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Abstract 
 
     Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools for 
modelling hydrological processes such as rainfall runoff processes. However, the employment of a single model does 
not seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process that 
varies in space and time. For this reason, this study aims at decomposing the process into different clusters based on 
self-organizing map (SOM) ANN approach, and thereafter modelling different clusters into outputs using separate 
feed-forward multilayer perceptron (MLP) and supervised self-organizing map (SSOM) ANN models. Specifically, 
three different SOM models have been employed in order to cluster the input patterns into two, three, and four 
clusters respectively so that each cluster in each model corresponds to certain physics of the process under 
investigation and thereafter modelling of the input patterns in each cluster into corresponding outputs using feed-
forward MLP and SSOM ANN models. The employed models were developed on two different watersheds, Iranian 
and Canadian. It was found that although the idea of decomposition based on SOM is highly persuasive, our results 
indicate that there is a need for more principled procedure in order to decompose the process. Moreover, according to 
the modelling results the SSOM can be considered as an alternative approach to the feed-forward MLP.  
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1. Introduction 
 
     Modelling of a transformation of rainfall to 
runoff (or in broader sense, precipitation to 
runoff) is a prime focus of hydrological 
modelling. In particular, runoff forecasting for a 
watershed subjected to rainfall is central for 
efficient planning and management of water 
resources such as flood control and 
management. Usually, the hydrologists have 
used a variety of models, including 
deterministic (physical) models, conceptual 
models and systems theoretic/black-box models, 
in order to model this transformation. The 
deterministic (physical) models describe the 
transformation using physical laws of mass and 
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energy transfer (Dawson & Wilby, 2001). 
Alternatively, in conceptual models instead of 
using physical laws of mass and energy transfer, 
a simplified, but a plausible or reliable 
conceptual representation of the underlying 
physics is adopted (Jain & Srinivasulu, 2006). 
Another alternative approach in modelling of 
the rainfall-runoff process is black-box models, 
built upon the input and output observations 
without detailed understanding of the physics 
involved in the process under investigation. 
Artificial neural networks (ANNs) can be 
considered as black-box models. The ANN is a 
nonlinear mathematical structure capable of 
identifying complex nonlinear relationships 
between input and output data of a system (Hsu 
et al., 1995). Due to the superiority of their 
performance compared to the alternative 
counterparts inmost of the cases, ANN models 
have been widely used by hydrologists 
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particularly in modelling of the rainfall-runoff 
process (e.g. Hsu et al., 1995; Lorrai & Sechi, 
1995; Minns & Hall, 1996; Dawson & Wilby, 
1998; Tokar & Johnson, 1999; Rajurkar et al., 
2002; Wilby et al., 2003; Giustolisi & Laucelli, 
2005; Jain & Srinivasulu, 2006). A 
comprehensive review of ANNs along with 
their applications in hydrology can be found in 
Maier & Dandy (2000), ASCE Task Committee 
(2000a; b), and Dawson & Wilby (2001).   
     Most of the papers published on rainfall-
runoff process modelling by means of ANN 
employ a single ANN model in order to model 
this complex, nonlinear and discontinuous 
process. However, in the following part of the 
introduction section we briefly review some 
papers that regard the issue of decomposition of 
hydrological processes, particularly rainfall-
runoff process, into various clusters, 
corresponding to the various physics involved in 
a watershed runoff generation, hence employing 
a separate model for each cluster or segment. 
Furundzic (1998) used a self-organizing map 
(SOM) to decompose the rainfall-runoff process 
input-output space into three classes and 
thereafter employed a separate feed-forward 
multilayer perceptron (MLP) model for each 
class. Abrahart & See (2000) used SOM to 
cluster the whole modelling domain into distinct 
individual event types (64 clusters) and found 
encouraging results for the examined 
watersheds. Hsu et al. (2002) developed a Self-
Organizing Linear Output mapping network 
(SOLO) for hydrologic modelling and analysis. 
The SOLO consists of three layers: an input 
layer, an input classification layer which uses 
SOM and a mapping layer that maps the inputs 
to the outputs using piecewise linear 
regressions. In a related study, Hong et al. 
(2005) developed and used a self-organizing 
nonlinear output (SONO) ANN architecture for 
estimation of rainfall based on cloud patch. The 
SOLO and SONO models are similar except in 
the mapping layer where mapping input to the 
corresponding output is achieved by nonlinear 
regression in the SONO model. Parasuraman et 
al. (2006) developed a spiking modular neural 
network (SMNN). A SMNN consists of three 
layers: an input layer, a spiking layer, and an 
associator neural networks layer. Classification 
of input space in the spiking layer is achieved 
by means of (1) competitive learning and (2) 
SOMs; and mapping of inputs to outputs is 
achieved by feed-forward MLP models in the 
associator neural networks layer. On the basis of 
their study, they concluded that the SMNNs 
performed better than a single feed-forward 
MLP for the examined cases. Jain & Srinivasulu 

