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Abstract 
 

Evaporation is a fundamental parameter in the hydrological cycle. This study examines the performance of M5 
model tree and artificial neural network (ANN) models in estimating potential evapotranspiration calculated by 
Penman- Monteith and Hargreaves- Samani equations. Daily weather data from two meteorological stations in a 
semi-arid climate of Iran, namely Kerman and Zahedan, were collected during 1995-2004 and included the mean, 
maximum and minimum air temperatures, dewpoint, relative humidity, sunshine hours, and wind speed. Results 
for both stations showed that the performance of the M5 model tree was more accurate (R=0.982 and 0.98 for 
Penman-Monteith equation and R=0.983 and 0.98 for Hargreaves-Samani equation in Kerman and Zahedan, 
respectively) than the ANN model (R=0.975 and 0.978 for Penman-Monteith equation and R=0.967 and 0.974 for 
Hargreaves-Samani equation in Kerman and Zahedan, respectively), but the models’ differences were 
insignificant at a confidence level of 95%. It also performed better at the Zahedan station using the Penman-
Monteith equation. The most significant variables affecting the potential evapotranspiration in the case of the 
Penman–Monteith equation were found to be mean air temperature, sunshine hours, wind speed, and relative 
humidity. Similarly, for the Hargreaves-Samani equation, the maximum and minimum temperatures, sunshine 
hours, and wind speed were determined to be the most significant variables. Further studies in other climates are 
recommended for further analysis. 
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1. Introduction 
 
Evapotranspiration, evaporation from soil and 
transpiration from vegetation, is an important 
component of the hydrologic cycle. In most arid 
regions, irrigation consumes the majority of 
developed water resources; moreover, water 
scarcity and misuse are substantial threats to the 
sustainability of agricultural production. 
Therefore, determining agricultural water 
demand is an important factor for developing a 
fundamental infrastructure and  
managing the allocation of water. The precise 
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quantification of crop evapotranspiration (ETc) 
in irrigated agriculture is used to schedule 
irrigation and water resource management. 
Evapotranspiration from a reference surface in a 
standard condition (without stress) is called 
reference evapotranspiration (ETo). Potential 
evapotranspiration can be measured or 
estimated by different methods. Using 
lysimeters is the most accurate method, but it is 
time-consuming and costly, and lysimeters are 
not widely available to all researchers, 
especially those in developing countries. 
Therefore, using alternate empirical models and 
equations might be preferable. These methods 
use physical equations (like the Penman-
Monteith equation (P-M)) or of the empirical 
type using simple relationships of ET and 
meteorological variables (like the Hargreaves-



Ghahreman & Sameti / DESERT 19-1 (2014) 75-81 76

Samani equation). Many equations have been 
suggested for the estimation of potential 
evapotranspiration which, to some extent, are 
site- and climate-specific and should not be used 
in other climates without prior examination. 
Among these methods, the modified P-M 
equation proposed by FAO, the FAO56 P-M, 
has been widely accepted for use in different 
climates (Allen et al., 1998). Several ETo 
calculation packages, e.g., CROPWAT and 
SIMETAW, have been evaluated in different 
climates of Iran (Malekian et al., 2009; 
Ebrahimpour et al., 2014). The adequate, high 
quality data required for running the P-M 
equation is not available at all weather stations, 
so it is more preferable to apply equations such 
as the Hargreaves-Samani equation that use 
routine, readily available data to estimate ETo 
and require only daily mean, maximum and 
minimum temperatures, and extraterrestrial 
radiation (Hargreaves and Samani, 1985). 
Extraterrestrial radiation can be calculated 
theoretically (Drooger and Allen, 2002; 
Ghahreman and Bakhtiari, 2009). Recently, 
other approaches based on soft computing, like 
data mining, have been introduced for 
modeling, data classification, and clustering. 
These data-based approaches try to find 
unknown and hidden interrelations by 
performing certain iterative searches in a long 
series of data and finally provide the desired 
output. In other words, data mining is the 
identification of interesting structures in data, 
where structure designates patterns, statistical or 
predictive models of the data, and relationships 
among parts of the data (Fayyad and 
Uthurusamy, 2002). The skill of these 
techniques has also been proven in hydrology.  
     Data mining tools perform data analyses and 
may detect important data patterns contributing 
greatly to strategic decisions, knowledge bases, 
and relevant research including hydrology and 
soil-water management (Nagesh Kumar and 
Dhanya, 2009). Time series data mining, which 
combines chaos theory and data mining, can be 
effectively used in predicting river flood 
(Chaitanya and Yaclin, 2007). A cluster-based 
neural network model is effective in capturing 
nonlinear relationships among many 
hydrological processes (Parasuraman et al., 
2007). 
     These relationships can be obtained through 
different algorithms, such as artificial neural 
networks (ANN), decision trees, regression 
trees, and model trees. ANN has been widely 
used in meteorological and hydrological studies 
such as drought prediction (Dastorani and 

