Assessing the aridity indices in Northeast Iran: Implications for climate change and agricultural water management.

Document Type : Research Paper

Authors

1 Faculty of Agriculture and Animal Science, University of Torbat-e Jam, Torbat-e Jam, Khorasan Razavi, Iran.

2 College of Agriculture and Natural Resources, University of Shiraz, Darab, Shiraz, Iran.

3 Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

Abstract

Aridity indices have been widely applied in dividing climate regimes and monitoring drought events. The knowledge of the aridity index and reference evapotranspiration is very important not only for understanding climate change and its effects on ecosystem stability but also for managing agricultural water resources. Therefore, in this work, we studied the spatial-temporal variation and trend of ETo, Tmean, and four aridity indices, such as the De Martonne aridity index, Pinna combinative index, FAO aridity index, and Thornthwaite aridity index, and its climatic attribution in Northeast Iran using the observed climate records from 10 synoptic meteorological stations from 1950 to 2021. The results showed that ETo for Northeast Iran as a whole exhibited an increase at a rate of +9.65 mmyr-1; Tmean showed an increasing trend at the rate of 0.03 ºC year−1 from the beginning of the statistical period of each station until 2021. Also, the AIT, AIDM, AIP, and AIF increased significantly by +0.001, -0.03, -0.01, and -0.001 year-1, respectively. Approximately 100% of stations showed an increasing trend in AIT and AIF, while 50% of stations reached up to a significant increasing level, and about 60% of stations showed an increasing trend in AIDM and AIP, while 70% of stations reached a significantly increasing level, which demonstrated that Northeast Iran was getting drier for the recent 40 years. This analysis of this study enhances the understanding of the relationship between climate change and drought in Northeast Iran, may be helpful for the agricultural irrigation system.