(2006) presented a procedure for decomposing a 
flow hydrograph into different segments based 
on physical concepts in a watershed and 
thereafter modelling different segments using 
feed-forward MLP ANN and conceptual 
techniques. In addition, they developed one-
dimensional SOM models for decomposing the 
effective rainfall runoff data into different 
segments (three and four segments) in order to 
test the proposed procedure. They concluded 
that dividing the rainfall runoff data into 
different segments based on the physical 
concepts is better than relying on the SOMs for 
classification. More recently, Kalteh & 
Berndtsson (2007) used a SOM both for 
regionalization and estimation of monthly 
precipitation in northern Iran. The authors used 
unsupervised SOM as a classifier for 
regionalization and thereafter supervised SOM 
for estimation. It was found that the extreme 
values are estimated somewhat better after 
regionalization. In their study, they also 
compared the performance of SOM and feed-
forward MLP models and found that without 
regionalization feed-forward MLP is generally 
better than SOM but when regionalization is 
included SOM performed better. According to 
the above studies it seems that clustering of the 
modelling domain leads to improved modelling 
performance. 
     The objectives of the study presented in this 
paper can be summarized as follows: 
(a) Decomposition of the input patterns into 
different number of clusters based on SOM in 
order to test the effect of number of clusters in 
modelling performance. 
(b) To apply feed-forward MLP and SOM 
models for building functional relationships 
between input and output data. 
(c) To evaluate the performance of employed 
models based on the modelling performance 
criteria. 
(d) And finally, to evaluate the suitability of 
SOM for decomposition.  
 
2. Materials and methods 
 
2.1. Study area and data 
 
     In this study, the monthly precipitation totals 
and average runoff database derived from a 
watershed located in a semiarid region in 
northern Iran was used in order to develop ANN 
models. This watershed consists of 5 stations 
including 13001 (54°4′E, 36°38′N), 13004 
(53°40′E, 36°37′N), 13005 (53°54′E, 36°35′N), 
13007 (54°44′E, 36°36′N), and 13013 (53°19′E, 
36°38′N). The station 13013 (1962km2) is 
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located in the downstream end of the watershed 
under study. Two of the five stations, 13005 and 
13013, record both precipitation and runoff data 
hence we have used P and R in parenthesis in 
front of each station’s code in order for 
indication of this. Moreover, two time variables 
represented by a sine and cosine curves 
respectively were used as extra input variables 
to the ANN models for representing seasonality 
in the watershed. To summarize, 9 variables 
including precipitation, runoff and time 
information which is representing of the 
seasonality in the watershed, were employed as 
input variables in order to forecast one-month 
ahead runoff at the downstream station 13013. 
The time series spans from 1969-70 to 1998-99 
(i.e. 30-years). It must be mentioned that the 
utilized time series contained missing values 
which were filled-in by means of SOM. The 
selection of this method was based on a study 
by Kalteh & Hjorth (2007) where five different 
methods, SOM, feed-forward MLP, multivariate 
nearest neighbor (MNN), regularized 
expectation-maximization algorithm (REGEM), 
and multiple imputation (MI), were compared. 
Out of this available database, the data from 
1969-70 to 1988-89, 240 patterns, is used for 
training and the remaining data from 1989-90 to 
1998-99, 120 patterns, is used for validation.  
     We also used monthly runoff values derived 
from a watershed located in a temperate humid 
region in Canada in order to develop ANN 
models. Parasuraman et al. (2006) used this 
database in their study for runoff estimation and 
found good estimation results. Moreover, two 
time variables represented by a sinus and cosine 
curves respectively were used as extra input 
variables to the ANN models for representing 
seasonality in the watershed. This watershed 
consists of 2 stations; Umfreville (91°27′W, 
49°52′N) and Sioux Lookout (91°56′W, 
50°4′N). The Sioux Lookout (13900 km2) is 
located in the downstream end of the watershed 
under study. The time series spans from 1951 to 
1980 (i.e. 30-years). Out of this available 
database, the data from 1951 to 1970, 240 
patterns, is used for training and the remaining 
data from 1971 to 1980, 120 patterns, is used for 
validation. To summarize, 4 variables including 
runoff and time information which is 
representing of the seasonality in the watershed, 
were employed as input variables in order to 
forecast one-month ahead runoff at the 
downstream Sioux Lookout. 
     In both watersheds, prior to the analysis, 
input and output data variables were 
standardized in the range of 0 and 1 using a 
simple linear transformation. The reason behind 

