Feasibility of groundwater resources in two soft and hard formations of Shamil-Takht watershed in Hormozgan province in the South of Iran.

Document Type : Research Paper

Authors

1 Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran

2 Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran.

3 Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Karaj, Iran.

4 Department of Water Resources Science and Engineering, Bu-Ali Sina University, Hamedan, Iran.

5 Department of Geography, Faculty of Humanities, University of Hormozgan, Bandar Abbas, Iran.

Abstract

The current research aims to assess the feasibility of groundwater resources in two soft and hard formations of the Shamil-Takht basin using logic and operators Fuzzy and Boolean in the GIS environment. For this purpose, eight and seven thematic layers in the soft and the hard formations were investigated and analyzed separately. The layers were prepared in a raster format in the GIS environment and then each of the layers was classified according to the values of usefulness obtained with Fuzzy membership degree and 0 and 1 Boolean values. In the next step, AND and Gamma operators for Fuzzy layers and Algebraic Multiplication operators for Boolean logic were used in combining layers. The groundwater potential map of the studied area was obtained from the desired pixels resulting from performing the operations at the output. Based on this, in Fuzzy logic, 77.1% of the area of soft formation and 11% of the area of hard formation, and in Boolean logic, 24.1% of the area of soft formation and 1.74% of the area of hard formation had the possibility of water sources. Areas with high potential of groundwater resources were in areas with low slope and cultivated and areas with weak potential of water resources were in areas with alluvial and sedimentary formations. Also, the field investigations confirm that the emerging springs and existing wells in the Shamil-Takht basin are located in the areas with the lowest slope and high density of the waterway. 

