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Abstract 
 
Rainfall is cons idered a highly  valuable climatologic resource, particularly in arid regions. As one of the primary 
inputs that drive watershed dynamics, rainfall has been shown to be cru cial for accurate distributed hydrologic 
modeling. Precipitation is known only at certain locations; interpolation procedures are needed to predict this variable 
in other regions. In this study, the ordinary cokriging (OCK) and collocated cokriging (CCK) m ethods of 
interpolation were applied for rainfall depths as the primary variate associated with elevation and surface elevation 
values as the s econdary variate. The different techniques were applied to monthly and annual precipitation data 
measured at 37 meteorological stations in the Central Kavir basin. These sequential steps were repeated for the mean 
monthly rainfall of all twelve months and annual data to generate rainfall prediction maps over the study region. After 
carrying out cross-validation, the smallest prediction errors were obtained for t he two mult ivariate geostatistical 
algorithms. The cross-validation error statistics of OCK and CCK p resented in term s of root m ean square error 
(RMSE) and average error (AE) were within the acceptable limits for most months. Then the two approaches were 
compared to select of the most accurate method (AE close to zero and RMSE from 0.53 to 1.46 for 37 rain gauge 
locations for all months). The exploratory data analysis, variogram model fitting, and generation precipitation 
prediction map were accomplished through use of ArcGIS software. 
 
Keywords: Altitude; Central Kavir basin; Cokriging; geographical information system; Precipitation 
 
 
1. Introduction 
 
Most of the water received by a river basin 
occurs as rainfall events over the basin. As one 
of the primary inputs that drive watershed 
dynamics, the estimation of spatial variability of 
precipitation has been shown to be crucial for 
accurate distributed hydrologic modeling. The 
estimation of precipitation, accordingly, is very 
important for assessing water resources. The 
estimation of precipitation is also important for 
predicting natural hazards caused by heavy rain. 
     To estimate precipitation properly, it is  
necessary to have o ptimally distributed rain 
gauges and to apply an a ppropriate technique 
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for the estimation. In this study, we used a 
geostatistical approach. To calculate average 
spatial statistics in climatology, there is a wide 
choice of interpolation techniques for rainfall 
mapping. The most important methods in this 
case are kriging. Kriging has seen many 
applications, especially in the  mining industry 
and, more recently, in hydrology and 
meteorology. Early applications of kriging in 
rainfall estimation were described by 
Delhomme and Delfiner (1973) (from: 
PardoIgu´ zquiza (1998)). Many papers have 
tried to apply geostatistics to these themes.   
     Tabios and Salas (1985) found kriging to be 
superior to other commonly-used interpolation 
techniques such as Thiessen polygons, 
polynomial trend surfaces, inverse distance, and 
inverse square distance methods for 
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precipitation estimation in a 52 000 km2 region 
in Nebraska and Kansas. 
     According to Ahmed and De Marsily (1987), 
kriging with external drift (KED) is more 
adapted than ordinary kriging for coarse 
sampling data. It lies in the adoption of an 
external variable which is observed with a 
spatial density exceeding that of t he original 
variable. Grimes et al. (1999) adopted kriging 
with external drift using both satellite data and 
ground rain gauges to improve the estimation of 
decadal rainfall and their spatial distribution 
while Goovaerts (2000) adopted a digital 
elevation model for monthly and annual rainfall 
totals in south Portugal. 
     Hevesi et al. (1992a, b) analyzed annual 
precipitation estimates with geostatistical 
techniques. Then they used cokriging to 
estimate the precipitation distribution as a 
function of elevation. Compared with other 
techniques, they found that cokriging gave the 
best estimate. Creutin et al. (1988) introduced a 
simplified cokriging system to optimize 
merging radar rainfall and rain gauge data and 
found it very effective in reducing system size. 
     Phillips et al. (1992) compared three 
geostatistical procedures for spa tial analysis of 
precipitation in m ountainous terrain in western 
Oregon (Willamette River basin). Detrended 
kriging and cokriging compared with kriging 
offer improved spatially distributed 
precipitation estimates in mountainous terrain 
on the scale of a few million hectares.  
     PardoIgu´zquiza (1998) compared the areal 
average climatological rainfall mean estimated 
by the classical Thiessen method, ordinary 
kriging, cokriging, and kriging with an external 
drift (the first two methods used only rainfall 
information, while the latter two used both 
precipitation data and orographic information) 
in the G uadalhorce river basin in so uthern 
Spain, and concluded that kriging with an 
external drift seemed to give the most coherent 
results in accordance with cross-validation 
statistics and had the advantage of requiring a 
less demanding variogram analysis than 
cokriging. 
     Goovaerts (2000) compared TP, WMA, 
ordinary kriging with varying local means, 
kriging with external drift and collocated co-
kriging for spatial interpolation of monthly and 
annual rainfalls. The r esults showed large 
prediction errors of the TP and WMA, while 
ordinary kriging was more accurate.  
     Diodato and Ceccarelli (2005) compared the 
inverse squared distance method with linear 
regression and ordinary cokriging (OCK) for the 
Sannio Mountains (southern Italy), obtaining 

