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Abstract 
 
     Flood is one of the most calamitous natural disasters that causes extensive property and life damages across the 
world. It however, could be a blessing due to its special natural water resources recharging value. By simulating the 
magnitude of probable floods considering the anthropogenic and natural effects and implementing contingency plans, 
their damages could be reduced. In this paper, the General Circulation Model (GCM) climate change scenarios are 
employed to simulate future floods. The GCM scenarios include simulation of climatic signals of the future 
considering green house gas emission forces. In this study a statistical downscaling model (SDSM) has been applied 
for rainfall downscaling to provide regional results from GCM outputs. Then, a rainfall-runoff model called HEC-
HMS has been employed to estimate runoff in the region. The maximum simulated rainfall for each year that is of 
high enough potential to cause flood, is introduced into the rainfall-runoff model to simulate the plausible 
hydrograph of the flood. The proposed procedure is applied to the Kajoo River basin in South Baloochestan region, 
south-east of Iran.  
 
Keywords: Downscaling; Flood simulation; Rainfall-Runoff model; GCM 
 
 
1. Introuduction 
 
     Flood is a natural disaster which can cause 
extensive damages and loss of life, however, it 
sometimes is considered as life saving due to 
water scarcity in arid and semi-arid regions. In 
some such regions as the southeastern Iran, the 
occurrence of a considerable downfall of rain in 
a short lapse of time often results in flash 
floods.  
     Many parts of the world have experienced 
changes in global water cycle such as the 
magnitude and timing of runoff, the frequency 
and intensity of floods and droughts, rainfall 
patterns, extreme weather events, and water 
availability both quantity and qualitywise (Jiang 
et al., 2007). Climate change has been realized  
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as an effective factor on these changes in recent 
years. Studies show that climate change has 
significant impacts on the medium to long-term 
planning of water resources as well as on flood 
characteristics (IPCC, 1999).  
     Over the last decade, two main strategies 
have evolved in assessing the hydrological 
effects of climate change. The first is to identify 
past hydroclimatic variations over appropriate 
timescales by examining change in rainfall and 
runoff. This strategy is crucially dependent on 
the availability and quality of appropriate long-
term records (Hisdal et al., 1995). The second 
strategy, which has been rapidly developed over 
the last decade, involves the development of 
climate change scenarios (based on the 
estimates of future trends in global population, 
economic and technological developments and 
the resulting behavior of climatic system) 
coupled with GCMs (General Circulation 
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Models) and then downscaling of outputs of 
rainfall and temperature at the regional or 
catchment scales. Rainfall-runoff models are 
applied to the downscaled hydro-meteorological 
variables to provide estimates of change in 
runoff under the specified climatic scenarios 
(Arnell, 1997; Reynard et al., 1998; Kilsby et 
al., 1998). It is not possible to make reliable 
predictions of regional hydrologic changes 
directly from climate models due to the coarse 
resolution of GCMs and the simplification of 
hydrologic cycle in climate models (Arora, 
2001). A successful implementation of climate 
change scenarios is significantly dependent on 
better specified scenarios; increasingly accurate 
GCM outputs (especially for precipitation); 
improved procedures for downscaling to meso-
size catchments; and precise calibration of 
selected rainfall-runoff models. As there is not 
enough historical data available in most of the 
cases, applying the second strategy for 
evaluation of climate change impacts would be 
more practical and beneficial. 
     In this paper, the second approach is 
employed to evaluate climate change effects on 
runoff for Kajoo River basin located in south-
eastern Iran. The method has been applied for 
long-lead flood simulation, using downscaled 

rainfall data. The downscaled rainfall data are 
used as input into rainfall-runoff model, which 
has been calibrated as based on historical flood 
events for simulation of future flood 
hydrographs. In a next section a brief 
description of the structure of GCM and rainfall 
downscaling procedure has been given. This 
section is followed by introducing the study 
area and data resources. Then a description of 
structure of rainfall- runoff model and its 
calibration procedure is given. Finally a 
summary and conclusion under the topic of 
discussion and conclusionis presented. 
 
