Modeling the spatial distribution of sand, silt, and clay particles based on GlobalSoilMap and Limited Data

Document Type : Research Paper

Authors

1 Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.

2 School of Environmental Sciences, University of Guelph, Ontario N1G2W1, Canada

3 Scientific Staff of Soil and Water Research Institute (SWRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

4 Department of Geosciences, University of Tübingen, Rümelinstr. 19-23, Tübingen, Germany

5 Soil and Water Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran

Abstract

Many regions of Iran lack digital map of soil properties. The Chahardowli plain in western Iran is one of these areas. Due to the importance of sand, silt, and clay components, having quantitative and continuous data on abrupt changes in these two properties in this area is very critical. Therefore, to study sand, silt, and clay, samples were taken at depths of 0–5, 5–15, 15–30, 30–60, and 60–100 cm, according to GlobalSoilMap. Finally, 145 samples were collected from 30 soil profiles. The significant covariates were selected by Random Forest Recursive Feature Elimination (RF-RFE). Relationships between these characteristics and environmental predictors were modeled using random forest (RF), decision tree (DT), and multiple linear regression (MLR) models. The accuracy and precision of the models used for all three particles showed that the RF model had the most accurate prediction with R2 and RMSE of 0.82 and 2.34 for clay, 0.80 and 3.87 for sand, and 0.85 and 2.89 for silt, respectively. In this study, terrain-based variables had a greater impact on improving accuracy than remote-sensing variables. The current study showed that even with limited information, digital mapping of sand, silt, and clay particles under GlobalSoilMap and the use of environmental factors can provide acceptable results.