Afkhami, 2011) and wind speed prediction 
(Bakhtiari et al., 2013).  
     Evapotranspiration is dependent on several 
meteorological variables. A literature review 
revealed that recently, many studies have been 
carried out using data mining algorithms to 
model daily evaporation and evapotranspiration 
and relevant variables. Pal (2006) classified 
groundcover with an M5 model tree using data 
of Landsat 7 (ETM+) and concluded that the 
accuracy of this model is higher than that of a 
decision tree. Terzi et al. (2005) used data from 
the Lake Egirdir region in Turkey to model 
daily pan evaporation and suggested the Kstar 
model as the best model among M5Rules and 
decision tree models. Using a genetic algorithm 
(GA), they showed that air temperature, water 
temperature, and relative humidity are the most 
significant variables. Terzi (2007) used an M5 
model tree, artificial neural network, linear 
regression, and SMO regression to model daily 
pan evaporation and suggested the M5 model 
tree as the preferable model. Pal and Deswal 
(2009) used an M5 model tree to estimate 
evapotranspiration using the daily data from an 
automated weather station located at Davis, 
California during 1995-2005. The obtained 
values were compared with those calculated by 
FAO56 Penman-Monteith and Hargreaves-
Samani equations. Based on their findings, the 
M5 model tree had the best performance. 
Moreover, sensitivity analysis revealed that 
solar radiation, mean temperature, humidity, 
and wind speed are the most significant 
variables in modeling potential 
evapotranspiration. 
     To date, few studies have been done on the 
application of data mining techniques in 
estimating potential evapotranspiration 
nationwide; therefore, the goal of this study was 
to use data mining algorithms to estimate 
potential evapotranspiration, make comparisons 
with other methods, and determine the most 
significant meteorological variables governing 
potential evapotranspiration.  
 
2. Materials and Methods 
 
Daily weather data from two study stations, 
Kerman (latitude 56º 58' E, longitude 30º 15' N, 
and an altitude of 1753.8 meters above MSL) 
and Zahedan station (latitude 60º 53' E, 
longitude 29º 28' N, and an altitude of 1370 
meters above MSL) during 1995-2004 were 
used. Based on the extended-De Martonne 
classification (Khalili 1977), their climates are 
classified as arid cold and hyper-arid moderate, 
respectively. Daily recorded data of five 
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variables, including maximum temperature 
(Tmax), minimum temperature (Tmin), dewpoint 
temperature (Tdew), vapor pressure, and wind 
speed (U2), covering 1995 to 2004, obtained 
from the Islamic Republic of Iran Meteorology 
Organization, were used to calculate potential 
evapotranspiration with the FAO-56 Penman-
Monteith (FAO 56 P-M hereafter) and 
Hargreaves-Samani models. Reconstruction of 
data and filling gaps, where required, was 
implemented using a multivariate regression 
approach. The homogeneity of the data set was 
checked by a Run test. 
     For both applied models, 70% of the data 
were used for model building/training, and the 
remaining 30% was kept for model evaluation. 