the selection of the Iranian and Canadian 
watersheds is that the Iranian watershed is 
located in a semiarid region which generally 
demanding more data while the latter is located 
in a temperate humid region and its database 
was successfully employed for runoff estimation 
by Parasuraman et al. (2006) hence it can be 
used for comparison and evaluation. 
 
2.2. Artificial neural networks 
 
     The ANN is a massively parallel-distributed 
information processing system resembling 
biological neural networks of the human brain 
(ASCE Task Committee, 2000a) and capable of 
solving large-scale complex problems such as 
pattern recognition, nonlinear modelling, 
classification, and control (ASCE Task 
Committee, 2000a; b). The most commonly 
used ANN is the feed-forward multilayer 
perceptron (MLP) as shown in Fig. 1. The 
figure shows a three layer feed-forward MLP 
that consists of an input layer, a hidden layer, 
and an output layer, in which each neuron is 
represented by a circle and each connection 
weight by a line so that each neuron in a layer is 
connected to all the neurons of the next layer 
while the neurons in one layer are not connected 
among themselves. Each individual neuron 
multiplies every input by its connection weight, 
sums the product, and then passes the sum 
through a nonlinear function called the 
activation function in order to compute its 
output. The number of input and output layer 
neurons depends upon the problem at hand so 
that the number of neurons in the input layer is 
equal to the number of input variables (denoted 
with m) and the number of neurons in the output 
layer is equal to the number of output variables 
while the number of neurons in the hidden layer 
is usually selected via a trial and error 
procedure. Determination of connection weights 
is called training process. In this study, a back-
propagation algorithm was used for training the 
feed-forward MLPs. In a feed-forward MLP, 
patterns from the inputs presented to the 
neurons in an input layer are propagated through 
the network from the input layer to the output 
layer, i.e. in a forward direction and the outputs 
from the network are compared with the target 
values in order to compute the error. Thereafter 
the calculated error is back-propagated through 
the network and the connection weights are 
updated (ASCE Task Committee, 2000a). The 
training process is repeated until an acceptable 
convergence is achieved. After training has been 
accomplished, the network is able to compute 
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outputs given inputs that have not been seen by 
the network before. 
     The feed-forward MLP described above 
employs a supervised training algorithm which 
involves a target to oversee the training process. 

     The self-organizing map (SOM) employs 
unsupervised or self-organizing training method 
so that it does not involve a target to oversee the 
training process.