Keywords


References
Bakker, A., 2012. Soil texture mapping on a regional scale with remote sensing data. MSC Thesis, Wageningen University, Centre for Geo-Information, Netherlands, 71 p.
Biswas, A., Y. Zhang, 2018. Sampling designs for validating digital soil maps: a review. Pedosphere, 28(1), 1-15. https://doi.org/10.1016/S1002-0160(18)60001-3.
Breiman, L., 2001. Random forests. Machine learning. 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
Brenning, A., 2008. Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, 19 (23-32), 410.
Brungard, W., J.L. Boettinger, M.C. Duniway, S.A. Wills, Jr.T.C. Edwards, 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, 239, 68-83. https://doi.org/10.1016/j.geoderma.2014.09.019.
Camera, Z., J.S. Zomeni, A.M. Noller, I.C. Zissimos, A. Christoforou Bruggeman, 2017. A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma, 285, 35-49. https://doi.org/10.1016/j.geoderma.2016.09.019.
Campos, R., E. Giasson, J.J.F. Costa, I.R. Machado, E.B.D. Silva, B.R. Bonfatti, 2018. Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping. Revista Brasileira de Ciência do Solo, 42. https://doi.org/10.1590/18069657rbcs20170414.
Chen, T. L., Z.L. Shi, A.B. Wen, D.C. Yan, J. Guo, J.C. Chen, Y. Liu, R.Y. Chen, 2021. Multifractal characteristics and spatial variability of soil particle-size distribution in different land use patterns in a small catchment of the Three Gorges Reservoir Region. China. Journal of Mountain Science, 18(1), pp.111-125. https://doi.org/10.1007/s11629-020-6112-5.
Da Silva Chagas, C., W. Carvalho Junior, S.B. de Bhering, B. Calderano Filho, 2016. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. Catena 139, 232–240. https://doi.org/10.1016/j.catena.2016.01.001.
Darst, F., K.C. Malecki, C.D. Engelman, 2018. Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC genetics, 19(1), 65. https://doi.org/10.1186/s12863-018-0633-8.
Development Core Team, R., 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna Austria.
Dewi, C., R.C. Chen, 2019. Random Forest and Support Vector Machine on Features Selection for Regression Analysis. Int. J. Innov. Comput. Inf. Control, 15(6), 2027-2037. DOI: 10.24507/ijicic.15.06.2027.
Dharumarajan, S., R. Hegde, 2022, Digital Mapping of Soil Texture Classes Using Random Forest Classification Algorithm. Soil Use Manag, 38, 135–149. https://doi.org/10.1111/sum.12668.
Dharumarajan, S., R. Hegd, M. Lalitha, B. Kalaiselvi, S.K. Singh, 2019, Pedotransfer Functions for Predicting Soil Hydraulic Properties in Semi-Arid Regions of Karnataka Plateau, India. Curr. Sci., 116, 1237. https://doi: 10.18520/cs/v116/i7/1237-1246.
Hartemink, A. E., J. Hempel, P. Lagacherie, A. McBratney, N. McKenzie, R.A. MacMillan, B. Minasny, L. Montanarella, M.L. de Mendonça Santos, P. Sanchez, M. Walsh, 2010. GlobalSoilMap. Net –a new digital soil map of the world. In Digital soil mapping (pp. 423-428). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8863-5_33.
Hengl, T., G.B. Heuvelink, B. Kempen, J. G. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J.M. de Jesus, L. Tamene, J. E. Tondoh, 2015. Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLoS One 10, 1–26. https://doi.org/10.1371/journal.pone.0125814.
Hengl, T., J.M. de Jesus, R.A. MacMillan, N.H. Batjes, G.B. Heuvelink, E. Ribeiro, A. Samuel-Rosa, B. Kempen, J.G. Leenaars, M.G. Walsh, M.R. Gonzalez, 2014. SoilGrids1km-global soil information based on automated mapping. PloS one, 9(8), p.e105992. https://doi.org/10.1371/journal.pone.0105992.
Hengl, T., M. Nussbaum, M.N. Wright, G.B. Heuvelink, B. Gräler, 2018. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 6, e5518.
Heung, B., H.C. Ho, J. Zhang, A. Knudby, C.E. Bulmer, M.G. Schmidt, 2016. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma 265. 62-77. https://doi.org/10.1016/j.geoderma.2015.11.014.
Hook, P.B., I.C. Burke, 2000. Biogeochemistry in a shortgrass landscape: control by topography, soil texture, and microclimate. Ecology, 81(10), 2686-2703. https://doi.org/10.1890/0012-9658(2000)081[2686:BIASLC]2.0.CO;2.
Jafari, A., P.A. Finke, Vande Wauw, J., Ayoubi, S., Khademi, H., 2012. Spatial prediction of USDA‐great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science, 63(2), 284-298. https://doi.org/10.1111/j.1365-2389.2012.01425.x.
Jamshidi, M., M.A. Delavar, R. Taghizadehe-Mehrjerdi, C. Brungard, 2019. Evaluating Digital Soil Mapping Approaches for 3D Mapping of Soil Organic Carbon. Iranian Journal of Soil Research, 33(2), 227-239. 10.22092/IJSR.2019.119764.
