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Abstract  

Soil compactibility could be quantified via different indices, such as maximum dry bulk density (BDmax) 

and critical water content (θcritical) in a compaction test. The objective of this study was to determine the soil 

properties influencing soil compactibility by evaluating pedotranfer functions (PTFs) with respect to their 

accuracy and function for the prediction of BDmax and θcritical using linear regression and artificial neural 

network (ANN) methods. To this end, 100 soil samples were collected from the topsoil (0−30 cm) of arable 

and virgin lands in southeast of Iran. Primary particle size distribution, gypsum, Calcium Carbonate 

Equivalent (CCE), organic matter (OM) contents, and natural bulk density were used as predictors. Two 

PTFs were developed using linear multiple stepwise regression: a PTF that estimates BDmax with clay and 

sand contents and natural bulk density as predictors (R2 = 0.45), and another PTF for the estimation of θcritical 

employing clay and gypsum contents as predictors (R2 = 0.51). Furthermore, an attempt was made to 

construct PTFs for the prediction of the BDmax and θcritical utilizing ANNs. High prediction efficiencies were 

achieved through the ANN models. Generally, when all of the easily available soil properties were included 

as predictors, the ANN models for the θcritical and BDmax as compared with the results of linear regression 

method obtained much more accurate estimations. Sensitivity analysis performed in this study via Hill 

method (shirani, 2017) showed that the most important variable in BDmax prediction-using ANNs is the 

natural bulk density (BDnatural), followed by sand and clay, CCE, and gypsum contents. The highest 

sensitivity to clay content belonged to the θcritical and the lowest sensitivity to OM content was observed in 

the studied soils. 

 

Keywords: Pedotransfer functions, Linear regression, Maximum dry bulk density, Critical water content, 

Proctor compaction test  

 

Introduction 

 

Soil compaction is a process of soil densification due to external mechanical forces which 

increases bulk density, reduces porosity and air/water permeability, and consequently lowers soil 
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physical quality (Soane and Van Ouwerkerk, 2013). In agricultural science, low and moderate soil 

compaction is usually beneficial in terms of good soil-seed contacts and mechanical confinement 

of plant roots in the soil. Therefore, studying soil compaction in agricultural engineering is 

complicated given the facts that agricultural soils are structured, unsaturated, and heterogeneous, 

and soil mechanics principles should be adapted to agricultural situations with causation 

(Mosaddeghi et al., 2009; Shirani et al., 2010; Soane and Van Ouwerkerk, 2013). 

In mechanized agriculture around the world, soil compaction is known to be a hazardous 

problem caused by unsuitable farm management. It is estimated that 68.3 million hectares of the 

worldwide areas is degraded due to compaction (Braunack et al., 2006; Lozano et al., 2013). When 

soil is compacted, its properties will be negatively affected; for example, there would be poor 

aeration, low hydraulic conductivity, reduced soil water infilterability, and increased runoff 

(overland flow). These changes would adversely affect plant root growth. Likewise, the soil 

compaction destroys soil structure and diminishes soil quality intensifying soil erosion. Both soil 

pore space and pore size distribution are affected by compressive forces (Håkansson et al., 1998; 

Hargreaves et al., 2019) 

Assessment and quantification of soil compaction is believed to be crucial for soil and water 

conservation (Boivin et al., 2006). Proctor test is originally proposed by Proctor (1933) for civil 

engineering, purposed and adapted to be used in agricultural soil mechanics for years. It has several 

functions in agriculture for determining the soil workability limits, which helps to compare the 

effect of soil properties and soil management practices on soil mechanical behavior (Zhang et al. 