Finally, the obtained estimations of oET  from 

both models were compared with corresponding 
values of Penman-Monteith and Hargreaves-
Samani equations using statistical indices 
including root mean square error (RMSE), mean 
absolute error (MAE), and correlation 
coefficients. WEKA 3.6.4 and SPSS Clementine 
12 packages were used to run the M5 model tree 
and the artificial neural network model, 
respectively. 
 
2.1. Penman-Monteith FAO-56 equation 
 
This method is the standard procedure when 
there is no measured lysimeter data (Allen et al., 
1998; Alexandris, Kerkides, and Liakatas, 2006; 
Georgiou and Papamichail, 2008). Although in 
practice the best way to test the performance of 
the above-mentioned methods would be to 
compare their performances versus the 
lysimeter-measured data, this data set was not 
available for the study area. According to (Allen 
et al., 1998), the P-M method is summarized by 
the following equation: 
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Where ETo is the reference evapotranspiration 
(mmd-1), Rn is the daily net radiation (Mjm-2d-1), 
G is the soil heat flux (Mjm-2d-1), T is the mean 
daily air temperature at a 2 meters height (ºC), 
U2 is the daily mean of the wind speed at a 
height of 2 m (ms-1), es is the saturation vapor 
pressure (kPa), ea is the actual vapor pressure 
(kPa), Δ is the slope of the saturation vapor 
pressure (KPaºC-1), and γ is the psychrometric 
constant (KPaºC-1). All variables were 
calculated using procedures suggested by Allen 
et al. (1998). The soil heat flux (G) was 
neglected for the daily time scale (Allen et al., 
2008). The Hargreaves equation (Hargreaves 

and Samani, 1985; Hargreaves and Allen, 2007) 
can be written as: 

)8.17(.).(0135.0 5.0  TTDRKET aTo          [5] 
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where ETo is reference evapotranspiration 
calculated by the HG method (mmd-1), KT is an 
empirical coefficient, TD is the range of daily 
temperatures (ºC), Ra is the depth of water 
equal to the extraterrestrial radiation (mmd-1), 
Tmax and Tmin are the daily maximum and 
minimum air temperatures (ºC), Tmean is the 
mean air temperature (ºC) computed as the 
average of Tmax and Tmin. 
 
2.2. Artificial neural network model 
 
Neural networks are composed of simple 
elements operating in parallel. These elements 
are inspired by biological nervous systems. As 
in nature, the network function is determined 
largely by the connections between elements. A 
neural network can be trained to perform a 
specific function by adjusting the values of the 
connection weights between the elements. 
Commonly, neural networks are adjusted, or 
trained, so that a particular input leads to a 
certain output. The network is adjusted, based 
on a comparison of the output and the target, till 
the sum of square differences between the target 
and output values reaches a minimum value. 
Typically, many such input/target output pairs 
are used to train a network. Incremental training 
changes the weights and biases of a network as 
needed after presentation of each individual 
input vector. Neural networks have been used in 
various fields of application in different 
branches of sciences including pattern 
recognition, identification, classification, 
speech, vision, and control systems (Demuth 
and Beale, 2001). 
 
2.3. M5 model tree 
 
Model trees generalize the concepts of 
regression trees, which have constant values at 
their leaves (Witten and Frank, 2005). They are 
analogous to piece-wise linear functions (and 
hence nonlinear). An M5 model tree is a binary 
decision tree which has linear regression 
functions at the terminal (leaf) nodes which can 
predict continuous numerical attributes 
(Quinlan, 1992). Tree-based models are 
constructed by a divide-and-conquer method. 
Model tree generation requires two stages. The 
first stage involves using a splitting criterion to 
create a decision tree. The splitting criterion for 
the M5 model tree algorithm is based on 
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treating the standard deviation of the class 
values that reach a node as a measure of the 
error at that node and calculating the expected 
reduction in this error as a result of testing each 
attribute at that node. The formula to compute 
the standard deviation reduction (SDR) is: 