 
 
                                           Input Layer                           Hidden Layer                    Output Layer 
 
 
 
 
 
 
 

Fig. 1. Three-layer feed-forward multilayer perceptron (MLP) 
 
     The SOM, originally proposed by Kohonen 
(1982a; b), is typically used for clustering input 
patterns from high dimensional input space to a 
low dimensional lattice space, usually one or 
two dimensional, while preserving the 
topological structure of the data which means 
that input patterns that are similar or close 
together will fire the same or nearby neurons in 
the output layer. Since it was developed in the 
early 1980s, the SOM has been used in various 
hydrological problems. A SOM generally 
consists of two layers, an input layer and a 
Kohonen or output layer (Fig. 2). The input 
layer contains a neuron for each input variable 
in the data set. The Kohonen layer neurons are 
connected to every neuron in the input layer 
through adjustable weights or network 
parameters (wij). As stated previously, the SOM 
employs an unsupervised training process of 
connection weights. At the outset of training, 
the weights for each SOM connection weight 
are randomly initialized.  Then, an input pattern 
X(t) from the data set is introduced to the SOM 
so that each neuron of the Kohonen layer 
competes to respond to the given input pattern. 
The similarity of a given input pattern to each 
neuron is calculated based on Euclidean 
distances (d) as given in equation (1): 
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where m denotes the number of input variables, 
ndenotes the number of neurons in the Kohonen 
layer, and wij represents the connection weight 
linking i th input variable and j th neuron of 
Kohonen layer. The neuron with the lowest 
value of dj is the best matching unit (BMU) for 
the given input pattern. Thereafter the weights 
of the BMU and its neighbors are updated to be 
even closer, whilst neurons in the Kohonen 
layer that fall outside of this neighborhood are 
left intact. After the weights have been updated, 

the next input pattern from the data is presented 
to the network and the process continues till 
convergence. Once the training of SOM has 
been accompolished, each neuron in the 
Kohonen layer will be fired by similar input 
patterns i.e. clustering or grouping of input 
patterns. Thereafter separate models can be 
developed for each group of input patterns, 
corresponding to different physics of the 
process in the watershed. Although the SOM is 
usually used in applications for above objective 
i.e. clustering or grouping of similar input 
patterns,  we also used SOM in a supervised 
manner or so-called supervised self-organizing 
map (SSOM) in order to build functional 
relationships between input and output data. 
However the SSOM is similar to SOM and the 
difference lies in a minor modification needed 
during training of the network so that finding 
the BMU is based on the input portion of data 
presented to the SOM while updating applies to 
all input-output data. 
 
2.2.1. Model development 
 
     As stated in the introduction, the 
transformation of rainfall to runoff is a complex, 
dynamic, discontinuous, and nonlinear process. 
Consequently, the development of a single 
model in order to model this process by the 
modeller does not seem to be an appropriate 
approach such that the studies by Jain & 
Srinivasulu (2006) and Parasuraman et al. 
(2006) among others indicate that the modelling 
of the process through decomposition 
outperforms the case when only a single model 
is devoted to model the process. In this study, 
we use SOM in order to group the input data 
and thereafter we devote a separate feed-
forward MLP or SSOM model to each group in 
order to map the inputs to the corresponding 
outputs.

1x

mx

Runoff 
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Fig. 2. A one-dimensional self-organizing map (SOM) with 4 neurons in the Kohonen layer 
 
2.2.1.1. The SOM models 
 
     In this study, a one-dimensional SOM model 
that employs an unsupervised training method 
similar to the one explained in the artificial 
neural networks section in order to decompose 
input patterns into different clusters, was used. 
Three different SOM models were developed 
for the watershed in northern Iran, each of 
which explores the possibility of decomposition 
of the input patterns into different number of 
clusters as follows : the first model, with two 
neurons in the Kohonen layer or SOM(2), was 
developed in order to study the possibility of 
decomposition of the input patterns s, the 
second model, with three neurons in the 
Kohonen layer or SOM(3), was developed in 
order to study the possibility of decomposition 
of the input patterns into three clusters, and 
finally the third model, with four neurons in the 
Kohonen layer or SOM(4), was developed in 
order to study the possibility of decomposition 
of the input patterns into four clusters. The plots 
of each SOM model are shown in Fig. 3(a) so 
that the horizontal axis in each subfigure 
represents the input variables and vertical axis 
in each subfigure represents the value in each 
dimension which is the mean value represented 
by the coefficient of the SOM neurons for each 
input variable.  
     The result of this clustering is that the SOM 
(2) clusters the training input patterns (240 
patterns) s each consisting of 119 and 121 
patterns, respectively. As seen from the figure, 
the first cluster corresponds to lower mean 
values compared to the second cluster hence the 
former will probably be associated with low 
runoff values while the latter with high runoff 
values. To examine, the mean and standard 
deviation of the corresponding output patterns 
for the first and second cluster were calculated 
and 4.41, 5.76; and 6.44, 3.62; were obtained, 
respectively. It is found that the first and second 