2. Materials and methods 
 
2.1. General Circulation Model (GCM) 
 
     General Circulation Models (GCMs) indicate 
that rising concentrations of greenhouse gases 
will have significant implications for climate at 
global and regional scales. GCMs describe the 
atmosphere at rectangular grids covering the 
earth with cubes of air above which currently 
are 2-5° grid in latitude and longitude, 6-15 
vertical levels which are assumed as 
representatives of volume elements in the 
atmosphere as presented in Figure 1. 

 

 
Fig. 1. A schematic discrete of atmosphere for utilizing GCMs (Wilby and Wilks, 2002) 
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     These models solve a series of equations in 
the atmosphere describing movement of energy 
and momentum along with conservation of mass 
and water vapor as follows:  
1- Momentum equation:  

  Fgpv
Dt

vD
  .2 1               (1) 

2- Mass conservation equation:  

  ECv
Dt

Dr
 .                 

(2) 
3- Energy conservation equation:  

Q
dt

d
p

Dt

DI


1                     

(3) 
4- Gas Law: 

RTp                                        (4) 

Where 



 .v
tDt

D , v  is velocity relative to 

rotating earth, t is time,   is angular velocity  
 

vector of the earth, ρ is the atmospheric density, 

g is apparent gravitational acceleration, F  is 
force per unit mass, C and E are rate of creation 
and destruction of atmospheric constituents, I is 
internal energy per unit mass (I=cν.T), Q is 
heating rate per unit mass, R is gas constant, T 
is temperature and cν is specific heat of air at 
constant volume and p the atmospheric 
pressure. These equations are solved defined 
values of divergence terms at each grid point, 
and defined input and output for upper and 
lower surfaces of array is solved for each 
defined element of the atmosphere. 
     The climatic variables which are pressure 
dependent are analyzed on such iso-pressure 
heights as 500-hpa or 850-hpa heights. The air 
pressure varies with height from ground surface 
but its variations are terrain following (Figure 
2). 

 
Fig. 2. Schematic representation of the vertical variation of pressure 
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     By being elevated from ground surface, the 
iso-pressure lines get smoother and straight, or 
meaning that the lower grid levels follow the 
terrain while the upper surface is flat. A 
dimensionless quality σ is used to define the 
model levels: 

tS

t

pP

pp





0

0                   (5) 

Where P0 is the reference-state pressure, Pt is a 
specified constant top pressure, and PS0 is the 
reference-state surface pressure. It can be seen 
from Equation 5 and from Figure 2 that σ is 
zero at the model top while one at the model 
surface, each model level being defined by a 
value of σ. As GCMs are run at a low 
resolution, the results should be downscaled 
into watershed scale at individual stations 
(Department of the Environment, 1996). A brief 
description of the downscaling techniques is 
given in the next section. 
 
2.2. Downscling techniques 
 
     The general theory, limitations and practice 
of downscaling, have been discussed in detail 
by Giorgi and Mearns, (1991); Wilby et al., 
(1998) and by Xu, (1999). Local-scale surface 
weather could be derived in two levels from 
regional-scale atmospheric predictor variables 
as illustrated in Figure 3. Firstly, Statistical 
Down Scaling (SDS) is analogous to the 
“Model Output Statistics” (MOS) and “perfect 
prog” approaches used for short-range 
numerical weather predict (Wilby and Wilks, 
2002). Secondly, in a dynamical style of 

approach, Regional Climate Models (RCMs) are 
used to simulate sub-GCM grid scale climate 
features dynamically using time-varying 
atmospheric conditions supplied by a GCM 
bounding a specified domain. Both approaches 
will continue to play a significant role in the 
assessment of potential climate change impacts 
arising from future increases in greenhouse-gas 
concentrations. 
 