))(()( i
i Tsd

T
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where T represents a set of examples that reach 
the node, Ti represents the subset of examples 
that have the ith outcome of the potential set, and 
sd represents the standard deviation. Due to the 
splitting process, the data in child nodes have 
less standard deviation than those at the parent 
node and thus are more pure. After checking all 
the possible splits, M5 selects the one that 
maximizes the expected error reduction. This 
division often produces a large tree-like 
structure which may cause overfitting. To 
overcome the problem of overfitting, the tree 
must be cut back, for example, by replacing a 
subtree with a leaf. Thus, the second stage in the 
design of the model tree involves pruning the 
overgrown tree and replacing the sub-trees with 
linear regression functions. This technique of 
generating the model tree splits the parameter 
space into areas (subspaces) and builds in each 
of them a linear regression model.  
 
3. Results  
 
In Table 1, the performances of the M5 model 
tree and artificial neural network in estimating 
potential evapotranspiration by both equations, 
are compared. At the Kerman station, the M5 
model tree estimated evapotranspiration with a 

correlation coefficient of 0.98 and a mean 
absolute error of 0.270, but with the ANN 
method, the correlation coefficient and mean 
absolute error were 0.975 and 0.33, 
respectively. At the Zahedan station, R and 
MAE values with the M5 model tree were 
0.9832 and 0.252, and with the ANN model 
they were 0.978 and 0.3, respectively. 
According to the results of the student's t-test 
(Pα=0.05=0.914, t= -0.11 for the Kerman station 
and Pα=0.05=0.973, t= -0.03 for the Zahedan 
station), there was no significant difference 
between the M5 model tree and the ANN model 
at a confidence level of 95%. The performance 
of both models in estimating potential 
evapotranspiration was higher at the Zahedan 
station. To determine the most important 
variables, sensitivity analyses were applied by 
using all input variables, and the importance of 
every variable was examined by removing each 
of them from the results. At both stations, the 
most common variables affecting potential 
evapotranspiration were average daily 
temperature, sunshine hours, average wind 
speed, and average relative humidity. At the 
Kerman station, dewpoint temperature and 
actual vapor pressure were the sensitive 
parameters in artificial neural networks, and at 
the Zahedan station, actual vapor pressure was 
the sensitive parameter in the M5 model tree. It 
can be concluded that the three parameters of 
mean air temperature, sunshine hours, and wind 
speed had the most influence on the results, 
because by removing them, the performance 
decreased significantly. 
 

 
Table 1. Comparison of ANN and M5 model tree for estimating potential evapotranspiration of FAO 56 Penman Monteith 
method for two study stations during the period of 1995-2004. 

Combination of effective variables MAE R Model Stations 
T,n,w,RH 0.270  0.982 M5 Kerman 

T,n,w,RH,dew,e 0.33 0.975 ANN  
T,n,w,RH,e 0.252 0.983  M5 Zahedan 
T,n,w,RH 0.3 0.978  ANN  

T, mean air temperature; n, sunshine hours; w, wind speed; RH, relative humidity; dew, dewpoint temperature; e, vapor 
pressure. 
 

 
                                             Table 2. Sensitivity analysis of M5 model tree for Kerman station 

M5 model tree R RMSE MAE 
T,n,w,RH,dew,e,R 0.983 0.341 0.253 
T,n,w,RH,dew,e 0.983 0.341 0.254 
T,n,w,RH,dew 0.983 0.343 0.254 

 T,n,w,RH,e 0.983 0.339 0.252 

T,n,w,dew,e 0.982 0.347 0.257 
T,n,RH,dew,e 0.92 0.73 0.555 

T,n,w,RH 0.983 0.344 0.255 
T,n,w,e 0.982 0.348 0.257 

T,n,w,dew 0.983 ٠٫٣۴۶ 0.256 
T,n,w 0.98 0.37 0.275 
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Table 3. Sensitivity analysis of M5 model tree for Zahedan station 
M5 model tree R RMSE MAE 

T,n,w,RH,dew,e,R 0.982 0.363 0.273 
T,n,w,RH,dew,e 0.982 0.363 0.272 
T,n,w,RH,dew 0.982 0.362 0.271 

