was very low (0.80 and
0.75%) for some inputs like Q1, P, P1and P2

whereas the highest values were 3.90 and 1.28
for P, P1, P2, P3, P4 and P5. While in RBF the
least values of RE (%) variables for training and
testing data were 270.00 and 177.60 repectively
for inputs like Q1, P, P1, P2, P3 and P4. Minor
difference in errors was 275.29 and 178.14 for
training and testing data in inputs such as Q1, P,
P1 and P2. In addition the worst structure in RBF
was model with one input (P). The values of this
structure were 717.30 and 527.50 for training
and testing data respectively. The ranges of
values in RMSE were the least, between 0.90
and0.82 and 2.85 and 1.27 in RBF model. As
shown in Figures 4 and 5, when rainfall is used
errors are high and errors declined when other
variables are used so that the least errors are in
variables such as P, P1, P2, P3 and P4. However
when variable P5 was used, errors increased.
The best architectures in this article were 4-6-1
and 6-9-1 in Multi-layer perceptron (MLP) and
Radial basis function (RBF) respectively.

Furthermore, from Table 1 it is observed that
the most range of data is related to SSE criteria
while the least range of data belongs to RMSE
because of the form of statistical criteria. SSE
criteria is the sum of the squared differences
between observed and computing river flow
while RMSE is a frequently used measure of the
root differences between values observed and
computing flow and therefore the range of data
error is naturally lower than SSE criteria.

The relationship between output observation
(Qo) and output calculated (Qe) is shown in
Figures 4 and 5.

4. Discussion and Conclusion

This article considers predicting stream flow in
a semi-arid region in Neyshabur region by using
two data driven models (MLP and RBF) and
comparing each other. These results show that
five antecedent rainfalls does not have any
effect on output and runoff. Since this
watershed is situated in semi-arid region and
solar radiant is very high, therefore the rainfalls
does not affect soil moisture. These results are
in agreement with the findings of Sadeghi et al.
(2010) and Jafari et al. (2012), who worked in
Bar-Arieh and emphasized that five antecedent
rainfalls do not have any effect on stream flow.

17
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Fig. 4. Relationship between discharge observation (Qo) and calculation (Qe) in MLP
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Fig. 5. Relationship between discharge observation (Qo) and calculation (Qe) in RBF

Furthermore, 1-day antecedent runoff
affected run off in the way that the least values
of RE are equal to 90.01 and 46.21 and 270.00
and 177.60 for training and testing data in
multi-layer perceptron and radial basis function
respectively while this was much lower than

when 1-day antecedent runoff was not used so
that the least error in MLP and RBF without 1-
day run off are 710.39, 452.61 and 555.98 and
495.38 in training and testing data respectively.
Finally with regards to the entire statistical
criteria, Multi-layer perceptron (MLP) is more
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skillful than the radial basis function (RBF) and
this finding are in agreement with studies such
as Braddock et al. (1998), Dawson and Wilby
(2001), Varoonchotikul (2003), Solaimani
(2009), and Wu and Chau (2011) who showed
that the ability of Multi-layer perceptron in
comparison to Radial Basis Function is very
high and significant. But this finding is not in
agreement with the study of Takor and Markus
(2000) and Srinivasulu et al. (2006). That
showed that the ANN rainfall-runoff model
trained using BPA and Multi-layer perceptron
through statistical criteria do not perform well.
The ANN performance is influenced by the
selection of training data. A large number of
training data sets are required to perform
successful training (Dawson and Wilby, 2001;
Varoonchotikul, 2003). The number of hidden
layer neurons significantly influences the
performance of a network. If this number is
small, the network can suffer from under fit data
and may not achieve the desired level of
accuracy, while with too many nodes it will take
a long time to be adequately trained and may
sometimes over fit the data. In this study, two
model of ANN are compared. The results show
that multi-layer perceptron is better than radial
basis function for the estimation of rainfall-
runoff relationship in the arid and semiarid
regions in spite of varying rainfall and runoff.
However, according to the evaluation criteria,
the high values of those criteria show that the
trained ANN models using BPA are not
efficient in learning processes especially in low
flow event. Thus, it is suggested to improve
ANN's performance such as particle swarm
optimization (PSO), or singular spectrum
analysis (SSA) for ANN's training (Srinivasulu
and Jain, 2006; Wu et al., 2009; Huo et al.,
2012). Since this study is developed with just
two types of ANN models, it is necessary to
perform other ANNs and compare the result in
more than one watershed and in different
climate.

In addition, the performances of all the
models developed in this study were evaluated
by using a wide variety of standard statistical
performance evaluation measures. It is therefore
recommended to apply an error analysis of the
result for varying ranges of flow such as low
flow, medium and high because of properly
examining the robustness and predictive
capability of the ANN models. In addition, the
performance of various ANN models should be
evaluated using a wide variety of standard
statistical performance evaluation measures
instead of relying on a few global errors
statistical such as correlation coefficient and

efficiency, as well as Nash-Sutcliff efficiency
that are similar in nature to the global errors
which are minimized at output layer of an ANN
model.
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