cluster correspond to low and high runoff 
values, respectively. The SOM (3) clusters the 
training input patterns into three cluster each 
consisting of 99, 41, and 100 patterns, 
respectively. As seen from the figure, the first 
cluster corresponds to lower mean values and 
the third cluster to higher mean values while the 
second lies in between. To examine, the mean 
and standard deviation of the corresponding 
output patterns for the first, second, and third 
cluster were calculated and 2.90, 4.70;  7.74, 
5.55; and 7.00, 3.54; were obtained, 
respectively. In terms of these statistics the first, 
second and third cluster correspond to low, high 
and medium runoff values, respectively. As 
seen these results are physically unusual as the 
third cluster with higher mean values exhibit 
medium runoff magnitude while the second 
cluster which lay between the other two clusters 
exhibit high runoff magnitude. Finally, the 
SOM (4) clusters the training input patterns into 
four cluster each consisting of 79, 41, 40, and 
80 patterns, respectively. As seen from the 
figure, the first cluster corresponds to lower 
mean values and the fourth cluster corresponds 
to higher mean values while the second and 
third clusters lie in between. To examine, the 
mean and standard deviation of the 
corresponding output patterns for the first, 
second, third, and fourth cluster were calculated 
and 3.05, 5.20; 3.08, 2.33; 5.41, 2.74 and 9.02, 
4.23; were obtained, respectively. The first, 
second, third and fourth cluster correspond to 
low, medium, medium and high runoff values, 
respectively which is physically plausible. It 
may be mentioned that the SOM clusters 
correspond to different runoff magnitudes based 
on mean. In order to make a comparison with 
the descriptive statistics (the mean and standard 
deviation) above, it must be mentioned that 
these statistics for the training output patterns 
when such a clustering or decomposition are not 
applied are 5.44, and 4.90, respectively. 

1x mx

Kohonen Layer 

nj

mitwij

,...,1

,...,1),(

=

=

Input Layer 



 A.M. Kalteh et al. / DESERT 13 (2008) 181-191  
 
186 

fig. 3. The plots of 2, 3, and 4 clusters based on SOM or SOM (2), SOM (3), and SOM (4) in which the horizontal axis represent the 
input variables and vertical axis represent the value in each dimension which is the mean value represented by the coefficient of the 

SOM neurons for each input variable for: (a) Iranian watershed, and (b) Canadian watershed 
 
     We also developed the same number of SOM 
models for the Canadian watershed, in order to 
explore the possibility of decomposition of the 
input patterns into different number of clusters 
from two to four segments or clusters and 
compare the obtained results with the Iranian 
watershed. The plots of each SOM model are 
shown in Fig. 3(b) so that the horizontal axis in 
each subfigure represents the input variables 
and vertical axis in each subfigure represents the 
value in each dimension which is the mean 
value represented by the coefficient of the SOM 
neurons for each input variable. The result of 
this clustering can be summarized as follows: 
the SOM (2) clusters the training input patterns 
(240 patterns)  each consisting of 119 and 121 
patterns, respectively. As seen from the figure, 
the first cluster correspond to lower mean values 
compared to the second cluster hence the former 
will probably be associated with low runoff 
values while the latter with high runoff values. 
To check, the mean and standard deviation of 
the corresponding output patterns for the first 
and second cluster were calculated and 93.82, 
55.40; and 177.10, 98.56; were obtained, 
respectively. It is seen that the first and second 
cluster correspond to low and high runoff 
values, respectively. The SOM (3) clusters the 
training input patterns into three clusters each 