the best results with cokriging that included 
elevation as secondary information.  
     Diodato (2005) studied the influence of 
topographic co-variables on t he spatial 
variability of precipitation over small regions of 
complex terrain. The results showed that 
ordinary cokriging is a very flexible and robust 
interpolation method, because it may take into 
account several properties (soft and hard data) 
of the landscape. 
     Li et al., (2006) estimated daily suspended 
sediment loads (S) using cokriging (CK) of S 
with daily river discharge based on weekly, 
biweekly, or monthly sampled sediment data. 
The results showed that the estimated daily 
sediment loads with CK using the weekly 
measured data best matched the measured daily 
values.  

Hengl et al. (2007) discussed the 
characteristics of re gression-kriging (RK) or 
Universal Kriging, its strengths and limitations, 
and illustrated these with a simple example and 
three case studies.  

Portal´es et al. (2009) performed a 
comparative study of different univariate and 
multivariate interpolation in e astern Spanish 
Mediterranean coast. Models were achieved for 
seasonal scales, considering a total of 179 rain 
gauges; data from another 45 rain gauges were 
also used to predict errors. Results proved that 
there is no ideal method for all cases; the 
method to be used will depend on (a) the 
number of geographical factors that influence 
rainfall, and (b) the m ajor or minor s patial 
correlation within the rainfall. 

Zhang and Srinivasan (2009) developed 
nearest-neighbor (NN), inverse distance 
weighted (IDW), simple kriging (SK), ordinary 
kriging (OK), simple kriging with local means 
(SKlm), and k riging with external drift (KED) 
to facilitate the estimation of automatic spatial 
precipitation while incorporating the geographic 
information system program in the Luohe 
watershed, located downstream of the Yellow 
River basin. The evaluation results showed that 
the SKlm_EL_X and KED_EL_X methods, 
which incorporate elevation and spatial 
coordinates into SKlm and K ED, respectively, 
produced significantly better results than 
Thiessen polygon and IDW in ter ms of th e 
coefficient of correlation. 

The present study’s goal was to use 
multivariate geostatistical methods to predict 
rainfall from elevation information and map the 
spatial variability. The specific objectives were: 
1. to extract elevation points from the DEM for 
analysis and rainfall data for use in CK methods 
as a primary variate and elevation values as a 
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secondary variate, 2. to a ttempt different CK 
methods and se lect the best one through 
analyzing the cross-validation error statistics 
through cross-semivariogram models, and 3. to 
use the selected CK method to predict rainfall 
values at unmeasured locations. 

The benefits of a geographical information 
system (GIS) and a geostatistics approach to 
accurately model the spatial distribution pattern 
of precipitation are known. 
 