T,n,w,RH,e 0.982 0.363 0.272 
T,n,w,dew,e 0.981 0.364 0.272 

T,n,RH,dew,e 0.93 0.71 0.56 

 T,n,w,RH 0.982 0.36 0.27 

T,n,w,dew 0.981 0.364 0.272 
T,n,w 0.98 0.373 0.285 

 
     When the Hargreaves–Samani method is 
used, the accuracy of the models increases using 
maximum and minimum air temperature instead 
of mean temperature. In Table 4, the 
performances of the M5 model tree and the 
artificial neural network method for estimating 
potential evapotranspiration of the Hargreaves–
Samani method at both stations are compared. It 
can be seen that the M5 model tree has a higher 
correlation coefficient (R=0.983 and 0.98 for 
Kerman and Zahedan, respectively) and a 
smaller mean absolute error (MAE=0.496 and 
0.423 for Kerman and Zahedan, respectively) 
compared with the artificial neural network 
model (R=0.967, MAE=0.671 and R=0.974 , 
MAE= 0.471 for Kerman and Zahedan, 
respectively), but the differences were not 
significant using the student's t-test. 

(Pα=0.05=0.98, t= -0.03 for the Kerman station 
and Pα=0.05=0.898, t=0.13 for the Zahedan 
station) at a confidence level of 95%. A 
comparison of Table 1 and Table 4 indicates 
that values of mean absolute error in the 
Penman-Monteith equation are less than those 
in the Hargreaves-Samani equation. With the 
Hargreaves–Samani method, the most 
significant variables affecting potential 
evapotranspiration were mean, maximum and 
minimum temperatures, sunshine hours, and 
wind speed. At the Kerman station, relative 
humidity was found to be the most important 
variable in the artificial neural network model. 
Similarly, at the Zahedan station for both 
models, the mean actual vapor pressure was the 
major affecting variable. 

 
             Table 4. Comparison of ANN and M5 model trees for estimating potential evapotranspiration of Hargreaves-Samani   
             method for two stations of Kerman and Zahedan during the study period 1995-2004 

Combination of effective 
variables 

MAE R Model Stations 

Tmax,Tmin,n,w 0.496 0.983 M5 Kerman 
Tmax,Tmin,n,w,RH 0.671 0.967 ANN  
Tmax,Tmin,n,w,e  0.423 0.980 M5 Zahedan 
Tmax,Tmin,n,w,e 0.471 0.974  ANN  

            Tmax, maximum temperature; Tmin, minimum temperature. 
 
     One of the advantages of the M5 model 
tree is that this model allows access to a 
combination of several simple linear 
relationships that can be used for predicting 
potential evapotranspiration. From Figure 1 
it can be concluded that the most important 
variable in constructing an M5 model tree is 
average daily temperature that branches the 

tree in T>17.95 and T≤17.95. After that, 
according to splitting ratio in T>17.95 the 
wind speed and in T≤17.95 the average daily 
temperature are the most important variables. 
Branching continued until 19 linear models 
were obtained for the Kerman station dataset, 
each of which should be applied for its 
specific conditions. 
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Fig. 1. Schematic representation of derived M5 model tree for Kerman station 

 