Jeihouni, M., S.K. Alavipanah, A. Toomanian, A.A. Jafarzadeh, 2020. Soil texture fractions modeling and mapping using LS-SVR algorithm. Desert, 25(2), pp.147-154. 10.22059/JDESERT.2020.79252.
Karaca, S., F. Gülser, R. Selçuk, 2018. Relationships between soil properties, topography and land use in the Van Lake Basin, Turkey. Eurasian Journal of Soil Science, 7(2), 115-120. https://doi.org/10.18393/ejss.348412.
Kaya, F., L. Başayiğit, A. Keshavarzi, R. Francaviglia, 2022. Digital mapping for soil texture class prediction in northwestern Türkiye by different machine learning algorithms. Geoderma Regional, 31, p.e00584.
Keshavarzi, A., M.Á.S. Del Árbol, F. Kaya, Y. Gyasi‐Agyei, J. Rodrigo‐Comino, 2022. Digital mapping of soil texture classes for efficient land management in the Piedmont plain of Iran. Soil Use and Management, 38(4), pp.1705-1735.
Lawrence, I., K. Lin, 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics: 45; 255-268. https://doi.org/10.2307/2532051.
Li, Q., F. Gu, Y. Zhou, T. Xu, L. Wang, Q. Zuo, L. Xiao, J. Liu, Y. Tian, 2021. Changes in the Impacts of Topographic Factors, Soil Texture, and Cropping Systems on Topsoil Chemical Properties in the Mountainous Areas of the Subtropical Monsoon Region from 2007 to 2017: A Case Study in Hefeng, China. International Journal of Environmental Research and Public Health, 18(2), p.832. https://doi.org/10.3390/ijerph18020832.
Ließ, M., B. Glaser, B. Huwe, 2012. Making use of the World Reference base diagnostic horizons for the systematic description of the soil continuum-Application to the tropical mountain soil-landscape of southern Ecuador. Catena, 97, 20–30. https://doi.org/10.1016/j.catena.2012.05.002.
Mahler PJ. (Ed.). 1970. Manual of land classification for irrigation. Ministry of Agriculture.
Mahmoudabadi, E., A. Karimi, G.H. Haghnia, A. Sepehr, 2017. Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environmental monitoring and assessment, 189(10), 500. https://doi.org/10.1007/s10661-017-6197-7.
Malone, P., B. Minasny, A.B. McBratney, 2017. Using R for digital soil mapping. Basel, Switzerland: Springer International Publishing. Sydney Institute of Agriculture the University of Sydney Eveleigh Australia. 262p. https://doi.org/10.1007/978-3-319-44327-0.
McBratney, A.B., M.M. Santos, B. Minasny, 2003. On digital soil mapping. Geoderma, 117(1-2), pp.3-52. https://doi.org/10.1016/S0016-7061(03)00223-4.
Mehrabi-Gohari, E., H.R. Matinfar, A. Jafari, R. Taghizadeh-Mehrjardi, J. Triantafilis, 2019. The spatial prediction of soil texture fractions in arid regions of Iran. Soil Systems, 3(4), p.65. https://doi.org/10.3390/soilsystems3040065.
Minasny, B., A.B. McBratney, 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 32:1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009.
Mirzaeitalarposhti, R., H. Shafizadeh-Moghadam, R. Taghizadeh-Mehrjardi, M.S. Demyan, 2022. Digital soil texture mapping and spatial transferability of machine learning models using sentinel-1, sentinel-2, and terrain-derived covariates. Remote Sensing, 14(23), p.5909.
Mondejar, J. P., A.F. Tongco, 2019. Estimating topsoil texture fractions by digital soil mapping-a response to the long outdated soil map in the Philippines. Sustainable Environment Research, 29(1), pp.1-20. https://doi.org/10.1186/s42834-019-0032-5.
Murthy, S. K., 1998. Automatic construction of decision trees from data: A multi-disciplinary survey. Data mining and knowledge discovery, 2(4), 345-389. https://doi.org/10.1023/A:1009744630224.
Nieto, O. M., J. Castro, E. Fernández-Ondoño, 2013. Conventional tillage versus cover crops in relation to carbon fixation in Mediterranean olive cultivation. Plant and Soil, 365(1-2), 321-335. https://doi.org/10.1007/s11104-012-1395-0.
Nussbaum, M., K. Spiess, A. Baltensweiler, U. Grob, A. Keller, L. Greiner, M.E. Schaepman, A. Papritz, 2018. Evaluation of digital soil mapping approaches with large sets of environmental covariates. Soil 4, 1–22. https://doi.org/10.5194/soil-4-1-2018.
Olaya, V., O. Conrad, 2009. Geomorphometry in SAGA. Developments in soil science. 33, 293-308. https://doi.org/10.1016/S0166-2481(08)00012-3.
Pahlavan-Rad, M. R., A. Akbarimoghaddam, 2018. Spatial variability of soil texture fractions and pH in a floodplain (case study from eastern Iran). Catena, 160, 275-281. https://doi.org/10.1016/j.catena.2017.10.002.
Planchon, O., F. Darboux, A. Fast, 2002. Simple and versatile algorithm to fill the depressions of digital elevation models. Catena, 46 (2-3), 159-176. https://doi.org/10.1016/S0341-8162(01)00164-3.