2. Materials and Methods 
 
The study area is located in the center of Iran 
(latitude between 34º 15´and 36º 56´N, 
longitude between 52º 15´and 56º 53´ E) on the  
southern border of the Alborz mountain range. 
Central Kavir basin is one of the largest regions 
in Iran’s central zone. The study area is part of 
this basin with a surface area of approximately 
57784 km2. To the north lie districts within the 
Alborz mountain range. The maximum and 
minimum altitudes in the region are 3884 and 
648 m a.s.l., respectively. The mean altitude is 
about 1238 m a .s.l. Figure 1 sh ows the DEM, 
with a spatial resolution of 50 m, used in this 
research. 

Mean annual precipitation reaches 
approximately 180 mm i n the majority of the 
areas of the region, ranging from <70 mm in the 
south of the study region to as much as >300 
mm in the northern mountainous areas. One of 
the most important characteristics of the 

precipitation is it s interannual variability. The 
region has a dry season from June to November 
and a wet season from December to May (>80% 
of the precipitation falls between these months). 
Kavir basin is an arid region where the water 
balance is negative. 

The delineated base map (i.e. polygon 
feature class) of the study area and the location 
of rainfall gauging stations within the Kavir 
basin (i.e. point feature class) were generated 
using ArcGIS as two different coverage feature 
classes. The point feature class coverage map, 
representing the rainfall locations, also 
contained the mean monthly rainfall depths for 
twelve months as attribute values. The base map 
and the rainfall point coverage map were 
overlaid to represent the rain gauge locations. 
The DEM of study area was use d to extract 
approximately 160 elevation points ranging 
from of 670 to 3600 m a.s.l. covering the entire 
study area for use i n co-kriging analysis. The 
geostatistical analysis extension module of 
ArcGIS 9.3 was used to analyze and develop 
kriged surfaces. Several interpolation 
approaches are available in geographical 
information systems (GISs) to meet the general 
requirements of i nterpolation. Figure 1 shows 
the spatial distribution of the rain gauge stations 
and the locations of 160 extracted elevation 
points from DEM with elevations used in this 
study. Many stations are situated in 
mountainous areas. 

 

 
Fig. 1. Location and topography of the study area and locations of extracted elevation points from DEM and rain and meteorological 

station locations 
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Daily precipitation data for 30 years (1971-
2004) were obtained from 37 meteorological 
stations. Rainfall measurements are collected 
daily and compiled to generate monthly totals. 
Estimating rainfall depth at unsampled locations 
can be i mproved by interpolating between the 
nearest gauges. The daily observations made at 
all stations pass through a rigoro us quality 
control procedure. Consistency checks were 
applied to the data. After assuring the quality of 

the raw data, monthly precipitation averages 
were calculated. Some basic sample statistics 
were also determined (Table 1). Data used in the 
analysis were derived from Iran’s Ministry of 
Energy. The analysis of the primary variate 
(mean monthly rainfall depth) and secondary 
variate (elevation) resulted in good correlation 
values, ranging from 0.50 (January) to 0.77 
(September). 

 
          Table 1. Descriptive statistics of the monthly and annual precipitation (mm) data for 37 meteorological stations 

month Mean Median Standard 
deviation 

Maximum 
value 

Minimum 
value 

Coefficient 
of skewness Kurtosis Co* 

January 20.26 19.10 7.63 41.90 8.20 0.86 0.69 0.50 
February 22.81 20.20 8.75 39.90 9.40 0.52 -0.80 0.73 
March 28.97 28.60 1.60 50.40 9.10 0.30 -0.16 0.70 
April 27.10 25.30 9.57 48.20 9.70 0.51 -0.61 0.69 
May 22.49 18.70 11.04 44.70 5.90 0.53 -0.87 0.75 
June 7.37 5.10 5.76 24.40 0.20 1.21 0.89 0.73 
July 4.84 3.80 4.16 15.40 0.30 1.11 0.46 0.74 

August 3.54 2.20 3.25 11.80 0.10 1.24 0.59 0.75 
September 3.57 2.60 2.93 10.80 0.00 0.85 -0.17 0.77 

October 6.99 5.40 4.98 18.90 1.50 0.99 -0.36 0.69 
November 12.35 9.50 8.09 33.30 3.10 1.35 0.81 0.62 
December 20.94 18.40 9.73 57.00 7.50 1.61 3.95 0.72 

Annual 181.41 154.92 76.24 348.54 73.54 0.80 -0.43 0.78 
          *: Cor = Linear correlation coefficient between precipitation and altitude. 
 