2006; Mosaddeghi et al., 2009; Shirani et al. 2010) and to define a reference bulk density in root 

growth studies (Reichert et al. 2009; Asgarzadeh et al. 2014; Kodikara et al. 2018). An impact-

loading type is used in the test to compact the soil samples with different water contents under a 

specific compactive effort/energy (CE) in a mold. The compacted dry bulk density is plotted versus 

water content to determine the maximum dry bulk density (BDmax) and optimum water content 

(θoptimum). The term optimum water content, θoptimum, is replaced with critical water content (θcritical) 

in agricultural applications to emphasize that while it is an optimum water content for road 

construction in civil engineering, it will be the worst conditions for tillage and traffic in arable 

soils (Ekwue and Stone, 1997). The BDmax and θcritical are considered as indices quantifying the 

soil compactibility (Soane, 1990). 

Since soil compaction tests, such as Proctor test, are time-consuming and boring, some 

scientists have developed PTFs employing conventional regression methods to predict the BDmax 

and θcritical via easily available properties (Heuscher et al., 2005; Abdelbaki, 2019). Wagner et al. 

(1994) reported a non-linear relationship between θcritical and easily available properties (for 

example, organic carbon, clay, and sand percentage) with high precision. Benites et al. (2007) 

estimated BDmax by regression PTFs (R2=0.71) using some soil properties, including organic 

matter, sand, and clay contents as predictors. Over the recent years, new data mining techniques, 

such as artificial neural network (ANN), have been employed as powerful predictive models to 

assess the sparsely-available properties in soil science and engineering (Besalatpour et al., 2013; 

Zolfaghari et al., 2015, Khaboushan et al., 2018; Mohammadi et al., 2020 ). However, fewer 

attempts have been made to evaluate the suitability of these techniques for prediction of BDmax 

and θcritical. 

The soils in the central and southern Iran are mainly calcareous and gypsiferous, saline, and 

with low organic matter content (Sarmast et al. 2016). One of the problems in Iranian agriculture is 

soil compaction. Kerman province, the largest province in Iran, is located in southeast of Iran. This 

province is one of the most important agricultural regions in Iran, whose main crop is pistachio. 
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Currently, soil densification has happened in the soils of pistachio gardens since farmers do not 

frequently apply organic manures and would usually use mineral fertilizers. Therefore, soil has 

compacted by mechanized cropping practices. Roughly, about 300,000 ha of pistachio gardens are 

affected by low soil organic matter content and soil densification in Kerman province (Shirani et 

al., 2010). Therefore, it could be useful to identify the factors leading to soil compaction. 

Although there are PTFs available to predict soil compaction parameters in references, most 

of these PTFs are based on regression and the use of artificial neural network methods and special 

statistical analysis is very rare, especially in soils of pistachio orchard in the arid regions of Iran. 

PTFs were mostly site-specific and could not be used for other geographical regions with different 

climatic and soil attributes. The developed PTFs for temperate and humid regions in the world are 

obviously not applicable for the aridic soils due to intrinsic differences between the soils of 

different climatic and/or geographical zones. Clay minerals of the aridic soils are completely 

different from the temperate soils. Therefore, the current study was aimed to:(i) derive PTFs for 

estimation of BDmax and θcritical from the easily-available soil properties, such as the sand, silt, clay, 

gypsum, CCE, and organic matter contents and bulk density, and (ii) use ANN technique in 

addition to the multivariate linear regression (MLR) method in order to upgrade the PTFs 

efficiency. The prediction accuracy of both methods was evaluated with well-known statistics. 

 

Materials and Methods 
 

Study region and the soils 

 

The soil samples were collected from different regions of Kerman province, southeast of Iran 

(Figure 1) (a total area of 186000 km2, (250 55' to 330 6' N and 530 26' to 590 29' E). In each region, 

the soil samples were taken from the topsoil (0−30 cm) under two kinds of land use, namely planted 

