References
Ahmadi, H., Y. Esmaeilpour, A. Moradi, H. Gholami, 2019. Assessment of land Sensitivity to Desertification Hazard Using System Dynamics Approach in the Jazmourian basin. J. of Water and Soil Conservation, 26(2); 211-224. DOI: 10.22069/jwsc.2019.15565.3076. (In Persian).
Boloorani, A.D., N.N. Samany, S. Mirzaei, H.A. Bahrami, S.K. Alavipanah, 2020. Remote Sensing and GIS for Dust Storm Studies in Iraq. Environmental Remote Sensing and GIS in Iraq, 333-375 pp.
Borrelli, P., P. Panagos, C. Ballabio, E. Lugato, M. Weynants, L. Montanarella, 2016. Towards a PanâEuropean assessment of land susceptibility to wind erosion. Land Degradation & Development, 27(4); 1093-1105.
Borrelli, P., P. Panagos, L. Montanarella, 2015. New insights into the geography and modelling of wind erosion in the European agricultural land. Application of a spatially explicit indicator of land susceptibility to wind erosion. Sustainability, 7(7); 8823-8836.
Effati, M., H.A. Bahrami, M. Gohardoust, E. Babaeian, M. Tuller, 2019. Application of Satellite Remote Sensing for Estimation of Dust Emission Probability in the Urmia Lake Basin in Iran. Soil Science Society of America Journal, 83(4); 993-1002.
FAO. 1979. A provisional methodology for soil degradation assessment. Food and Agriculture Organization, Rome, Italy.
Fenta, A.A., A. Tsunekawa, N. Haregeweyn, J. Poesen, M. Tsubo, P. Borrelli, T. Kawai, 2020. Land susceptibility to water and wind erosion risks in the East Africa region. Science of the Total Environment, 703; 135016-135036.
Feuerstein, S., K. Schepanski, 2019. Identification of Dust Sources in a Saharan Dust Hot Spot and Their Implementation in a Dust-Emission Model. Remote Sensing, 11(1); 1-24. Floors, R., P. Enevoldsen, N. Davis, J. Arnqvist, E. Dellwik, 2018. From lidar scans to roughness maps for wind resource modelling in forested areas. Wind Energy Science, 3(1); 353-370.
Fryrear, D.W., J.D. Bilbro, A. Saleh, H. Schomberg, J.E. Stout, T.M. Zobeck, 2000. RWEQ: Improved wind erosion technology. Journal of Soil and Water Conservation, 55(2); 183-189 .
Fryrear, D.W., A. Saleh, J.D. Bilbro, H.M. Schomberg, J.E. Stout, T.M. Zobeck, 1998. Revised wind erosion equation (RWEQ). Wind erosion and water conservation research unit, USDA-ARS, Southern Plains area cropping systems research laboratory. Technical Bulletin, 1.
Funk, R., H.I. Reuter, 2006. Wind erosion. In: Boardman, J., Poesen, J. (Eds.), Soil erosion in Europe. Wiley, Chichester, UK, 563–582 pp.
Gholami, H., A. Mohamadifar, A., Sorooshian, J. D. Jansen, 2020. Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin, Iran. Atmospheric Pollution Research, 11(8); 1303-1315
Hansen, S.V. 1993. Surface roughness lengths. ARL Technical Report U. S. Army, White Sands Missile Range, NM 88002-5501, 51 pp.
Hengl, T., J.M. de Jesus, G.B. Heuvelink, M.R. Gonzalez, M. Kilibarda, A. Blagotic, W. Shangguan, M.N. Wright, X. Geng, B. BauerMarschallinger, M.A. Guevara, 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS one 12(2); e0169748. https://doi.org/10.1371/journal.pone.01 69748. Hojjati, K., Z. Abedi, B. Rayegani, M. Panahi, 2021. Assessing land sensitivity to determine areas prone to dust production (case study: Alborz province). Environmental Science and Technology Quarterly, 23(11); 151-164. (In Persian).
Jiang, Ch., H. Zhang, Zh. Zhang, D. Wang, 2019. Model-based assessment soil loss by wind and water erosion in China's Loess Plateau: Dynamic change, conservation effectiveness, and strategies for sustainable restoration, Global and Planetary Change, 172; 396-413.
Kheirabadi, H., M. M. Mahmoodabadi, V. Jalali, H. Naghavi, 2018. Sediment flux, wind erosion and net erosion influenced by soil bed length, wind velocity and aggregate size distribution, Geoderma, 326; 22-30.
Liu, S.Q., S.R. Zhang, J. Wu, X.Y. Pang, D.G. Yuan, 2002. The relationship between soil pH and calcium carbonate content. Soils, 5; 279-282. Mirzashahi, K. 2016. Periodic survey of soil organic carbon in the plain of Khuzestan and providing promotion solutions. Promotional scientific journal of land management. 5 (1); 1-12. (In Persian).
Rayegani, B., S. Barati, H. Goshtasb, S. Gachpaz, J. Ramezani, H. Sarkheil, 2020. Sand and dust storm sources identification: A remote sensing approach. Ecological Indicators, 112; 106099-106113.
Rayegani, B., Z. Kheirandish, F. Kermani, M. Mohammdi Miyab, A. Torabinia, 2017. Identification of Active Dust Sources Using Remote Sensing Data and Air Flow Simulation (Case Study: Alborz Province). Desert Management, 4(8); 15-26. (In Persian). Soleimani Sardoo, F., S. Karami, A.A. Motakan, 2022. Prediction of dust particle movement using HYSPLIT and WRF-Chem model in Jazmorian basin (Case study of dust 7 and 8 October 2018). Journal of Climate Research, 51; 1-13. (In Persian).
Wever, N. 2012. Quantifying trends in surface roughness and the effect on surface wind speed observations. Journal of Geophysical Research: Atmospheres, 117; 1-14. Yigiterhan, O., B.Z. Alfoldy, M. Giamberini, J.C. Turner, E.S. Al-Ansari, M.A. Abdel-Moati, J.P. Obbard, 2018. Geochemical composition of Aeolian dust and surface deposits from the Qatar Peninsula, Chemical Geology, 476; 24-45. Zhang, K., S. Li, W. Peng, B. Yu, 2004. Erodibility of agricultural soils on the Loess Plateau of China. Soil and Tillage Research, 76(2); 157-165.
Zobeck, T.M. 1991. Soil properties affecting wind erosion. Journal of Soil and Water Conservation, 46(2); 112-118.