2.1. Geostatistical interpolation techniques  
 
In this section, the estimators used i n the case 
study are briefly introduced. More information 
about them can be found in Goovaerts (1997). 
 All geostatistical estimators are variants of the 
linear regression estimator Z*(x): 

 )()().()()(
1

*
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i xmxZxwxmxZ 



          (1) 

where each datum, Z(xi ), has an associated 
weight, wi(x), and m(x) and m(xi ) are the 
expected values of Z*(x) and Z(xi ), respectively. 
The kriging weights must be determined to 
minimize the estimation variance, Var [Z*(x)- 
Z*(x)], while ensuring the unbiasedness of the 
estimator, E[Z*(x)- Z*(x)] = 0. All different types 
of kriging are distinguished depending on the 
chosen model for the trend, m(x), of the random 
function Z(x) (Goovaerts, 1997).  

In this study, three phases were completed to 
conduct any geostatistical work (Moral, 2009): 
 
1. Exploratory analysis of data. Data were 
studied without considering their geographical 
distribution. Statistics were applied to check 
data consistency, remove outliers, and identify 
the statistical distribution from where the data 
came. 
2. Structural analysis of data. Spatial 
distribution of the variable was analyzed. 

Spatial correlation or dependence can be 
quantified with semivariograms. 
     A variogram shows the degradation of spatial 
correlation between two points of space when 
the separation distance increases. Function has 
two components: i) the  nugget effect, which 
characterizes the discontinuity jump observed at 
the origin of distances and quantifies the short-
term, erratic variations of the studied 
phenomenon plus measurements and data 
errors; ii) the increasing part of the variogram, 
which may reach the sill (theoretical sample 
variance), level off the curve, for a distance 
called range, or incr ease continuously with 
distance. The non-nugget part of the variogram 
measures the non-random part of the 
phenomenon and models its average medium-
scale behavior in space. 
     The variogram is a function of both distance 
and direction, and so direction-dependent 
variability can be accounted for.  

Cokriging is a branch of kriging which uses 
additional covariates, usually more intensely 
sampled, to assist in predicting. Cokriging is 
most effective when the covariates are highly 
correlated. Both kriging and cokriging assume 
the homogeneity of first differences. Cokriging 
uses one or more secondary features which are 
usually spatially correlated with the primary 
feature (e.g., heights secondary, rain primary). 
Cokriging means kriging with more than one 
variable. The cokriging approach is another 
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possible way to incorporate secondary data. 
Although it is indicated when the secondary 
information is not exhaustive, i.e. auxiliary data 
are not available at all grid-nodes, if this 
information is known everywhere and c hanges 
smoothly across the study area, the cokriging 
system can retain only the secondary datum 
collocated with the location which is estimated 
(Goovaerts, 1997). In the  current study we 
performed two cokriging methods. Ordinary co-
kriging is the estimation of one var iable based 
on the measured values of two or more 
variables. It is a ge neralization of kriging in the 
sense that at every location there is a vector of 
many variables instead of one variable. OCK is 
the multivariate extension of kriging 
(Goovaerts, 1997). OCK analysis was 
performed for the 37 primary data points and 
the secondary variate (elevation points extracted 
from the DEM). Collocated ordinary co-kriging 
is a conditional estimator of CK where the 
neighborhood uses the secondary variable as a 
subset of l ocations where primary data are 
available along with the estimated locations 
(Wackernagel, 2003). The primary variate of the 
37 measured values of precipitation and the 
corresponding altitude values were used in the 
analysis. CCK analysis was performed for 41 
primary data points (precipitation) and the 
secondary variate was the elevation of the point 
locations included in th e primary variate [See 
Goovaerts (1997) for a detailed presentation of 
cokriging algorithms]. 