(pistachio and fruit gardens or crop lands) and unplanted lands (virgin and desert). It was attempted 

to collect the soil samples with a wide range of intrinsic properties and under diverse land uses 

which are typical in the region (Table 1). The numbers of sampling from agricultural lands were 

greater in three cities, namely Kerman, Rafsanjan, and Baft, because other lands in these cities are 

occupied by urban regions. Moreover, Kerman, Rafsanjan, and Baft are more important 

agriculture-wise. On top of the pistachio orchards in Kerman, certain plants, such as cereals and 

vegetables are produced. Rafsanjan is the main center of pistachio production and Baft is a 

mountainous region producing fruits, like peaches, apricots, cherries, and almonds. Dur to the 

existence of a high percentage of gravel in the virgin lands, only the agricultural lands in Baft were 

sampled. This would result in the PTFs which might be applicable for all of the soil types in the 

region and enhance the reliability of the derived PTFs. In total, 100 soil samples were collected 

(Table 1). The sampled soil mostly included subgroups of Typic Torrifluvents and Typic 

Hplocalcids (Soil Survey Staff, 2014). In each sampling location, 6 kilograms of soil were 

uniformly taken from the topsoil layer and transferred to the laboratory in a plastic bag. After air-

drying, the samples were ground and passed through a 2-mm sieve. The sieved samples (< 2 mm) 

were used for the measurement of soil properties and Proctor compact test. 
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Figure 1. Study area and sampling locations in the investigated area of Kerman province (Iran) 

 
Table 1. The studied regions and number of the collected soil samples for each region and land use 

Region/City Landuse 

 Garden and field Virgin or desert 

Kerman 15 − 

Rafsanjan 17 13 

Bardsir 7 4 

Shahrebabak 6 8 

Sirjan 8 7 

Baft 15 − 

Total 68 32 

 

Measurement of soil properties 

 

A small amount of soil samples was utilized for measurement of intrinsic properties. Soil texture 

(primary particle size distribution) was determined using the hydrometer method (Gee and Bauder, 
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1986). The gypsum content was measured via the acetone method (Nelson et al., 1978). The CCE 

content was determined with the back-titration method (Sims, 1996). Wet-oxidation techniques 

were applied to measure the soil organic matter (OM) content (Walkley and Black, 1934). Natural 

bulk density (BDnatural) was measured employing undisturbed cores with diameter and height of 5 

and 8 cm, respectively. 

 

Proctor compaction test 

 

The soil compactibility indices were determined using standard Proctor compaction test. The 

standard Proctor test, developed for civil engineering applications, employs 25 blows per layer (in 

total 75 blows) of a 2.5 kg falling hammer from 30.48-cm height (Proctor, 1933; Lambe, 

1951). The total height of the compacted soil in the compaction mould was 11.7 cm. Therefore, 

the thickness of each of the three layers, equally compacted, was about 3.9 cm. The diameter of 

the compaction mould was 10.16 cm. Thus, a compactive effort (CE) of 600 kN-m/m3 

was produced in this test (ASTM, 1992). A lower energy input (5 blows per layer, in total 15 

blows, CE of 120 kN-m/m3) could be suggested to adapt the test conditions with a lower loading 

intensity imposed by agricultural machinery tires (Ekwue and Stone, 1997; Barzegar et al., 2000; 

Shirani et al., 2010). However, the standard Proctor test was employed in this study since it is 

frequently reported in the literature that BDmax of the standard Proctor test is a reference BD in soil 

and root growth studies (Reichert et al., 2009; Asgarzadeh et al., 2014). 

The air-dried soil was prepared and divided into sub-samples with six different water contents. 

We did our best to select the water contents equally located in the sides of the critical water content 

(θcritical) (three in the dry limb and three in the wet limb). The soils with different water contents 

were prepared by water misting and soil remolding to achieve a uniformly-moisturized soil mass. 

The soil samples were compacted and wet bulk density (BDwet) of the compacted soil was 

determined. Having the gravimetric water content (θ) of a small sample from the compacted soil 

was determined and the dry bulk density (BDdry) of the compacted soil was calculated using the 

following equation: 

 

𝐵𝐷𝑑𝑟𝑦 =
𝐵𝐷𝑑𝑟𝑦

1+𝜃
BD                                                                                                                                                                             (2) 

 

Compaction curves were drawn as BDdry of the compacted soil versus θ. The maximum dry 

bulk density (BDmax) and the corresponding θcritical were determined based on the compaction curve 

and were considered as the soil compactibility characteristics. 