Keywords


References
Agarwal, R., P. K. Garg, 2016. Remote sensing and GIS based groundwater potential & recharge zones mapping using multi - criteria decision making technique, Water resources management, 30(1); 243-260. https://doi.org/10.1007/s11269-015-1159-8
Ahmad, I., M. A. Dar, A. H. Teka, M. Teshome, T. G. Andualem, A. Teshome, T. Shafi, 2020. GIS and fuzzy logic techniques-based demarcation of groundwater potential zones: A case study from Jemma River basin, Ethiopia, African Earth Sciences, 169; 103860. https://doi.org/10.1016/j.jafrearsci.2020.103860
Agbasi, O. E., N. A. Aziz, Z. T. Abdulrazzaq, S. E. Etuk, 2019. Integrated geophysical data and GIS technique to forecast the potential groundwater locations in part of South Eastern Nigeria, Iraqi Science, 60(5); 1013-1022. DOI: 10.24996/ijs.2019.60.5.11
Ajibade, F. O., O. O. Olajire, T. F. Ajibade, O. G. Fadugba, T. E. Idowu, B. Adelodun, et al, Q. B. Pham, 2021. Groundwater potential assessment as a preliminary step to solving water scarcity challenges in Ekpoma, Edo State, Nigeria, Acta Geophysica, 69(4); 1367-1381. https://doi.org/10.1007/s11600-021-00611-8
Anteneh, Z. S., B. G. Awoke, T. M. Reda, M. Jothimani, 2022. Groundwater potential mapping using integrations of remote sensing and analytical hierarchy process methods in Ataye-watershed, Middle Awash Basin, Ethiopia, Sustainable Water Resources Management, 8(6); 183. https://doi.org/10.1007/s40899-022-00772-4
Balezentiene, L., D. Streimikiene, T. Balezentis, 2013. Fuzzy decision support methodology for sustainable energy crop selection, Renewable and Sustainable Energy Reviews, 17; 83-93. https://doi.org/10.1016/j.rser.2012.09.016
Boughariou, E., N. Allouche, F. Ben Brahim, G. Nasri, S. Bouri, 2021. Delineation of groundwater potentials of Sfax region, Tunisia, using fuzzy analytical hierarchy process, frequency ratio, and weights of evidence models. Environment, Development and Sustainability, 23(10); 14749-14774. https://doi.org/10.1007/s10668-021-01270-x
Çelik, R., 2019. Evaluation of groundwater potential by GIS-based multicriteria decision making as a spatial prediction tool: Case study in the Tigris River Batman-Hasankeyf Sub-Basin, Turkey, Water, 11(12); 2630. https://doi.org/10.3390/w11122630
Chaudhry, A. K., K. Kumar, M. A. Alam, 2021. Mapping of groundwater potential zones using the fuzzy analytic hierarchy process and geospatial technique, Geocarto International, 36(20); 2323-2344. https://doi.org/10.1080/10106049.2019.1695959
Das, S., 2019. Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India, Groundwater for Sustainable Development, 8; 617-629. https://doi.org/10.1016/j.jhydrol.2010.08.022
Díaz-Alcaide, S., P. Martínez-Santos, 2019. Advances in groundwater potential mapping, Hydrogeology, 27(7); 2307-2324. DOI:10.1007/s10040-019-02001-3
Foster. S., A. Tuinhof, H. Garduño, 2006. Groundwater development in sub-Saharan Africa. A strategic overview of Key issues and major needs. Sustainable groundwater management, lessons from practice, Case profile collection, 15.
Halder, S., M. B. Roy, P. K. Roy, 2020. Fuzzy logic algorithm based analytic hierarchy process for delineation of groundwater potential zones in complex topography, Arabian Journal of Geosciences, 13; 1-22. https://doi.org/10.1007/s12517-020-05525-1
IPCC, 2001. Climate Change: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Houghton, 22(9). J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, C. A. Johnson (eds).
Kumar. M., P. Singh, P. Singh, 2022. Fuzzy AHP based GIS and remote sensing techniques for the groundwater potential zonation for Bundelkhand Craton Region, India, Geocarto International, 37(22); 6671-6694. https://doi.org/10.1080/10106049.2021.1946170
Magesh, N. S., N. Chandrasekar, J. P. Soundranayagam, 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques, Geoscience Frontiers, 3; 189–196. https://doi.org/10.1016/j.gsf.2011.10.007
Mallick, J., R. A. Khan, M. Ahmed, S. D. Alqadhi, M. Alsubih, I. Falqi, M. A. Hasan, 2019. Modeling groundwater potential zone in a semi-arid region of Aseer using fuzzy-AHP and geoinformation techniques, Water, 11(12); 2656. https://doi.org/10.3390/w11122656
Manap, M. A., H. Nampak, B., Pradhan, S. Lee, W.N.A. Sulaiman, M.F. Ramli, 2014. Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS, Arabian Journal of Geosciences, 7; 711-724. https://doi.org/10.1007/s12517-012-0795-z
Martínez‐Santos, P., P. Renard, 2020. Mapping groundwater potential through an ensemble of big data methods, Groundwater, 58(4); 583-597. https://doi.org/10.1111/gwat.12939
Murmu, P., M. Kumar, D. Lal, I. Sonker, S. K. Singh, 2019. Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India, Groundwater for Sustainable Development, 9; 100239. https://doi.org/10.1016/j.gsd.2019.100239
Naghibi, S. A., K. Ahmadi, A. Daneshi, 2017. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping, Water Resources Management, 31; 2761-2775. https://doi.org/10.1007/s11269-017-1660-3
Pal, S., S. Kundu, S. Mahato, 2020. Groundwater potential zones for sustainable management plans in a river basin of India and Bangladesh, Journal of Cleaner Production, 257; 120311. https://doi.org/10.1016/j.jclepro.2020.120311
Ponnusamy, D., N. Rajmohan, P. Li, M. Thirumurugan, S. Chidambaram, V. Elumalai, 2022. Mapping of potential groundwater recharge zones: a case study of Maputaland plain, South Africa, Environmental Earth Sciences, 81(16); 418. https://doi.org/10.1007/s12665-022-10540-4
Radulović, M., S. Brdar, M. Mesaroš, T. Lukić, S. Savić, B. Basarin, D. Pavić, 2022. Assessment of Groundwater Potential Zones Using GIS and Fuzzy AHP Techniques - Case Study of the Titel Municipality (Northern Serbia), ISPRS International Journal of Geo-Information, 11(4); 257. https://doi.org/10.3390/ijgi11040257
Saravanan, S., T. Saranya, J. J. Jennifer, L. Singh, A. Selvaraj, D. Abijith, 2020. Delineation of groundwater potential zone using analytical hierarchy process and GIS for Gundihalla watershed, Karnataka, India, Arabian Journal of Geosciences, 13(15); 695. https://doi.org/10.1007/s12517-020-05712-0
Singh, L. K., M. K. Jha, V. M. Chowdary, 2017. Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply, Journal of cleaner production, 142; 1436-1456. https://doi.org/10.1016/j.jclepro.2016.11.163
Singh. P., M. Hasnat, M. N. Rao, P. Singh, 2021. Fuzzy analytical hierarchy process based GIS modelling for groundwater prospective zones in Prayagraj, India, Groundwater for Sustainable Development, 12; 100530. https://doi.org/10.1016/j.gsd.2020.100530
Singha, S., P. Das, S. S. Singha, 2021. A fuzzy geospatial approach for delineation of groundwater potential zones in Raipur district, India, Groundwater for Sustainable Development, 12; 100529. https://doi.org/10.1016/j.gsd.2020.100529
Shailaja, G., A. K. Kadam, G. Gupta, B. N. Umrikar, N. J. Pawar, 2019. Integrated geophysical, geospatial and multiple-criteria decision analysis techniques for delineation of groundwater potential zones in a semi-arid hard-rock aquifer in Maharashtra, India, Hydrogeology, 27(2); 639-654. DOI:10.1007/s10040-018-1883-2
Turner, S. W. D., M. Hejazi, C. Yonkofski, S. H. Kim, P. Kyle, 2019. Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the twenty-first century, Earth’s Future, 7; 123–125. https://doi.org/10.1029/2018EF001105
Upwanshi, M., K. Damry, D. Pathak, S. Tikle, S. Das, 2023. Delineation of potential groundwater recharge zones using remote sensing, GIS, and AHP approaches, Urban Climate, 48; 101415. https://doi.org/10.1016/j.uclim.2023.101415
Wada, Y., L. P. H. V. Beek, C. M. V. Kempen, J. W. T. M. Reckman, S. Vasak, M. F. P. Bierkens, 2010. Global depletion of groundwater resources, Geophysical Research Letters, 37; 1–5. https://doi.org/10.1029/2010GL044571
Worsa-Kozak, M., R. Zimroz, A. Michalak, C. Wolkersdorfer, A. Wyłomańska, M. Kowalczyk, 2020. Groundwater Level Fluctuation Analysis in a Semi-Urban Area Using Statistical Methods and Data Mining Techniques - A Case Study in Wrocław, Poland, Applied Sciences, 10(10); 3553. https://doi.org/10.3390/app10103553