All geostatistical analyses were conducted 
using the extension Geostatistical Analyst of the 
GIS software ArcGISd (version 9.3, ESRI Inc). 
After modeling annual and m onthly 
precipitation with the selected algorithms, a set 
of map layers in raster format was generated.  
 
2.2. Error statistics 
 
The performances of th e OCK and CCK 
algorithms were assessed and compared using 
cross-validation results. This was achieved by 
temporarily removing one datum at a t ime from 
the data set and re-estimating the deleted value 
from the remaining data using kriging 
algorithms. In the present study, the reduced 
mean square error (RMSE) a nd the average 
error (AE) were the error statistics used 
(Campling et al., 2001) to compare the model-
predicted results with the observed values. 
RMSE was used to check the consistency 
between the estimation errors and the standard 
deviation of the observed values: 
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AE was used to test the predictability of the 
developed models: 
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where: 
zoi = observed value at location i 
zpi = predicted value at i  
N = number of pairs of observed and predicted 
values 
S = standard deviation of the observed values. 

This RMSE value should be within the range 
of 1 ±[2(2/N)1/2] for the model to be acceptable 
(Ella et al., 2001). The AE value should be 
close to zero for the model to be acceptable. 
 
3. Results  
 
The exploratory data analysis performed on the 
primary variate and the  secondary variate of 
elevation revealed that the da ta are normally 
distributed and free of outliers. In cokriging, the 
primary and secondary variates were fitted 
using different models available in the ArcGIS 
geostatistical extension module, and the optimal 
cross-semivariogram was selected. Figures 2 
and 3 show annual and monthly 
semivariograms. 

After calculating OCK and CCK, the cross-
validation error statistics were compared to 
select the best method to perform the CK, Then, 
the best CK algorithm (either OCK or CCK) 
was used to predict the primary variate values 
for more locations within the study region. The 
database of these predicted variables 
corresponding to ele vation locations provided 
the rainfall depths at predicted unmeasured 
locations. The cross-validation statistics in 
terms of R MSE and AE were estimated to 
ascertain the model algorithms, and finally the 
interpolated surface reflecting the variation of 
rainfall depth over the study area was generated 
using ArcGIS. These procedures were followed 
to generate the spatial variability map of long-
term mean monthly rainfall for one m onth and 
replicated for all twelve months to ge nerate 
twelve such maps. The interpolated surface was 
generated for the study region for the twelve 
months, and the map of annual rainfall, driest 
(august) and wettest (March) months of the year 
are presented in Figures 4 and 5, respectively. 

The predicted mean monthly rainfall values 
from the CK algorithm and the observed data of 
rain gauge locations for all twelve months were 
subjected to ordinary kriging analysis. 
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Fig. 2. Annual Rainfall Semivariogram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Monthly Rainfall Semivariogram 
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     This was performed to select the best method 
for predicting rainfall at unmeasured locations 
and to predict spatial variability. The cross-
validation error statistics were estimated using 
Equations 2 and 3 to select the best model. 
     The calculated RMSE of cross-validation 
results for a ll months were well within the 
acceptable range for the model obtained through 
the OCK and CCK method. Moreover, the AE 

values calculated from the cross-validation 
results of the CCK and OCK algorithm methods 
for all months were close to zero. The cross-
validation statistics performed for both the OCK 
and CCK methods of CK (Table 2) revealed that 
the OCK method performed better than the 
CCK method. Hence, the OCK algorithm was 
used to predict the rainfall prediction map.   