 

Derivation of pedotransfer functions and statistical analysis 

 

The PTFs were derived for prediction of BDmax and θcritical. Soil texture (primary particle size 

distribution, sand and clay contents in other words), CaSO4, CaCO3, OM contents, and natural BD 

were considered as predictors in the PTFs. Two groups of PTFs were developed using MLR and 

ANNs. The linear regression PTFs and Path analysis were developed to analyze the indirect effects 

of variables on BDmax using SPSS (ver. 16, IBM Com., Chicago, USA).  

     Path analysis is a statistical technique utilized to examine the comparative strength of direct 

and indirect relationships among variables. A series of parameters were estimated by solving one 

or more structural equations in order to test the fit of the correlation matrix between two or more 

causal models, which were hypothesized by the researcher to fit the data (Lleras, 2005) 
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     The ANN-based PTFs were derived with Matlab (2013), Neural Networks Toolbox 

(Mathworks, Inc., Natick, MA, USA). A feed-forward propagation technique was applied to derive 

the ANN-based PTFs. In the ANN, the best model was obtained for BDmax, when all the easily-

available properties, including sand, silt, clay, OM, CaSO4, and CaCO3 contents, and BD were 

used in the PTFs. In this method, we used 70% of the data for training, 15% for testing, and 15% 

for validation. 

To assess the model performance, various standard statistical performance evaluation criteria 

were assessed for the testing data. The statistical measures included were the root mean square 

error (RMSE), the mean absolute percentage error (MAPE), and coefficient of determination (R2) 

between the measured and predicted θcritical and BDmax. The RMSE and MAPE statistics are defined 

as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ [𝑝(𝑥𝑖) − 𝑀(𝑥𝑖)]

2𝑛
𝑖=1                                                                                                                                         (3) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

[𝑝(𝑥𝑖)−𝑀(𝑥𝑖)]

𝑀(𝑥𝑖)
|𝑛

𝑖=1 × 100                                                                                                                                     (4) 

 

where P(xi) denotes the predicted value of observation i, M(xi) is the measured value of observation 

i, and n is the total number of observations.  

In order to evaluate the importance of input variables in the ANN-based models, the coefficient 

of determination (R2) was primarily calculated by importing all of the predictors using the training 

data. Subsequently, a variable was excluded from the inputs and ANN-based model was similarly 

developed using the training data and its coefficient of determination was denoted by R2*. Finally, 

the variable importance (VI) of the excluded variable was calculated via the following equation 

(Shirani et al., 2015): 

 

𝑉𝐼 =
𝑅2−𝑅2∗

𝑅2
VI                                                                                                                                                                                     (5) 

 

This equation indicates that summation of all VI values must be equal to 1 and the variable(s) 

with higher VI value would have greater effects on the dependent variable (output) and its 

prediction. 

 

Results  

 

Table 2 depicts certain statistical details of the physical and chemical properties of the studied 

soils. The soil properties have broad ranges with high SD, which are good to develop reliable PTFs 

for compactibility indices in the region. 

Correlation matrix of the measured soil variables is represented in Table 3. Significant positive 

correlations were observed between BDmax and sand content or BDnatural, but BDmax had significant 

negative correlations with silt, clay, and organic matter contents. The correlations between θcritical 

and sand, CCE, and gypsum contents were negative, but those with silt and clay contents were 

positive. The positive correlation between BDmax and BDnatural indicated that soils with greater bulk 

density in the natural condition would have higher maximum bulk density obtained in the Proctor 

test. The negative correlation between BDmax and θcritical showed that the high maximum bulk 

density corresponded to the low critical water content, which is in agreement with other studies 

(Shirani et al., 2010). 
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Table 2. Statistics of the measured soil properties in the study area 
 