3.1. Regression linear models for Kerman 
station 
 
LM  1: ET-PM = 0.1784 * wind + 0.0279 * 
Tave + 0.0041 * RH + 0.0056 * n+ 0.1576 
LM 2: ET-PM = 0.1494 * wind + 0.0525 * Tave 
– 0.0027 * RH + 0.0189 * n + 0.2936 
LM  3: ET-PM = 0.1936 * wind + 0.0636 * 
Tave + 0.0056 * RH + 0.8104 * n – 8.0414 
LM 4: ET-PM = 0.0876 * wind + 0.0698 * Tave 
– 0.0083 * RH + 0.0405 * n + 0.7028 
LM  5: ET-PM = 0.0957 * wind + 0.0935 * 
Tave – 0.0046 * RH + 0.6019 * n – 5.3738 
LM  6: ET-PM = 0.1077 * wind + 0.0936 * 
Tave – 0.0097 * RH + 0.0603 * n + 0.4363 
LM  7: ET-PM = 0.0973 * wind + 0.1128 * 
Tave – 0.0135 * RH + 0.3047 * n – 1.8025 
LM 8: ET-PM = 0.0751 * wind + 0.0817 * Tave 
– 0.0054 * RH + 0.0667 * n + 0.3939 
LM  9: ET-PM = 0.2447 * wind + 0.1602 * 
Tave + 0.0105 * RH + 0.0561 * n – 1.8327 
LM  10: ET-PM = 0.2569 * wind + 0.1178 * 
Tave + 0.018 * RH + 0.7122 * n – 8.1259 
LM  11: ET-PM = 0.1478 * wind + 0.1881 * 
Tave – 0.007 * RH + 0.0816 * n – 1.1996 
LM  12: ET-PM = 0.1666 * wind + 0.164 * 
Tave – 0.0007 * RH + 0.5194 * n – 5.6033 
LM  13: ET-PM = 0.2493 * wind + 0.177 * 
Tave + 0.0096 * RH + 0.0713 * n – 2.1323 
LM 14: ET-PM = 0.2753 * wind + 0.0993 * 
Tave + 0.0274 * RH + 0.5917 * n – 6.5035 
LM 15: ET-PM = 0.2749 * wind + 0.1622 * 
Tave + 0.001 * RH + 0.1197 * n – 1.9257 

LM 16: ET-PM = 0.3032 * wind + 0.145 * Tave 
+ 0.0156 * RH + 0.4873 * n – 6.1078 
LM 17: ET-PM = 0.2036 * wind + 0.1763 * 
Tave – 0.0131 * RH + 0.0874 * n – 1.0811 
LM 18: ET-PM = 0.2403 * wind + 0.1333 * 
Tave – 0.008 * RH + 0.3852 * n – 3.7715 
LM 19: ET-PM = 0.2893 * wind + 0.1446 * 
Tave – 0.0102 * RH + 0.1523 * n – 1.5047 
 
4. Discussion 
 
In this study, the performances of an M5 model 
tree and artificial neural network modes were 
evaluated for estimating potential 
evapotranspiration using FAO-56 Penman-
Monteith and Hargreaves–Samani methods for 
the two stations of Kerman and Zahedan. The 
results indicated no significant difference 
between the M5 model tree and the artificial 
neural network model in either station for the 
two chosen methods of Penman–Monteith and 
Hargreaves-Samani using the student's t-test. 
For the Hargreaves-Samani method, the most 
significant affecting variables were mean air 
temperature, sunshine hours, wind speed, and 
relative humidity. In the case of the Penman-
Monteith equation, the most important variables 
were average maximum and minimum 
temperatures, sunshine hours, and wind speed. 
Comparing the results of the two study stations, 
it was found that the results of the Zahedan 
station are more accurate. This might be due to 
the strong moisture advection in the Kerman 
region which could lead to the underestimation 
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of ET values. The main advantage of an M5 
model tree is that it offers several multilinear 
regression equations which are valid for certain 
climatic conditions. The first branches of the 
tree are identified as the most important 
variables cause the tree to branch. Pal and 
Deswal (2009) showed that solar radiation, 
mean air temperature, relative humidity, and 
wind speed are the most significant parameters 
in estimating potential evapotranspiration with 
an M5 model tree. Terzi (2007) used several 
algorithms to estimate evaporation and 
concluded that there is a close agreement 
between results of an M5 model tree and 
measured daily pan evaporation values. He used 
air temperature, water temperature, solar 
radiation, and relative humidity parameters as 
effective parameters of evaporation. Sattari 
(2013) suggested that the ANN model performs 
better than the M5 model tree with the dataset 
from Ankara, Turkey. He concluded that a 
combination of parameters including minimum 
and maximum temperatures, minimum and 
maximum relative humidity, wind speed, and 
sunshine hours is the best combination of 
variables for calculating ETo. Further research 
might be recommended using lysimetric data for 
more scrutiny and suggesting preferable models. 
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