 
                 Table 2. Comparison of OCK and CCK methods in terms of model fitting cross-validation statistics 

month Variogram model 
ordinary cokriging collocated ordinary cokriging 

Cross-validation statistics Cross-validation statistics 
AEa RMSEb AEa RMSEb 

January Exponential 0.032 1.02 0.036 1.03 
February Exponential 0.016 0.73 0.009 0.82 
March Exponential 0.013 0.76 0.040 0.95 
April Exponential 0.005 0.93 0.014 0.98 
May Exponential -0.016 0.74 0.005 0.90 
June Exponential 0.004 0.81 0.018 0.89 
July Spherical -0.003 0.74 -0.002 0.78 

August Spherical 0.016 0.77 0.018 0.81 
September Spherical -0.006 0.73 0.005 0.81 

October Exponential 0.005 0.87 0.009 0.91 
November Exponential 0.026 0.91 0.026 0.92 
December Exponential 0.008 0.77 0.005 0.80 

Annual Exponential 0.006 0.93 0.013 0.86 
                   [a] The acceptable value of KAE is close to zero.  
                   [b] The acceptable value of KRMSE (1 ±[2(2/N)1/2] is 0.53 to 1.46 (N = 37). 
 
 

 
Fig. 4. Annual Rainfall Prediction Map 
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Fig. 5. Rainfall prediction map for the driest (August) and wettest (March) months 

 
4. Discussion and Conclusion 

 
Many studies, particularly those performed in 
Iran such as Zabihi et al., (2011), Mirmousavi et 
al., (2010), Shaabani (2010), Saghafian et al., 
(2011), and Mahdavi et al., (2004) solely 
compared IDW interpolation and kriging family 
approaches, and all of t he above-mentioned 
studies concluded that the kriging approach is 
best.  

The mentioned researchers attempted to 
compare a deterministic method (IDW) with the 
univariate kriging family and concluded that the 
ordinary kriging method was the most 
appropriate technique. Some noted researchers 
the declared co-kriging to be the best among 
IDW and u nivariate kriging family techniques. 
The results of these comparisons are obvious. In 
many studies, concluded that the kriging method 
is most suitable, without regard to the origin of 
data and the point distribution. Comparison of 
interpolation approach while is worthwhile that 
the different methods from one family were 
compared. 

In the current research, different 
geostatistical approaches were classified into 
deterministic, univariate kriging, and 
multivariate kriging categories. Then each 
method was compared within each family. For 
example, ordinary co-kriging (OCK) and 
collocated co-kriging (CCK) were compared 

with each other and not compared with the 
deterministic approach. 

It is understood that modeling rainfall spatial 
variability of an arid region with a s parse rain 
gauge network poses a challenging task in terms 
of prediction accuracy. Furthermore, the s hort 
observation record of so me stations and 
inconsistency in data recording also influence 
the rainfall predictability over the arid region. 
This necessitates the use of exploratory data 
analysis techniques as a pre requisite before 
using the data for geostatistical modeling. It also 
revealed the necessity of using some secondary 
variables such as altitude, proximity to large 
bodies of water, and land cover and the support 
of remote sensing.    

Different multivariate kriging approaches 
used in this study to predict the spatial rainfall 
variability for arid regions with orographic 
effects are simple and reasonable approaches 
which can be applied to similar locations having 
sparse rain gauge locations and undulating 
topography. 

OCK analysis was performed for the 37 
primary data points (elevation and rainfall 
values) and the secondary variate (elevation 
points extracted from the DEM). CCK analysis 
was performed for 37 primary data points 
(elevation and rainfall values) and the secondary 
variate which was the elevation of the point 
locations included in the primary variate. Both 
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the OCK and CCK methods were compared 
based on cross-validation error statistics. 

The developed methodology of geostatistical 
analysis and mathematical association of rainfall 
and elevation values to estimate a standardized 
value for use in the CK method and the 
combination of OCK and CCK approaches to 
generate rainfall prediction maps can be applied 
to account for the spatial variability of rainfall. 
 