2.2.1. Statistical Down Scaling Model (SDSM) 
 
     SDSM uses statistical downscaling 
methodology that enables the construction of 
climate change scenarios for individual sites at 
daily time-scales, using grid resolution GCM 
output. Statistical downscaling methods rely on 
empirical relationships between local scale 
predictants and regional scale predictor(s). The 
main advantage of this technique is the relative 
ease of application coupled with observable 
trans–scale relationships. The main weakness of 
regression–based methods is that the models 
often explain only a fraction of the observed 
climate variability (especially in precipitation 
series). Regression methods also assume 
validity of the model parameters under future 
climatic conditions, and are highly sensitive to 
the choice of predictor variables and to 
statistical transfer function. Furthermore, 
downscaling future extreme events using 
regression methods is problematic since these 
phenomena, by definition, tend to lie at the 
limits or beyond the range of the calibration 
data set (Wilby et al., 1998).

 

 
Fig. 3. A schematic illustration of downscaling levels (Wilby and Dawson, 2004) 



 M. Karamouz et al. / DESERT 14 (2009) 185-196  
 

189

     During downscaling with the SDSM, a 
multiple linear regression model is developed 
between a few selected large-scale predictors 
and local scale predictants such as temperature 
and rainfall. The parameters of the regression 
equation are estimated using the efficient dual 
simplex algorithm. Large-scale relevant 
predictors such as weather pressure, 
temperature, velocity and humidity are selected 
using correlation analysis, partial correlation 
analysis and scatter plots, and also considering 
physical sensitivity between selected predictors 
and predictant for the region. Ideally, predictor 
variable candidates should be physically and 
conceptually sensible with respect to the 
predictant (rainfall) and accurately modeled by 
GCMs. In rainfall downscaling, it is also 
recommended that the selected predictors 
should contain variables describing such 
atmospheric circulations as thickness, stability 
and moisture content. In practice, the choice of 
predictor variables is constrained by data 
availability in GCM archives. Structure and 
operation of SDSM includes five distinct tasks 
as presented in Figure 4, and as follows: (1) 
preliminary screening of potential downscaling 
predictor variables; (2) assembly and calibration 
of SDSM(s); (3) synthesis of ensembles of 
current weather data using observed predictor 
variables; (4) generation of ensembles of future 
weather data using GCM-derived predictor 
variables; (5) diagnostic testing/analysis of 
observed data and climate change scenarios. In 
this model, the first step is to determine whether 
daily rainfall occurs or not. For this purpose ωi, 
the indicator of state of rainfall either occurring 
or not on day i is calculated as follows:  





n

j

j
iji u

1

)(
0 ˆ                           (6) 

Where ûi is the normalized predictor on day i 
and αj the estimated regression coefficient. 
Precipitation in day i occurs if ωi≤ri, where ri is 
a stochastic output from a linear random- 
number generator. 
Value of rainfall in each rainy day is estimated 
in the second step using z-score as follows: 

  
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                          (7)  

where Zi is the z-score for day i, βj the estimated 
regression coefficients for each month,   is a 
normally distributed stochastic error term, and    

)]([1
ii ZFy                                               (8) 

Where   is the normal cumulative distribution 

function and F the empirical function of yi, daily 
precipitations. 
2.3. Study area 

 
     The study area is the Kajoo River sub-basin 
with an area of about 3659 km2, located in 
Sistan- Baloochestan province, south-eastern 
Iran. Because of the limited carrying capacity of  
Kajoo River, yearly floods inflict severe 
damages to agricultural lands and to rural areas. 
Therefore, hydrograph simulation of probable 
future floods of the region is the first and most 
vital step in developing an appropriate scheme 
for contingency plans to face the floods. Twenty 
four year (1976–1999) data of daily rainfall of a 
meteorological station inside the basin namely 
Ghasre-Ghand, is taken for downscaling rainfall 
as predictant. Such observed large-scale NCEP 
(National Centre for Environmental Prediction) 
atmospheric variables as air pressure, humidity, 
velocity in different atmospheric levels for the 
same period (for 60-63.75E, 25-27.5N) have 
been used as rainfall predictors. The library of 
large-scale NCEP predictors is divided into the 
regions of: Europe, Africa and Middle East, 
Asia as well as 3 regions in America. The 
considered case study is placed in Asian 
division, located at 60-63.75 E longitude and 
27.5-30 N latitude as illustrated in Figure 5 (The 
grid covering the earth in library of NCEP is 2.5 
in latitude and 3.75 in longitude).  
     Weather generator is employed to downscale 
observed NCEP predictors, and to generate 
scenarios to downscale the considered scenarios 
for future climate variations. HadCM3 (Second 
Hadley Centre Coupled Ocean-Atmosphere 
GCM) scenario A data which is available from 
2000 to 2099, is used to simulate the future 
rainfall under climate change effects. In these 
scenarios, the effect of greenhouse gas 
emissions on climate, and their subsequent 
effects on the future economic and social 
development are taken into consideration.  
 