Keywords


References
Allen, R. G., L. S. Pereira, D. Raes, M. Smith, 1998. Crop evapotranspiration: Guidelines for computing crop requirements. Irrigation and Drainage Paper No. 56, FAO, doi:10.1016/j.eja.2010.12.001.
Arora, V. K., 2002. The use of the aridity index to assess climate change effect on annual runoff. Journal of Hydrology,doi:10.1016/S0022-1694(02)00101-4.
Baltas, E., 2007. Spatial distribution of climatic indices in northern Greece. Meteorological Applications, doi:10.1002/met.7.
Cao, L., Z. Zhou, 2019. Variations of the reference evapotranspiration and aridity index over northeast China: Changing properties and possible causes. Advances in Meteorology,doi:10.1155/2019/7692871.
Croitoru, A. E., A. Piticar, A. M. Imbroane, D. C. Burada, 2013. Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theoretical and Applied Climatology,doi:10.1007/s00704-012-0755-2.
Deniz, A., H. Toros, S. Incecik, 2011. Spatial variations of climate indices in Turkey. International Journal of Climatology,doi:10.1002/joc.2081.
Dinpashoh, Y., S. Jahanbakhsh-Asl, A. A. Rasouli, M. Foroughi, V. P. Singh, 2019. Impact of climate change on potential evapotranspiration (case study: west and NW of Iran). Theoretical and Applied Climatology,136;185–201,doi:10.1007/s00704-018-2462-0.
Djaman, K., A. B. Balde, A. Sow, B. Muller, S. Irmak, M. K. N. Diaye, B. Manneh, Y. D. Moukoumbi, K. Futakuchi, K. Saito, 2015. Journal of Hydrology : Regional Studies Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies,3;139–159,doi:10.1016/j.ejrh.2015.02.002. Available from: http://dx.doi.org/10.1016/j.ejrh.2015.02.002.
Ebi K.L., J, Vanos, J.W. Baldwin, J.E. Bell, D.M. Hondula, N.A. Errett, K. Hayes, C.E. Reid, S. Saha, J. Spector, P. Berry, 2021. Extreme Weather and Climate Change: Population Health and Health System Implications. Annu Rev Public Health: 1;42:293-315. doi: 10.1146/annurev-publhealth-012420-105026. Epub 2021 Jan 6. PMID: 33406378; PMCID: PMC9013542.
Fan, Z. X., A. Thomas, 2013. Spatiotemporal variability of reference evapotranspiration and its contributing climatic factors in Yunnan Province, SW China, 1961-2004. Climatic Change, doi:10.1007/s10584-012-0479-4.
Gao, Y., X. Li, L. Ruby Leung, D. Chen, J. Xu, 2015. Aridity changes in the Tibetan Plateau in a warming climate. Environmental Research Letters,doi:10.1088/1748-9326/10/3/034013.
Gebremedhin, M. A., G. H. Kahsay, H. G. Fanta, 2018. Assessment of spatial distribution of aridity indices in Raya valley, northern Ethiopia. Applied Water Science,doi:10.1007/s13201-018-0868-6.
Goyal, R. K., 2004. Sensitivity of evapotranspiration to global warming: A case study of arid zone of Rajasthan (India). Agricultural Water Management,doi:10.1016/j.agwat.2004.03.014.
Herath, I. K., X. Ye, J. Wang, A. K. Bouraima, 2018. Spatial and temporal variability of reference evapotranspiration and influenced meteorological factors in the Jialing River Basin, China. Theoretical and Applied Climatology,doi:10.1007/s00704-017-2062-4.
Hosseinzadeh Talaee, P., H. Tabari, H. Abghari, 2014. Pan evaporation and reference evapotranspiration trend detection in western Iran with consideration of data persistence. Hydrology Research, doi:10.2166/nh.2013.058.
Hrnjak, I., T. Lukić, M. B. Gavrilov, S. B. Marković, M. Unkašević, I. Tošić, 2014. Aridity in Vojvodina, Serbia. Theoretical and Applied Climatology,doi:10.1007/s00704-013-0893-1.
Huntington, T. G., 2006. Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology,doi:10.1016/j.jhydrol.2005.07.003.
Huo, Z., X. Dai, S. Feng, S. Kang, G. Huang, 2013. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. Journal of Hydrology, doi:10.1016/j.jhydrol.2013.04.011.
IPCC, 2013. Summary for policymakers [M/OL]//IPCC. Climate Change 2013: the Physical Science Basis. Cambridge University Press. Available from: http://www.climatechange2013.org/images/uploads/WGI AR5%0ASPM brochure. pdf.
Jain, S. K., R. Keshri, A. Goswami, A. Sarkar, 2010. Application of meteorological and vegetation indices for evaluation of drought impact: A case study for Rajasthan, India. Natural Hazards,doi:10.1007/s11069-009-9493-x.
Kendall, M. G., 1957. Rank Correlation Methods. 4th Edition.
Kukal, M., S. Irmak, 2016. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends. Journal of Hydrology,doi:10.1016/j.jhydrol.2016.06.006.
Lang, D., J. Zheng, J. Shi, F. Liao, X. Ma, W. Wang, X. Chen, M. Zhang, 2017. A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman–Monteith method in southwestern China. Water (Switzerland),9,doi:10.3390/w9100734.
Li, L. J., L. Zhang, H. Wang, J. Wang, J. W. Yang, D. J. Jiang, J. Y. Li, D. Y. Qin, 2007. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrological Processes,doi:10.1002/hyp.6485.
Li, Y., A. Feng, W. Liu, X. Ma, G. Dong, 2017. Variation of aridity index and the role of climate variables in the Southwest China. Water (Switzerland),doi:10.3390/w9100743.
Liang, L. Q., L. J. Li, Q. Liu, 2010. Temporal variation of reference evapotranspiration during 1961-2005 in the Taoer River basin of Northeast China. Agricultural and Forest Meteorology, doi:10.1016/j.agrformet.2009.11.014.
Ma, Q., J. Zhang, C. Sun, E. Guo, F. Zhang, M. Wang, 2017. Changes of Reference Evapotranspiration and Its Relationship to Dry/Wet Conditions Based on the Aridity Index in the Songnen Grassland, Northeast China. Water,9,doi:10.3390/w9050316.
Mann, H. B., 1945. Nonparametric Tests Against Trend. Econometrica,doi:10.2307/1907187.
Mannocchi, F., F. Todisco, L. Vergni, 2004. In: Agricultural Drought: Indices Definition and Analysis the Basis of Civilization – Water Science? In: IAHS. p. 286.