consisting of 112, 26, and 102 patterns, 
respectively. As seen from the figure, the first 
cluster corresponds to lower mean values and 
the third cluster to higher mean values while the 
second lies in between. To validate, the mean 
and standard deviation of the corresponding 
output patterns for the first, second, and third 
cluster were calculated and 91.11, 55.89; 
117.82, 55.85; and 189.47, 99.17; were 
obtained, respectively. The first, second and 
third cluster correspond to low, medium and 
high runoff values, respectively which is 
physically plausible. Finally, the SOM (4) 
clusters the training input patterns into four 
clusters each consisting of 80, 39, 40, and 81 
patterns, respectively. According to the figure, 
the first cluster corresponds to lower mean 
values and the fourth cluster corresponds to 
higher mean values while the second and third 
clusters lie in between. To check, the mean and 
standard deviation of the corresponding output 
patterns for the first, second, third, and fourth 
cluster were calculated and 96.98, 63.59; 87.32, 
32.56; 116.17, 61.25; and 207.19, 99.84; were 
obtained, respectively. The first, second, third 
and fourth cluster correspond to medium, low, 
medium and high runoff values, respectively. 
The results for the third and fourth cluster are 
physically plausible but the remaining are not. It 
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may also be mentioned that the SOM clusters 
correspond to different runoff magnitudes based 
on mean. However, it must be mentioned that 
these statistics for the training output patterns 
when such a clustering or decomposition are not 
applied are 135.81, and 90.19, respectively. It is 
worthy to mention that although it was possible 
to characterize the SOM results somehow, 
according to the fact that the SOM clusters the 
input patterns based on their similarity it is not 
always easy to interpret the results due to the 
fact that ANNs including SOM are black-box 
models. 
 
2.2.1.2. The MLP models 
 
     Once clustering of the input patterns is 
achieved using SOM, the next step is mapping 
of inputs in each cluster to the corresponding 
outputs, corresponding to different physics in 
the watershed, using MLP models. In other 
words, we employed a separate MLP model in 
order to map input patterns of each cluster to the 
corresponding outputs. All the MLP models 
employed in this study consisted of an input 
layer, a hidden layer, and an output layer (i.e. 
three layers). The number of neurons in the 
input and output layer are defined based on the 
number of input and output variables for the 
system under investigation, respectively. In this 
study, the utilized input and output variables for 
both watersheds under investigation were 
explained in the study area and data section. 
However, the number of neurons in the hidden 
layer was determined via trial and error 
procedure based on performance criteria 
discussed in the model performance section. By 
doing so, the selected number of neurons in the 
hidden layer for the Iranian watershed for 
various employed MLP models can be 
summarized as follows: 
Single MLP model: containing 14 neurons.  
Two MLP models (or “SOM (2)”): first and 
second cluster containing 8, and 9 neurons, 
respectively.  
Three MLP models (or “SOM (3)”): first, 
second, and third cluster containing 4, 3, and 5 
neurons, respectively. 
Four MLP models (or “SOM (4)”): first, second, 
third, and fourth cluster containing 6, 3, 4, and 5 
neurons, respectively.  
The selected number of neurons in the hidden 
layer for the Canadian watershed for various 
employed MLP models can also be summarized 
as follows: 
Single MLP model: containing 10 neurons. 

Two MLP models (or “SOM (2)”): first and 
second cluster containing 4, and 9 neurons, 
respectively. 
Three MLP models (or “SOM (3)”): first, 
second, and third cluster containing 6, 3, and 6 
neurons, respectively. 
Four MLP models (or “SOM (4)”): first, second, 
third, and fourth cluster containing 4, 3, 3, and 5 
neurons, respectively. 
 