Statistics 

Soil properties 

Sand Silt Clay OM CaSO4 CaCO3 BD BDmax θcritical 

 ------------------------ kg 100kg−1 --------------------- ----- Mg m−3 ----- kg kg−1 

Min 44.00 2.64 5.16 0.01 4.19 12.45 1.17 1.53 17.29 

Max 86.92 32.25 28.44 0.42 18.47 21.45 1.69 2.10 40.21 

CV 0.16 0.36 0.27 0.50 0.23 0.12 0.10 0.07 0.23 

Mean 63.40 18.48 18.12 0.20 12.98 16.36 1.54 1.78 28.40 

SD 10.19 6.71 4.91 0.10 2.97 1.90 0.16 0.12 6.39 

Min= minimum value, Max= maximum value, CV= coefficient of variability, SD= standard deviation. 

 

Table 3. Correlation matrix of the measured soil variables  
 Sand Silt Clay OM CaSO4 CaCO3 BDnatural BDmax 

Silt −0.890**        

Clay −0.804** 0.616**       

OM −0.465** 0.381** 0.454**      

CaSO4 0.153ns −0.138ns −0.142ns −0.257*     

CaCO3 0.197ns −0.172ns −0.122ns −0.252* 0.121ns    

BDnatural 0.869** −0.734** −0.740** −0.476** 0.094ns 0.119ns   

BDmax 0.613** −0.568** −0.558** −0.297* 0.087ns 0.381ns 0.876**  

θcritical −0.796** 0.490** 0.937** 0.080ns −0.675** −0.530** −0.756** −0.515** 

Ns= non-significant, *: P < 0.05, **: P < 0.01 

Linear regression PTFs 
 

The first group of PTFs was derived for soil compactibility indices (BDmax and θcritical) using MLR 

techniques. Tables 4 and 5 illustrate the regression analysis for BDmax prediction model and θcritical 

prediction model, respectively. 

 
PTFs for the maximum dry bulk density (BDmax) 
 

Regression analysis (after deleting two outlier observations) showed that BDnatural, clay, and sand 

contents could significantly (P<0.001) contribute to the BDmax prediction in the PTF . The other 

variables could not be entered into the PTF (did not significantly affect the BDmax) (Table 4). 

Regression PTF for BDmax prediction was derived as following: 

 
𝐵𝐷𝑚𝑎𝑥 = 0.603 − 0.0037𝑆𝑎𝑛𝑑%+ 0.003𝐶𝑙𝑎𝑦%+ 0.883𝐵𝐷𝑛𝑎𝑡𝑢𝑟𝑎𝑙                                                               (6) 

 

Variance inflation factor (VIF) implied that the correlation between the entered independent 

variable was low and the regression model had enough validity (Tables 4 and 5). VIF values lower 

than 10 implied that the derived model was properly validated (Montgomery et al., 2012; Pal and 

Bharati, 2019). 

The standard regression model for BDmax is as following: 
 

𝐵𝐷𝑚𝑎𝑥 = −0.339𝑆𝑎𝑛𝑑%+ 0.108𝐶𝑙𝑎𝑦% + 1.240𝐵𝐷𝑛𝑎𝑡𝑢𝑟𝑎𝑙                                                                  (7) 

 

In the standard model, BDnatural coefficient is greater than those for sand and clay contents and 

has the greatest effect on BDmax estimation. 
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Table 4. Regression analysis for BDmax prediction model  

VIF P T SE Coef. Predictor 

 0.000 6.00 0.1000 0.603 Constant 

5.3 0.002 −3.20 0.0010 −0.0037 Sand 

2.9 0.049 1.97 0.0015 0.003 Clay 

4.2 0.000 13.59 0.0649 0.883 BDnatural 

Coef.= Coefficient, SE= Standard error, T= t-student, P= P-value, VIF= Variance inflation factor 

 

Table 5. Regression analysis for θcritical prediction model  
VIF P T SE Coef. Predictor 

 0.000 5.6 2.104 11.79 Constant 

1.7 0.000 19.1 0.058 1.12 Clay 

1.7 0.049 −2.75 0.096 −0.265 CaSO4 

Coef.= Coefficient, SE= Standard error, T= t-student, P= P-value, VIF= Variance inflation factor. 