3. Results 
 
3.1. Rainfall Downscaling 
 
     SDSM uses normal distributed data in 
downscaling procedure so, at first daily rainfall 
data has been transformed through the fourth 
root function to fit the normal probability 
distribution. The correlations between different 
combinations of available predictors and daily 
rainfall have been assessed to find the most 
appropriate set of predictors. It should be noted 
that correlations between winter rainfall and 
predictors have been considered because it is in 
this season that the more severe floods occur.  
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Fig. 4. SDSM climate scenario generation process (Wilby et al., 2002) 

 

 
Fig. 5. Location of the Baloochestan province in the NCEP archive 
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     P-value and correlation statistics between 
rainfall and predictors available in SDSM 
library have been used to select the more 
effective predictors in rainfall prediction. P-
value helps to identify the extent of explanatory 
power for each predictor. P-values lower than 
0.05 indicate that the result can be statistically 
significant but not assuredly of practical 
significance. On the other hand a high P-value 
would indicate that the predictor-predictant 
correlation is likely to be due to chance. The 
drawn scattered plots for visual inspection of 
predictor and predictant's relations are also 

employed to demonstrate the relationship 
between rainfall and the selected set of 
predictors. Finally the set of predictors has been 
selected for long lead rainfall simulation as 
based on maximum correlation with daily 
rainfall, presented in Table 1. Results show that 
the most effective signals are the relative 
humidity at 850 hPa height, near surface 
specific humidity as well as near surface 
relative humidity. Air humidity is the most 
effective factor on rainfall in the study region 
with all the selected predictors being related to 
humidity.  

 
     Table 1. The selected effective climate variables for long lead rainfall simulation in the Baloochestan area 

Predictor Correlation coefficient Partial correlation coefficient P value 
Relative humidity at 850 hPa height 0.42 0.48 0.002 

Near surface specific humidity 0.40 0.44 0.000 
Near surface relative humidity 0.45 0.50 0.000 

 

     The model has been calibrated against 
rainfall data for years 1976-1990 and validated 
for the remaining available data (1991-1999). 
Monthly, seasonal and annual mean as well as 
standard deviation statistics in the calibration 
period have been shown in Table 2. As can be 
seen the statistics of the simulated and observed 
data are close to each other with their difference 
in all the considered time steps being always 
less than 10%. This shows the robust 
performance of the model which is a condition 
necessary for long lead rainfall simulation.  
     Through the above procedure, the weather 
generator was employed to downscale the 
observed (NCEP) predictors, and generate 
scenarios to downscale the GCM predictors 
representing the current climate. Figure 6 shows 
the compatibility of monthly mean rainfall totals 
under observed (NCEP) and HadCM3 (Second 
Hadley Centre Coupled Ocean-Atmosphere 
GCM) during the validation period. As can be 
seen in this figure the maximum differences 
occur in February, June and December. The 
observed against simulated total rainfall in the 
three winter months, December, January and 
February, are 89 and 85 respectively, resulting 
in about 5% error in long lead rainfall 
simulation. The simulated rainfall values from 
1961 to 2099 (Fig. 7) are compared to evaluate 
the effect of climate change on annual rainfall. 
The mean value of rainfall in the period 2006 to 
2099 will decrease for about 3% rather than the 
mean value of historical records (1961-2005). 
The severity of the rainfall events especially the 
peak values will decrease under climate change 
effects in the study region. The decrease of 

standard division by 12% in the future 
demonstrates this fact. 
 