Poppiel, R. R., J.A.M. Demattê, N.A. Rosin, L.R. Campos, M. Tayebi, B.R. Bonfatti, S. Ayoubi, S. Tajik, F.A. Afshar, A. Jafari, N. Hamzehpour, 2021. High resolution middle-eastern soil attributes mapping via open data and cloud computing. Geoderma, 385, p.114890. https://doi.org/10.1016/j.geoderma.2020.114890.
Rudiyanto, B., B. Minasny, I. Setiawan, C. Arif, S.K. Saptomo, Y. Chadirin, 2016. Digital mapping for cost- effective and accurate prediction of the depth and carbon stocks in Indonesian peatlands. Geoderma 117 (1–2), 3–52. https://doi.org/10.1016/j.geoderma.2016.02.026.
Rumao, S., 2019. Exploration of Variable Importance and Variable selection techniques in presence of correlated variables. ‏ MSC Thesis. Rochester Institute of Technology College of Science Department of Mathematical Sciences. U.S. states, 71 p.
SAGA DEVELOPMENT TEAM. 2011. System for Automated Geoscientific Analyses [Online]. Available from: http://www.saga-gis.org. [Last accessed: 12 September, 2010].
Schulz, G.A., D.M. Rodriguez, M. Angelini, L.M. Moretti, G.F. Olmedo, L.M. Tenti Vuegen, J.C. Colazo, M. Guevara, 2023. Digital Soil Texture Maps of Argentina and Their Relationship to Soil-Forming Factors and Processes. In Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies (pp. 263-281). Cham: Springer International Publishing.
Silleos, N.G., T.K. Alexandridis, I.Z. Gitas, K. Perakis, 2006. Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International, 21(4), pp.21-28. https://doi.org/10.1080/10106040608542399.
Soil and Water Research Institute. 1995. Semi-detailed studies of geology and land classification of Chahardowli area of Kurdistan province. Journal No. 985, 20 pages. Karaj. Iran.
Sparks, D.L., A.L. Page, P.A. Helmke, R.H. Loeppert, 2020. (Eds.) Methods of soil analysis, part 3: Chemical methods (Vol. 14). John Wiley & Sons. 
Taghizadeh-Mehrjardi, R., F. Sarmadian, B. Minasny, J. Triantafilis, M. Omid, 2014. Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region, Iran. Arid Land Research and Management, 28(2), 147-168. https://doi.org/10.1080/15324982.2013.828801.
Taghizadeh-Mehrjardi, R., M. Mahdianpari, F. Mohammadimanesh, T. Behrens, N. Toomanian, T. Scholten, K. Schmidt, 2020. Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran. Geoderma, 376, p.114552. https://doi.org/10.1016/j.geoderma.2020.114552.
Taghizadeh‐Mehrjardi, R., N. Toomanian, A.R. Khavaninzadeh, A. Jafari, J. Triantafilis, 2016. Predicting and mapping of soil particle‐size fractions with adaptive neuro‐fuzzy inference and ant colony optimization in central Iran. European Journal of Soil Science 67, no. 6: 707-725. https://doi.org/10.1111/ejss.12382.
Vagen, T.G., L.A. Winowiecki, J.E. Tondoh, L.T. Desta, T. Gumbricht, 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma, 263, pp.216-225. https://doi.org/10.1016/j.geoderma.2015.06.023.
Wadoux, A.M.C., 2019. Using deep learning for multivariate mapping of soil with quantified uncertainty. Geoderma 351, 59–70. https://doi.org/10.1016/j.geoderma.2019.05.012.
Wälder, K., O. Wälder, J. Rinklebe, J. Menz, 2008. Estimation of soil properties with geostatiscal methods in floodplains. Archives of Agronomy and Soil Science 54 (3), 275–295. https://doi.org/10.1080/03650340701488485.
Wilson, J.P., J.C. Gallant, 2000. Digital terrain analysis. Terrain analysis: Principles and applications. 6(12), 1-27.
Wright, M.N., A. Ziegler, 2015. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software. 77, 1–17. https://doi.org/10.48550/arXiv.1508.04409.
Wu, W., A.D. Li, X.H. He, R. Ma, H.B. Liu, J.K. Lv, 2018, A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China. Computers and Electronics in Agriculture, 144, pp.86-93. https://doi.org/10.1016/j.compag.2017.11.037.
Zeraatpisheh, M., S. Ayoubi, A. Jafari, S. Tajik, P. Finke, 2019. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 338, 445–452. https://doi.org/10.1016/j.geoderma.2018.09.006.
Zhang, M., W. Shi, 2019. Systematic comparison of five machine-learning methods in classification and interpolation of soil particle size fractions using different transformed data. Hydrology and Earth System Sciences Discussions, 1-39. https://doi.org/10.5194/hess-2018-584.
Zhao, Z., T.L. Chow, H.W. Rees, Q. Yang, Z. Xing, F.R. Meng, 2009. Predict soil texture distributions using an artificial neural network model. Computers and electronics in agriculture, 65(1), pp.36-48. https://doi.org/10.1016/j.compag.2008.07.008.