 

PTFs for critical water content (θcritical) 

 

Regression analysis showed that clay and gypsum contents could be entered into the PTF for θcritical 

prediction (Table 5) with significant effects (P<0.05). However, other variables were removed 

during stepwise regression analysis. The final derived PTF reads as the following: 
 

𝜃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 11.79 + 1.12𝐶𝑙𝑎𝑦% − 0.265𝐶𝑎𝑆𝑂4%                                                                                                          (8) 

 

The standard regression model for θcritical is as following: 
 

𝜃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0.858𝐶𝑙𝑎𝑦%− 0.124𝐶𝑎𝑆𝑂4                                                                                                                               (9) 

 

The standard model showed that clay content had greater effects on the θcritical compared with 

gypsum. 

Figure 2 demonstrates path Graph for BDmax prediction. As is evident from the standard 

regression coefficients, BDnatural had a great direct effect on BDmax. However, sand content had a 

high indirect effect on BDmax via BDnatural (1.029), which was as a result, of positive binary 

correlation between sand content and BDmax (Table 6). Meanwhile, its direct effect on BDmax was 

negative. Table 6 shows the direct and indirect effects of sand, clay contents, and BDnatural on BDmax 

through Path analysis. 

 

Artificial neural network PTFs for BDmax and θcritical 
 

The second group of PTFs was derived for soil compactibility indices (BDmax and θcritical) using 

ANNs. The best neural network topology, obtained by trial and error, was one hidden layer with 

10 neurons, LM training algorithm, activity function of tansig in the hidden layer and that of 

pureline in the output layer, and a number of training epochs of 100. The R2 value of the PTFs 

with all the measured properties are given in Table 7.  

     The R2 value of the PTFs for BDmax with all of the measured properties (sand, silt, clay, organic 

matter, gypsum, and CCE contents and natural bulk density) included as predictors was 0.93 for 

the test data and 0.84 for the train data (Table 7). In order to present a more applicable PTF with a 

lower number of input variables 3), a PTF was derived using BDnatural and sand and clay contents, 

as predictors with R2 = 0.81. 
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For θcritical prediction, the best model was obtained once all the easily-available properties were 

used in the PTF. The R2 of the PTFs with all of the measured properties included as predictors was 

0.97 for the test data and 0.91 for the train data (Table 7). A more applicable PTF (with R2= 0.89) 

was also derived with three easily-available properties (clay, gypsum, and CCE contents) to predict 

θcritical. Figures. 3 and 4 exhibit the importance of the coefficients of the input variables to the ANN 

model for the prediction of BDmax and θcritical, respectively. Table 7 represents the results of the 

comparison of MLR and ANN models using the studied indices. 

 
Table 6. Path analysis of the direct and indirect effects of sand and clay contents and BDnatural on BDmax. 

The values on the diagonal indicate direct effects, those on both sides show indirect effects, and column r 

stands for the correlations between these variables and BDmax 

r BDnatural Clay Sand  

0.613 1.029 −0.088 −0.328 Sand 

−0.558 −0.929 0.108 0.263 Clay 

0.876 1.242 −0.082 −0.285 BDnatural 

 

Table 7. Comparison of the performances of the proposed models for the BDmax and θcritical predictions 

Parameter 
Evaluation criterion 

MAPE RMSE R2 

 MLR model 

θcritical 44.71 24.87 0.51 

BDmax 16.63 4.56 0.45 

  ANN model  

θcritical 
test 15.22 6.58 0.91 

train 9.31 2.47 0.97 

BDmax 
test 7.41 2.26 0.84 

train 3.65 0.86 0.93 

MAPE: mean absolute percentage error, RMSE: root mean square error, MLR: multivariate linear regression, and 