3.2. Rainfall-Runoff Model 
 
     In order to simulate runoff as based on 
rainfall, the hourly hyetograph of rainfall is 
developed using rainfall pattern suggested by 
NRCS (Natural Resource Conservation Service, 
1986). For this purpose, the rainfall pattern of 
study area developed by Absaran Consulting 
Engineers (2005) has been compared with the 
three suggested SCS patterns for disaggregation 
of total rainfall. Finally, the central SCS pattern 
has been selected because of better coincidence 
with the observed rainfall pattern in the region. 
The selected pattern has monotonic and steady 
intensity during the rain, the same as the 
observed rainfall pattern in the study area.  
     HEC- HMS model developed by Hydrologic 
Engineering Center of U.S Army Corp of 
Engineers is used as the rainfall-runoff model 
in this study. Sub-basins of the study area have 
been characterized and modeled in HEC-HMS 
software using SCS method. The study area 
includes 12 sub-basins the physical 
characteristics of which and their placement in 
the study area are presented in Table 3 and in 
Figure 8, respectively. These sub basins are 
identified as based on the topographic 
characteristics of the study region. There exist 
three hydrometric (H1-H3) and three gage 
stations (R1-R3) in the study area as presented 
in Figure 8. The recorded data at these stations 
are employed for development of rainfall-
runoff model. 
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                     Table 2. Summery statistics of observed and simulated data 
Summery statistics of observed data 

Month Mean Max Min Variance Summation 
January 0.26 2.58 0.1 0.25 7.73 
February 0.176 2.5 0.1 0.12 4.84 

March 0.27 2.8 0.1 0.27 8.32 
April 0.12 2.07 0.1 0.03 3.61 
May 0.12 1.86 0.1 0.03 3.63 
June 0.13 2.08 0.1 0.05 3.92 
July 0.17 2.24 0.1 0.12 5.24 

August 0.14 2.14 0.1 0.06 4.32 
September 0.12 1.73 0.1 0.02 3.47 

October 0.18 2.32 0.1 0.13 5.50 
November 0.12 2.00 0.1 0.36 3.68 
December 0.21 2.46 0.1 0.18 6.57 

Winter 0.21 2.57 0.1 0-.19 17.22 
Spring 0.17 2.80 0.1 0.11 15.57 

Summer 0.15 2.25 0.1 0.78 13.48 
Autumn 0.14 2.32 0.1 0.07 12.65 
Annual 0.17 2.80 0.1 0.11 60.84 

Summery statistics of simulated data 
January 0.27 2.5 0.1 0.29 8.5 
February 0.32 2.69 0.1 0.36 8.9 

March 0.2 2.67 0.1 0.19 6.3 
April 0.17 2.47 0.1 0.11 4.9 
May 0.12 2.14 0.1 0.05 3.8 
June 0.11 1.86 0.1 0.01 3.2 
July 0.19 2.74 0.1 0.17 5.89 

August 0.18 2.51 0.1 0.14 5.68 
September 0.13 1.73 0.1 0.04 3.49 

October 0.13 1.86 0.1 0.04 3.91 
November 0.12 2.19 0.1 0.027 3.46 
December 0.19 2.43 0.1 0.14 5.73 

Winter 0.25 2.68 0.1 0.26 21.56 
Spring 0.16 2.67 0.1 0.12 15.03 

Summer 0.16 2.73 0.1 0.11 14.74 
Autumn 0.12 2.19 0.1 0.03 10.87 
Annual 0.17 2.74 0.1 0.13 59.52 
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Fig. 6. Monthly mean rainfall totals at Baloochestan for the current climate downscaled using observed (NCEP) rainfall 
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(1991-1999) and GCM (HadCM3) predictors (1991-1999) 
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Fig. 7. The annual rainfall variations for the period of 1961-2005 (historical) and 2006-2099 (simulated) 
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Fig. 8. Sub-basins of the study area 
                                        Table 3: The characteristic of sub-basins in the study area 