References 
 
Ahmed, S., G . De M arsily, 1987. Comparison of  
     geostatistical methods for estimating transmissivity  
     using data on transmissivity and specific capacity.  
     Water Resources Research 23 (9), 1717–1737. 
Campling, P., A. Gobin, J. Feyen, 20 01. Temporal  
     and spatial rainfall analysis across a humid tropical  
     catchment. Hydrological Processes 15(3): 359-375. 
Creutin, J.D., C. Obled, 1982. Objective analyses and  
     mapping techniques for rainfall field: an o bjective  
     comparison. Water Resour. Res. 18; 413–431. 
Diodato, N., M. Ceccarelli, 2005. Interpolation processes  
     using multivariate geostatistics for mapping of  
     climatological precipitation mean in the Sannio  
     Mountains (southern Italy). Earth Surface Processes   
     and Landforms 30(3): 259–268, DOI:10.1002/  
     esp.1126 
Diodato, N., 2005. The influence of topographic co- 
     variables on the spatial variability of precipitation  
     over small regions of complex terrain. International  
     Journal of Climatology 25(3): 351–363, DOI:  
     10.1002/joc.1131 
Ella, V.B., S.W. Melvin, R.S. Kanwar, 2001. Spatial  
     analysis of NO3-N concentration in glacial till. Trans.  
     ASA. 
Goovaerts, P., 1997. Geostatistics for Natural Resources  
     Evaluation. Oxford University Press: New York. 
Goovaerts, P., 2000. Geostatistical approaches for  
     incorporating elevation into the spatial interpolation  
     of rainfall. Journal of Hydrology 228; 113–129. 
Grimes, D.I.F., E. Pardo-Iguzquiza, R. Bonifacio, 1999.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Optimal areal rai nfall estimation using raingauges  
     and satellite data. Journal of hydrology 222, 93–108. 
Hengl, T., Gerard B.M. Heuvelinkb, David G. Rossiter,  
     2007. About regression-kriging: From equations to  
     case studies. Computers & Geosciences 33 (2007)  
     1301–1315. 
Hevesi, J.A., A.L. Flint, J.D. Istok, 1992a.b.  
     Precipitation estimation in mountainous terrain using  
     multivariate geostatistics. Part I: structural analysis. J.  
     Appl. Meteor. 31; 661-676. 
Li Z., You-Kuan Zhang, Keith Schilling, Mary  
     Skopec, 2006. Cokriging estimation of daily  
     suspended sediment loads. Journal of Hydrology   
     327; 389-398. 
Moral, F.J., 2009. Comparison of different geostatistical  
     approaches to map cli mate variables: application to  
     precipitation. Int. J. Climatol, 2009. DOI:  
     10.1002/joc.1913 
Pardo-Ig´uzquiza, E., 1998. Comparison of geostatistical  
     methods for estim ating the areal average  
     climatological rainfall mean using data on  
     precipitation and topography. International Journal of  
     Climatology 18; 1031-1047. 
Phillips, D.L., J. Dolph, D. Marks, 1992. A comparison  
     of geostatistical procedures for spatial analysis of  
     precipitation in mountainous terrain. Agric. For.  
     Meteorol., 58:119-141. 
Portal´es  Cristina, Nuria Boronat,a Josep, E. Pardo- 
     Pascuala, Angel Balaguer-Beserb, 2009. Seasonal  
     precipitation interpolation at the Valencia region with  
     multivariate methods using geographic and  
     topographic information. INTERNATIONAL  
     JOURNAL OF CLIMATOLOGY. DOI: 10.1002/joc 
Tabios, G.Q., J.D. Salas, 1985. A comparative analysis  
     of techniques for spatial interpolation of precipitation.  
     Water Resour. Bull. 21; 365–380. 
Wackernagel, H., 2003. Mul tivariate geostatistics. In  
     Multivariate Geostatistics: An Intro duction with  
     Applications, 145-169. 3rded. New York, N.Y.:  
     Springer-Verlag. 
Zhang, Xuesong, Raghavan Srinivasan, 2009. GIS- 
     Based Spatial Precipitation Estimation: A  
     Comparison of Geostatistical Approaches. Journal of  
     the American Water Resources Association  
     (JAWRA) 45(4):894-906. DOI: 10.1111⁄j.1752- 
     1688.2009.00335.x. 