de Martonne, E., 1926. Une Nouvelle fonction climatologique: L’Indice d’aridité. Impr. Gauthier-Villars. Available from: https://books.google.com/books?id=S0yycQAACAAJ.
McVicar, T. R., L. T. Li, T. G. Van Niel, L. Zhang, R. Li, Q. K. Yang, X. P. Zhang, X. M. Mu, Z. M. Wen, W. Z. Liu, Y. Zhao, Z. H. Liu, P. Gao, 2007. Developing a decision support tool for China’s re-vegetation program: Simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. Forest Ecology and Management, doi:10.1016/j.foreco.2007.06.025.
Moral, F. J., F. J. Rebollo, L. L. Paniagua, A. Garc\’\ia-Mart\’\in, F. Honorio, 2016. Spatial distribution and comparison of aridity indices in Extremadura, southwestern Spain. Theoretical and applied climatology,126;801–814.
Nouri, M., M. Bannayan, 2019. Spatiotemporal changes in aridity index and reference evapotranspiration over semi-arid and humid regions of Iran: trend, cause, and sensitivity analyses. Theoretical and Applied Climatology,doi:10.1007/s00704-018-2543-0.
Paltineanu, C., I. F. Mihailescu, I. Seceleanu, C. Dragota, F. Vasenciuc, 2007. Using aridity indices to describe some climate and soil features in Eastern Europe: A Romanian case study. Theoretical and Applied Climatology,doi:10.1007/s00704-007-0295-3.
Piticar, A., D. Mihăilă, L. G. Lazurca, P. I. Bistricean, A. Puţuntică, A. E. Briciu, 2016. Spatiotemporal distribution of reference evapotranspiration in the Republic of Moldova. Theoretical and Applied Climatology,doi:10.1007/s00704-015-1490-2.
Shifteh Some’e, B., A. Ezani, H. Tabari, 2013. Spatiotemporal trends of aridity index in arid and semi-arid regions of Iran. Theoretical and Applied Climatology,doi:10.1007/s00704-012-0650-x.
Shirmohammadi-Aliakbarkhani, Z., S. F. Saberali, 2020. Evaluating of eight evapotranspiration estimation methods in arid regions of Iran. Agricultural Water Management, 239;106243, doi:https://doi.org/10.1016/j.agwat.2020.106243. Available from: http://www.sciencedirect.com/science/article/pii/S0378377420300810.
Stagl, J., E. Mayr, H. Koch, F.F. Hattermann, S. Huang, 2014. Effects of Climate Change on the Hydrological Cycle in Central and Eastern Europe. In: Rannow, S., Neubert, M. (eds) Managing Protected Areas in Central and Eastern Europe Under Climate Change. Advances in Global Change Research, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7960-0_3
Stisen, S., T. O. Sonnenborg, A. L. Højberg, L. Troldborg, J. C. Refsgaard, 2011. Evaluation of Climate Input Biases and Water Balance Issues Using a Coupled Surface-Subsurface Model. Vadose Zone Journal,doi:10.2136/vzj2010.0001.
Tabari, H., M. B. Aghajanloo, 2013. Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends. International Journal of Climatology,doi:10.1002/joc.3432.
Tatli, H., M. Türkeş, 2011. Empirical Orthogonal Function analysis of the palmer drought indices. Agricultural and Forest Meteorology,doi:10.1016/j.agrformet.2011.03.004.
Thornthwaite, C. W., 1948. An Approach toward a Rational Classification of Climate. Geographical Review,doi:10.2307/210739.
Ullah, S., Q. You, D. A. Sachindra, M. Nowosad, W. Ullah, A. S. Bhatti, Z. Jin, A. Ali, 2022. Spatiotemporal changes in global aridity in terms of multiple aridity indices: An assessment based on the CRU data. Atmospheric Research, 268;105998, doi:https://doi.org/10.1016/j. atmosres. 2021. 05998. Available from: https://www.sciencedirect.com/science/article/pii/S0169809521005548.
Vasiliades, L., A. Loukas, N. Liberis, 2011. A Water Balance Derived Drought Index for Pinios River Basin, Greece. Water Resources Management,doi:10.1007/s11269-010-9665-1.
Wang, L., L. Cao, X. Deng, P. Jia, W. Zhang, X. Xu, K. Zhang, Y. Zhao, B. Yan, W. Hu, Y. Chen, 2014. Changes in aridity index and reference evapotranspiration over the central and eastern Tibetan Plateau in China during 1960-2012. Quaternary International,doi:10.1016/j.quaint.2014.07.030.
Wang, Y., T. Jiang, O. Bothe, K. Fraedrich, 2007. Changes of pan evaporation and reference evapotranspiration in the Yangtze River basin. Theoretical and Applied Climatology,doi:10.1007/s00704-006-0276-y.
Xu, X. Z., J. Y. Li, C. M. Liu, 2007. Long-term trend analysis for major climate variables in the Yellow River basin. Hydrological Processes,doi:10.1002/hyp.6405.
Zhang, Q., C. Y. Xu, M. Gemmer, D. D. Chen, C. Liu, 2009a. Changing properties of precipitation concentration in the Pearl River basin, China. Stochastic Environmental Research and Risk Assessment,doi:10.1007/s00477-008-0225-7.
Zhang, Q., C. Y. Xu, Z. Zhang, 2009b. Observed changes of drought/wetness episodes in the Pearl River basin, China, using the standardized precipitation index and aridity index. Theoretical and Applied Climatology,98;89–99,doi:10.1007/s00704-008-0095-4. Available from: https://doi.org/10.1007/s00704-008-0095-4.
Zhang, S., S. Liu, X. Mo, C. Shu, Y. Sun, C. Zhang, 2011. Assessing the impact of climate change on potential evapotranspiration in Aksu River Basin. Journal of Geographical Sciences, doi:10.1007/s11442-011-0867-0.
Zhang, X., Y. Ren, Z. Y. Yin, Z. Lin, D. Zheng, 2009. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004. Journal of Geophysical Research Atmospheres, doi:10.1029/2009JD011753.
Zhang, Y., C. Liu, Y. Tang, Y. Yang, 2007. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. Journal of Geophysical Research Atmospheres, doi:10.1029/2006JD008161.
Zhuguo, M., D. Li, H. Yuewen, 2004. The extreme dry/wet events in northern China during recent 100 years. Journal of Geographical Sciences,14;275–281,doi:10.1007/BF02837407. Available from: https://doi.org/10.1007/BF02837407.