Sub-basin  A (km2) L (km) tC (Kirpich) 
1 535 28  3.48 
2  175 10  1.01 
3  422 21  2.34 
4 66 13  1.56 
5  317 38  1.49 
6  450 39  4.26 
7 395 39 5.12 
8 506 32  3.46 
9 50  13  1.61 

10 73.3 13  1.75  
11  255 25  3.18 
12 295 18 1.9 

 

     For development of the rainfall-runoff 
model, first, the basin physiographic parameters 
including CN, time of concentration and the 
initial loss of rainfall are determined. Since 
different sub-basins have different CN values, 
the area-weighted of CNs is considered as the 
representative of soil condition in the entire 
basin. An average CN of 85 has been estimated 
for the basin in a moderate humidity (AMC-II) 
situation. The initial loss of rainfall has been 
considered as 3 mm according to site 
measurements. The time of concentration, tc, is 
estimated using Kirpich method as follows: 

385.03

c H

L
949.0t 








                  (9) 

Where L is the length of flow in the basin (km) 
and H the altitude difference between outlet and 
highest point of the basin.  
     A historical storm hyetograph occurred in  
January 1998 has been chosen for rainfall-
runoff model calibration. The observed and 
simulated hyetographs of this storm have been 

shown in Figures 9 and 10. The schemes of the 
observed and predicted rainfall in the first day 
are different but during the next day the 
difference between the observed and predicted 
values decreases. There is about 15% difference 
between the predicted and observed recordings 
of rainfall during the thunderstorm days of 
January 28 and 29, 1998. The predicted values 
are overestimated and more conservative. The 
observed and simulated hydrographs of this 
storm have been shown in Figure 11 with R2 
equal to 96%. Although the observed 
hydrograph bears two distinct peaks with its 
major peak bearing about 50% error (the 
difference of observed and simulated values 
divided by the observed value), the volumes of 
observed and simulated flood hydrographs of 
20% error are closer to each other. It can be 
concluded that the proposed methodology can 
effectively simulate the flood volume but 
further studies should be carried out to improve 
the temporal distribution of flood hydrograph.  
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Fig. 9. The observed hyetograph of storm during 28-29 January 1998 
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Fig. 10. The simulated hyetograph of storm during 28-29 January 1998 
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Fig. 11. A comparison of the simulated and observed hydrograph of storm occurred during 28-29 January 1998 

 
4. Discussion and conclusion 
 
     Winter rainfall predicted through GCM 
scenarios have been downscaled using large 
scale NCEP signals and SDSM for South 
Baloochestan region in Iran. Different large 
scale predictors have been examined for a 
prediction of rainfall out of which surface 
specific humidity, near surface specific 

humidity, relative humidity at 850 hpa which 
were observed to be of the highest correlation 
with daily rainfall, were selected.  
     Through an analysis of the downscaled 
rainfall data for each year, the flood generating 
rainfall has been simulated in the HEC-HMS 
rainfall-runoff model to simulate flood 
hydrograph. The results show that the simulated 
hydrograph volume closely matches with the 
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observed value. This combined model can be 
employed for flood simulation as an effective 
tool and it can help decision makers in planning 
for appropriate on-time emergency response 
strategies to reducethe extent of flood damages. 
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Index 
 
t: time 

v : velocity relative to rotating earth 
 : angular velocity vector of the earth 
ρ: atmospheric density,  
g:  apparent gravitational acceleration  
F : force per unit mass  
C: rate of creation of atmospheric constituents 
E: rate of destruction of atmospheric 
constituents  
I: internal energy per unit mass (I=cν.T) 
Q: heating rate per unit mass  
R: gas constant, 
T: temperature  
cν: specific heat of air at constant volume  
P: atmospheric pressure 
ûi: normalized predictor on day i  
αj: the estimated regression coefficient 
ri: a stochastic output from a linear random- 
number generator 
Zi: the z-score for day i 
βj: monthly estimated regression coefficients 
ε: a normally distributed stochastic error term 
 : the normal cumulative distribution function  

F: the empirical function of yi 
L: length of flow in the basin (km)  
H:altitude difference between outlet and the 
highest point of the basin 
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