2.2.1.3. The SSOM models 
 
     In the previous subsection we employed 
MLP models in order to map input patterns of 
each cluster, corresponding to different physics 
in the watershed, to the corresponding outputs. 
However, in this study we also employed 
SSOM models (described before) to carry out 
this objective and as well as comparison of its 
performance with MLP model. As stated 
previously, this network consisted of an input 
layer and an output layer so that the number of 
neurons in the input layer is defined based on 
input and output variables with regard to the 
study purpose while the number of neurons in 
the output layer is defined via trial and error 
procedure, which is in this study, was based on 
the performance criteria described in the model 
evaluation section. The selected number of 
neurons for the various SSOM models in the 
output layer for the Iranian watershed can be 
summarized as follows: 
Single SSOM model: containing 14×14   
neurons.  
Two SSOM models (or “SOM (2)”): first and 
second cluster containing 9×9 and 8×8 neurons, 
respectively.  
Three SSOM models (or “SOM (3)”): first, 
second, and third cluster containing 7×7, 5×5, 
and 7×7 neurons, respectively. 
Four SSOM models (or “SOM (4)”): first, 
second, third, and fourth cluster containing 6×6, 
4×4, 6×6, and 7×7 neurons, respectively. 
The selected number of neurons in the output 
layer for the Canadian watershed for various 
employed SSOM models can also be 
summarized as follows: 
Single SSOM model: containing 14×14 
neurons. 
Two SSOM models (or “SOM (2)”): first and 
second cluster containing 9×9 and 10×10 
neurons, respectively. 
Three SSOM models (or “SOM (3)”): first, 
second, and third cluster containing 10×10, 4×4, 
and 10×10 neurons, respectively. 
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Four SSOM models (or “SOM (4)”): first, 
second, third, and fourth cluster containing 9×9, 
6×6, 5×5, and 9×9 neurons, respectively. 
 
2.2.1.4. Model performance 
 
     In this study, the correlation coefficient (r), 
coefficient of determination (R2), and root mean 
square error (RMSE) performance criteria were 
used to evaluate the employed ANN models. 
These criteria were calculated using equations 
(2), (3), and (4), respectively as follows: 
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Where )(ˆ kQ are the P forecasted runoff values, 
Q(k) are the Pobserved runoff values, Q is the 
mean of the observed runoff values, and Q~ is the 
mean of the forecasted runoff values. 
 
3. Results and discussion 
 
The results of the various MLP and SSOM 
models in terms of the correlation coefficient 
(r), coefficient of determination (R2), and root 
mean square error (RMSE) in forecasting 
monthly runoff for the Iranian and Canadian 
watersheds are presented in Tables 1 and 2, 
respectively.  It can be noticed from the Table 1  

that in the case of MLP models the best 
performance was achieved by the two and four 
cluster MLP models with the two cluster models 
doing somewhat better. It is worthy to mention 
that although the four cluster MLP models 
performed better during training compared to 
the two clusters MLP models, the four cluster 
MLP models were not able to generalize better 
during validation which may indicate the 
importance of principled procedures for 
determination of the number of neurons for 
decomposition. However, all of the modular 
MLP models outperform the single MLP model 
during validation which indicates that the 
process under investigation is not continuous 
hence the importance of decomposition of the 
process. In the case of SSOM models for the 
Iranian watershed, Table 1, the best 
performance was achieved by the four cluster 
SSOM models. It is worthy to mention that 
although the single SSOM model performed 
slightly better than the four cluster SSOM 
models during training the four cluster SSOM 
models outperformed it during validation hence 
again indicating the importance of 
decomposition of the process. As seen from the 
Table 1, the performance of the SSOM models 
during training was better than that for the MLP 
models both before decomposition and after 
decomposition while after decomposition during 
validation period the MLP models outperform 
the SSOM models. However, it can also be 
noticed from the Table 1 that the performance 
of single SSOM model is better than single 
MLP model for both training and validation 
period. Considering these results, in the 
selection of best model between the single MLP 
and single SSOM model the latter was selected 
while in terms of decomposition results the two 
cluster MLP models is considered to be the best 
model for forecasting monthly runoff for the 
Iranian watershed. The performance of these 
selected models during validation period is 
shown in Fig. 4(a) and (b), respectively. 