ANN: artificial neural network 

 

 
Figure 2. Graph of Path analysis for BDmax prediction. One-way arrows and path coefficients show 

direct effects of sand and clay contents and BDnatural on BDmax; the two-way arrows show the correlation 

(r) between the variables 
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Figure 3. Important coefficients of the input variables to the ANN model for the prediction of BDmax 

 

 
Figure 4. Important coefficients of the input variables to the ANN model for the prediction of θcritical 

 

Discussion 

 

Linear regression 

 

PTFs for BDmax 

 

According to the regression models (Eqs. 6 and 7), BDmax had a negative relationship with sand 

content and a positive one with clay content. Nevertheless, the correlation between BDmax and sand 

content was positive and that with clay was negative (Table 3). This discrepancy could be 

interpreted this way: in the multiple regression analysis, the highest coefficient with positive effect 

(+1.240) belonged to the BDnatural; sand and clay contents, with their high correlations with BDnatural 

(Table 3), would have an indirect effect on BDmax via BDnatural. Therefore, Path analysis was done 

(see subsection 3.1.3) to analyze and interpret the indirect effects of sand and clay contents (via 

BDnatural) on BDmax. 
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Analysis of the residuals (errors) showed that the derived PTF (Eq. 6) is a suitable model to 

predict the BDmax. Based on the results using Eq. 7, BDnatural had the greatest effect on BDmax and 

then sand and clay contents had, respectively, negative and positive effects on the BDmax. Benites 

et al. (2007) reported that clay, sand, and organic matter contents are highly effective on BD 

prediction. In this research, OM were not entered into the model since OM values were very low 

(<0.5%) in the studied soils and were not expected to have significant effects on soil mechanical 

behavior. 

 

PTFs for θcritical 

 

This finding indicated that clay particles mainly affect water retention in soils with low organic 

matter content. 

Analysis of the residuals (errors) showed that errors are approximately randomly distributed 

around the reference line similar to BDmax and the derived PTF (Eq. 8) is a suitable model to predict 

the θcritical. 

The results from Eq. 8 were not completely consistent with those of Tusheng Ren et al. (2008) 

who reported a model in which soil texture, bulk density, and organic matter content contributed 

to estimating θcritical with R2 = 0.92. (Vaught et al., 2006). They also showed that θcritical mostly 

depends on the soil texture with R2 = 0.88. In our study, OM was not entered into the model because 

its values were very low (<0.5%) and were not expected to have significant effects on soil 

mechanical behavior. 

With regard to θcritical prediction, clay content was the most effective parameter that could 

explain the θcritical variability in the soils of Kerman province. This is in accordance with the reports 

of other researchers (Vaught et al., 2006). This effect is due to greater water retention of fine (clay) 

particles resulting from active clay surfaces with high specific area. The increasing effect of the 

clay content on θcritical can be observed in Tables 3 and 5, which is in agreement with the results of 

Vaught et al. (2006) and Lado et al. (2007). 

The negative effect of gypsum content on θcritical (Eq. 8) might be interpreted as the following: 

gypsum particles do not have high water retention capacity; therefore, existence of this mineral in 

the soil reduces the soil water content by dilution effect. Additionally, the CCE content had a 

negative effect on θcritical (Table 3), but the relation was not as strong as that with gypsum content. 

This observation may be attributed to low variability of CCE content compared to CaCO4 content 

in the region (Table 2).  

 

Path analysis 

 

It is principally expected that sand content decrease soil compactibility. However, owing to the 

positive effect of sand content on BDnatural, it would indirectly increase BDmax. Clay can directly 

increase the BDmax owing to its positive effect on soil compactibility. On the other hand, clay can 

directly decrease BDnatural and has therefore high indirect effects on BDmax via BDnatural (coefficient 

0.929); the binary correlation between clay and BDmax is negative (-0.556). afterwards, negative 

coefficient of sand content and positive coefficient of clay content in the standard regression 

equation for BDmax prediction (Eq. 7) is due to the presence of BDnatural in the equation. 

