References
Bahrami H, Homayouni S, Hosseini RS, ZandKarimi A, Safari A. 2020. Efficient dust detection based on spectral and thermal observations of MODIS imagery. Journal of Applied Remote Sensing, 14(3); 034513. Boroughani M, Pourhashemi S, Hashemi H, Salehi M, Amirahmadi A, Asadi MAZ, Berndtsson R. 2020. Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping. Ecological Informatics, 56; 101059. Cao H, Amiraslani F, Liu J, Zhou N. 2015. Identification of dust storm source areas in West Asia using multiple environmental datasets. Science of the Total Environment, 502; 224-235.
DESERT2022, 27(1):35-53 52
Chacon-Murguía MI, Quezada-Holguín Y, Rivas-Perea P, Cabrera S. 2011. Dust storm detection using a neural network with uncertainty and ambiguity output analysis. In Mexican Conference on Pattern Recognition, Springer, Berlin, Heidelberg. pp. 305-313. El-Ossta EEA. 2013. Automated dust storm detection using satellite images. Development of a computer system for the detection of dust storms from MODIS satellite images and the creation of a new dust storm database. Ph.D. thesis, University of Bradford. Elshorbagy A, Parasuraman K. 2008. On the relevance of using artificial neural networks for estimating soil moisture content. Journal of Hydrology, 362(1-2), pp.1-18. https://doi.org/10.1016/j.jhydrol.2008.08.012 Hao X, Qu JJ. 2007. Saharan dust storm detection using moderate resolution imaging spectroradiometer thermal infrared bands. Journal of Applied Remote Sensing, 1(1); 013510. Hou P, Guo P, Wu P, Wang J, Gangopadhyay A, Zhang Z. 2020. A Deep Learning Model for Detecting Dust in Earth's Atmosphere from Satellite Remote Sensing Data. In 2020 IEEE International Conference on Smart Computing (SMARTCOMP). pp. 196-201. Huang J, Ge J, Weng F. 2007. Detection of Asia dust storms using 52ultisensory satellite measurements. Journal of Remote Sensing of Environment, 110(2); 186-191. Mei DI, Xiushan L, Lin S, Ping WANG. 2008. A dust-storm process dynamic monitoring with multi- temporal MODIS data. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 37; 965-970. Kamal A, Wu C, Lin Z. 2019. Interannual variations of dust activity in western Iran and their possible mechanisms. Big Earth Data, pp.1-16. Komeilian H, Ganjidoust H, Khodadadi A. 2014. Parametric analysis for dust plumes modeling using MODIS data over Khuzestan Province, Iran. Journal of Middle East Applied Science and Technology (JMEAST), 20; 704-708. Lee J, Shi YR, Cai C, Ciren P, Wang J, Gangopadhyay A, Zhang Z. 2020. Machine Learning Based Algorithms for Global Dust Aerosol Detection from Satellite Images: Inter-Comparisons and Evaluation. UMBC Physics Department. Li J, Wong MS, Lee KH, Nichol J, Chan PW. 2020. Review of dust storm detection algorithms for multispectral satellite sensors. Atmospheric Research, p.105398. Nabavi SO, Haimberger H, Samimi C. 2016. Climatology of dust distribution over West Asia from homogenized remote sensing data. Journal of Aeolian Research, 21; 93–107. Naimabadi A, Ghadiri A, Idani E, Babaei AA, Alavi N, Shirmardi M, Khodadadi A, Bagherian Marzouni A, Ahmadi Ankali K, Rouhizadeh A, Goudarzi GH. 2016. Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran. Journal of Environmental Pollution, 211; 316-324. Park SS, Kim J, Lee J, Lee S, Kim JS, Chang LS, Ou S. 2014. Combined dust detection algorithm by using MODIS infrared channels over East Asia. Journal of Remote sensing of environment, 141; 24- 39. Sarikhani A, Dehghani M, Karimi-Jashni A, Saadat S. 2020. A New Approach for Dust Storm Detection Using MODIS Data. Iranian Journal of Science and Technology, Transactions of Civil Engineering. Pp.1-7. Santi E, Paloscia S, Pettinato S, Fontanelli G. 2016. Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors. International journal of applied earth observation and geoinformation, 48, pp.61-73. Shi P, Song Q, Patwardhan J, Zhang Z, Wang J. 2020. Mineral dust detection using satellite data. UMBC Physics Department. Smith RB. 2005 Computing the Planck Function. Professional Paper, Yale University. Taghavi F, Owlad E, Ackerman SA. 2017. Enhancement and identification of dust events in the south- west region of Iran using satellite observations. Journal of Earth Syst, 126; 1-28. Wu Y, Guo J, Zhang X, Xin T, Zhang J, Wang Y, Duan J, Li X. 2012. Synergy of satellite and ground based observations in estimation of particulate matter in eastern China. Science of the Total Environment, 433; 20-30. Xiao F, Wong MS, Lee KH, Campbell JR, Shea YK. 2015. Retrieval of dust storm aerosols using an integrated Neural Network model. Computers & Geosciences, 85; 104-114.
53 Deiravipour et al.
Yang Y, Sun L, Zhu Z, Wei J, Su Q, Sun W, Liu F, Shu M. 2017. A simplified Suomi NPP VIIRS dust detection algorithm. Journal of Atmospheric and Solar-Terrestrial Physics, 164; 314-323. Zhao TXP, Ackerman S, Guo W. 2010. Dust and smoke detection for multi-channel imagers. Journal of Remote Sensing, 2(10); 2368-2347.