 
 
                      Table 1. The performance of models in forecasting monthly runoff for the Iranian watershed 

 Training Validation 
Model r R2 RMSE r R2 RMSE 

MLP models       
Single MLP 0.652 0.426 3.706 0.383 0.132 6.469 
Two MLPs 0.630 0.395 3.803 0.441 0.193 6.237 
Three MLPs 0.642 0.412 3.748 0.401 0.160 6.362 
Four MLPs 0.671 0.450 3.627 0.447 0.192 6.241 
SSOM models       
Single SSOM 0.733 0.534 3.337 0.403 0.159 6.366 
Two SSOMs 0.723 0.516 3.402 0.378 0.138 6.448 
Three SSOMs 0.709 0.499 3.460 0.394 0.152 6.395 
Four SSOMs 0.722 0.520 3.387 0.406 0.163 6.353 
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Fig. 4. Observed and predicted runoff for the Iranian watershed from: (a) single SSOM model, and (b) two MLP model 
 
     In the case of the Canadian watershed (Table 
2) the models for forecasting monthly runoff 
performed differently compared to the Iranian 
watershed results. For instance, although the 
decomposition procedure improved the 
modelling performance during training for MLP 
models, it could not improve the generalization 
ability of the models as the performance of the 
single MLP model is slightly better than that of 
the two cluster MLP model and substantially 
better than the three and four cluster MLP 
models. However, in the case of the SSOM 
models, the decomposition procedure improved 
the performance of the models so that there are 
improvements in forecasting performance by 

using the two, three, and four cluster SSOM 
models compared to the single SSOM model. 
As seen from the Table 2, the performance of 
the SSOM models is mostly better than for MLP 
models after decomposition for both training 
and validation. However, the performance of the 
single MLP and single SSOM models is almost 
similar with a small advantage for the single 
MLP. By considering these results, the single 
MLP and four cluster SSOM models are 
considered to be the best models for forecasting 
monthly runoff in the Canadian watershed. The 
performance of these models during validation 
is shown in Fig. 5(a) and (b), respectively. 

 
                     Table 2. The performance of models in forecasting monthly runoff for the Canadian watershed 

  Training Validation 
Model r R2 RMSE r R2 RMSE 

MLP models       
Single MLP 0.850 0.718 47.773 0.800 0.615 47.658 
Two MLPs 0.864 0.743 45.553 0.805 0.612 47.886 
Three MLPs 0.867 0.752 44.776 0.797 0.583 49.639 
Four MLPs 0.873 0.758 44.208 0.772 0.559 51.033 
SSOM models       
Single SSOM 0.909 0.794 37.696 0.824 0.604 48.363 
Two SSOMs 0.904 0.815 38.693 0.799 0.605 48.298 
Three SSOMs 0.914 0.833 36.678 0.808 0.631 46.654 
Four SSOMs 0.919 0.842 35.748 0.815 0.635 46.445 

 
4. Conclusions 
 
     In this study, we have investigated whether 
the modelling performance concerning 
forecasting monthly runoff can be improved by 
 

means of modularization of ANN models, 
where the modularization or decomposition of 
the process under investigation is achieved by 
means of SOM. 
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Fig. 5. Observed and predicted runoff for the Canadian watershed from: (a) single MLP model, and (b) four SSOM model 
 
     Where we found improvements, they were 
rather small. Thus, it is not possible to draw 
any general conclusions concerning the 
performance of models with one, two, three, or 
four modules, respectively. The idea that a 
modular model would be better at responding 
to the different physical processes at different 
stages of the hydrograph is highly persuasive. 
However, our results indicate that there is a 
need for a more informed and principled 
procedure for the modularization of the 
models, a conclusion that is also supported by 
the findings of Jain & Srinivasulu (2006). We 
also compared the performance of feed-
forward MLP and SSOM models in mapping 
cluster data into corresponding outputs. Our 
results indicate that the SSOMs consistently 
perform better during training. However, 
during validation, there were very small 
differences in performance which may indicate 
the application of the SSOM model as an 
alternative to the well-known feed-forward 
MLP model. As expected, the forecasting 
performance was much worse for the Iranian 
watershed than for the Canadian. The Iranian 
watershed is located in a semiarid region, 
which in itself demands longer data series, and 
suffered from a significant amount of missing 
data. Furthermore, there was an extremely 
severe flooding event within the validation 
period. Obviously, there is a need for a 
principled pre-processing of the data to 
improve the reliability of the forecasting 
results for this watershed.  
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