When the standard regression equation is derived without BDnatural as a predictor, the following 

equation is obtained: 

 
𝐵𝐷𝑚𝑎𝑥 = 0.618𝑆𝑎𝑛𝑑%− 0.058𝐶𝑙𝑎𝑦%                                                                                                                            (10) 
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     This equation confirms the above-mentioned explanations. It means that with the presence of 

BDnatural in the model (Eq. 7), sand content would have a negative effect on BDmax and soil 

compactibility, and clay content would have negative effect on BDmax and soil compactibility, as 

expected. However, in the absence of BDnatural, the effect of soil texture on BDmax and soil 

compactibility is completely different (see Eq. 9). 

 

Variable importance in ANN modeling 

 

The results of sensitivity analysis via the relative changes in the coefficient of determination (Eq. 

5) showed that the most important variable in BDmax prediction using ANNs is BDnatural, followed 

by soil textural fractions (sand and clay contents), CCE, and gypsum contents (Fig. 3). In addition 

to BDnatural and soil texture, CCE and gypsum contents were found to be of importance in prediction 

of BDmax. Artificial neural networks are able to derive nonlinear relationships between variables 

with a high accuracy. This is not possible with binary correlation and linear regression analyses. 

In other words, on a number of occasions, no linear relations were determined between the 

variables while ANNs are able to derive strong nonlinear relations between the inputs and outputs. 

Carbonates and sulfates (CCE and gypsum) are important minerals with high variability in the 

studied arid soils (Table 2). Therefore, they are expected to significantly affect soil physical and 

mechanical properties, such as compactibility (Fig. 3). However, OM did not highly contribute to 

the variability of the BDmax (Fig. 3) due to its low values in the region (Table 2). 

The results indicated that the highest sensitivity to clay content and the lowest sensitivity to 

OM content belonged to θcritical in the studied soils. This finding could be attributed to high water 

retention of fine particles because of their high surface area. Following the clay content, the effects 

of gypsum and CCE contents on θcritical were also high. 

 

Comparison of the models 
 

The comparison of the MLR and ANN models revealed that ANN method provides much more 

accurate predictions of BDmax and θcritical compared with the MLR model (Table 7). As mentioned 

above, only the linear effects of the predictors on the target variable can be extracted with MLR 

method while in several cases, the effects may not be linear in the nature. Meanwhile, neural 

networks are suitable for modeling nonlinear relationships (Shirani et al., 2015). Nevertheless, the 

physical effects of the variables in ANN cannot be interpreted via the parameters of the model 

unlike the regression model, which is one of the main disadvantages of ANN method over 

regression model (Besalatpour et al., 2013).  

 

Conclusion 
 

1) This study was conducted to derive and evaluate the PTFs with respect to their accuracy and 

usefulness for prediction of soil compactibility indices (BDmax and θcritical) using linear regression 

and ANN methods in Kerman province, southeast of Iran. Path analysis was also carried out to 

determine the direct and indirect effects of the predictors. 

2) High prediction efficiencies were achieved using the ANNs. However, the accuracy of ANN 

and MLR methods became almost identical by reducing the number of predictors. 
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3) Based on the Path analysis, BDnatural had a great direct effect on BDmax whereas sand had a high 

indirect effect on BDmax via BDnatural. 

4) Sensitivity analysis showed that the most important variable in BDmax prediction using ANNs 

is BDnatural, followed by sand and clay contents, CCE, and gypsum contents. The θcritical had the 

highest sensitivity to clay content and the lowest sensitivity to OM content in the studied soils. 

This finding could be attributed to high water retention of fine particles because of their high 

surface area. Following the clay content, the effects of gypsum and CCE contents on θcritical were 

also high. 

5) The results obtained herein provided information contributing to the prediction of soil 

compactibility indices and management of arid calcareous soils in Kerman province. 
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