Comparative study of aerosol optical depth satellite data with earth’s observations

Document Type : Research Paper

Authors

Faculty of Geographical Sciences and Planning, University of Esfahan, Esfahan, Iran

Abstract

This research seeks to investigate the consistency of satellite data and the information obtained from the ground meteorological stations in Iran. In this study, the Aerosol Optical Depth (AOD) data of Moderate Resolution Imaging Spectroradiometer (MODIS) deep blue algorithm of Terra satellite from 2000-2018 was used. The data of 390 meteorological stations during2000-2018 were used to evaluate and validate the satellite data. The aerosol optical depth (AOD) was studied and compared with the current weather codes of meteorological stations (codes 00 to 99). The frequency percentage and spatiotemporal matching methods were further used. Based on the results, the AOD at 550 nm data of the Terra satellite MODIS sensor had a significant relationship with the meteorological codes of 00 to 99 in Iran. This topic is useful in the study of meteorological phenomena. The present study evaluated the large values of aerosol optical depth (AOD) of meteorological phenomena in the boundary layer. The highest frequency percentage of the aerosol optical depth (AOD) between 0 and 3.5 belonged to the present weather codes No. 5 and 6. The amount of aerosol optical depth (AOD) was directly related to meteorological phenomena (short- or long-term) such as natural, industrial, and urban pollution, smoke, humidity changes, lightning, thunderstorms, and heavy rainfall. The amount of aerosol optical depth (AOD) varied depending on the season, place, and meteorological phenomena in Iran.

Keywords


References 
 
Alam K, Iqbal MJ, Blaschke T, Qureshi S, Khan G. 2010. Monitoring spatio-temporal variations in       aerosols and aerosol–cloud interactions over Pakistan using MODIS data. Advances in Space       Research, 46(9), pp.1162-1176. Bahram Vash Shams Sh, Mohammadzadeh A. 2013. Investigation of optical properties and     dust       particle size and their dependencies using AERONET data, Journal of Advanced Applied Geology;       Winter 2013; No. 10 Bilal M, Qiu Z, Campbell JR, Spak SN, Shen X, Nazeer M. 2018. A new MODIS C6 Dark Target and       Deep Blue merged aerosol product on a 3 km spatial grid. Remote Sensing, 10(3), p.463.  Chu DA, Kaufman YJ, Zibordi G, Chern JD, Mao J, Li C, Holben BN. 2003. Global monitoring of air       pollution over land from the Earth Observing System‐Terra Moderate Resolution Imaging       Spectroradiometer (MODIS). Journal of Geophysical Research: Atmospheres, 108(D21). Ensafi Moghaddam T. 2021. Investigation of Aerosol Optical Depth (AOD) Index in Dust Events in       Southwestern Iran, Nature of Iran, 5(6), 55-67 
165  Araghizadeh & Masoudian 
 
 
Fan A, Chen W, Liang L, Sun W, Lin Y, Che H, Zhao X. 2017. Evaluation and comparison of long-      term MODIS C5. 1 and C6 products against AERONET observations over China. Remote       Sensing, 9(12), 1269. Gkikas A, Hatzianastassiou N, Mihalopoulos N. 2009, September. Aerosol events in the broader       Mediterranean basin based on 7-year (2000–2007) MODIS C005 data. In Annales Geophysicae (Vol.  27, No. 9, pp. 3509-3522). Copernicus GmbH.    Hsu NC, Jeong MJ, Bettenhausen C, Sayer AM, Hansell R, Seftor CS, Huang J, Tsay SC. 2013.       Enhanced Deep Blue aerosol retrieval algorithm: The second generation. Journal of Geophysical       Research: Atmospheres, 118(16), pp.9296-9315. http://modis-atmos.gsfc.nasa.gov/MOD04_L2/index.html.(MODIS Atmosphere Aerosol Product       2021). https://irimo.ir/far/index.php (I.R.OF IRAN Meteorological Organization 2021). Ichoku C, Kaufman YJ, Remer LA, Levy R. 2004. Global aerosol remote sensing from MODIS.       Advances in Space Research, 34(4), 820-827. Kaufman YJ, Tanré D, Remer LA, Vermote EF, Chu A, Holben BN. 1997. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research: Atmospheres, 102(D14), 17051-17067. 
 
Kaufman YJ, Boucher O, Tanré D, Chin M, Remer LA, Takemura T. 2005. Aerosol anthropogenic       component estimated from satellite data. Geophysical Research Letters, 32(17). Klingmüller K, Pozzer A, Metzger S, Stenchikov GL, Lelieveld J. 2016. Aerosol optical depth trend       over the Middle East. Atmospheric Chemistry and Physics, 16(8), 5063-5073. Kucienska B, Raga GB, Altaratz O, Koren I, Quintanar A. 2013. The relation between aerosol optical       depth and lightning from the tropics to the mid-latitudes. In The 5th Symp. on Aerosol-Cloud-      Climate Interactions. Austin, TX: American Metrological Society. Levy RC, Remer LA, Tanré́́́ D, Mattoo S, Kaufman YJ. 2009. Algorithm for remote sensing of       tropospheric aerosol over dark targets from MODIS: Collections 005 and 051: Revision 2; Feb 2009.       MODIS algorithm theoretical basis document. Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF. 2010. Global evaluation of       the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and       Physics, 10(21), 10399-10420. Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC. 2013. The Collection 6       MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989- 3034. 
 
Li J, Ge X, He Q, Abbas A. 2021. Aerosol optical depth (AOD): spatial and temporal variations and       association with meteorological covariates in Taklimakan desert, China. PeerJ, 9, e10542. Masoodian SA. 2011. Iran's Weather; Sharia Toos Publications; Mashhad. Rayegani B, Kheirandish Z. 2017. Utilization of time series of satellite data to validate the identified       centers of dust production in Alborz province; Journal of Spatial Analysis of Environmental Hazards;    Fourth year; No. 4; Winter 2017 
 
Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Holben BN. 2005. The MODIS       aerosol algorithm, products, and validation. Journal of atmospheric sciences, 62(4), 947-973. Sayer AM, Hsu NC, Bettenhausen C, Jeong MJ. 2013. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. Journal of Geophysical Research: Atmospheres, 118(14),       7864-7872. 
 
Sayer AM, Hsu NC, Bettenhausen C, Jeong MJ, Meister G. 2015. Effect of MODIS Terra radiometric       calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua       consistency. Journal of Geophysical Research: Atmospheres, 120(23), 12-157. 
DESERT2022, 27(1):153-166                                                                                                                 166   
Soleimani A, Mohammad Asgari H, Dadallahi S, Alamizadeh H, Khazaei SH. 2015. Optical Depth       Evaluation of MODIS Satellite Images in the Persian Gulf, Iranian Journal of Marine Science and       Technology; Winter 2015; Volume 14; No. 4. Thomas MA, Devasthale A, Tjernström M, Ekman AM. 2019. The relation between aerosol vertical       distribution and temperature inversions in the Arctic in winter and spring. Geophysical Research       Letters, 46(5), 2836-2845. Wahab AM, Sarker MLR. 2014, February. Aerosol retrieval algorithm for the characterization of local       aerosol using MODIS L1B data. In IOP conference series: earth and environmental science (Vol. 18,No. 1, p. 012098). IOP Publishing. 
 
Wei J, Sun L. 2016. Comparison and evaluation of different MODIS aerosol optical depth products over     the Beijing-Tianjin-Hebei region in China. IEEE Journal of Selected Topics in Applied Earth       Observations and Remote Sensing, 10(3), 835-844. 
 
Wei J, Sun L, Huang B, Bilal M, Zhang Z, Wang L. 2018. Verification, improvement and application       of aerosol optical depths in China Part 1: Inter-comparison of NPP-VIIRS and Aqua-MODIS.       Atmospheric Environment, 175, 221-233. Wei J, Li Z, Sun L, Peng Y, Liu L, He L, Qin W, Cribb M. 2020. MODIS Collection 6.1 3 km resolution     aerosol optical depth product: global evaluation and uncertainty analysis. Atmospheric Environment,       240, p.117768. 
 
Xin J, Gong C, Liu Z, Cong Z, Gao W, Song T, Pan Y, Sun Y, Ji D, Wang L, Tang G. 2016. The       observation‐based relationships between PM2. 5 and AOD over China. Journal of Geophysical       Research: Atmospheres, 121(18), pp.10-701.