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Abstract 

 

     Modeling and characterization of the geometry and distribution of Rock Facture Networks (RFNs) are essential 

in applications such as hydrogeological or environmental evaluations. It is widely accepted that RFNs are poten-

tially associated with the hydrogeological (thus salinity) characteristics of the surrounding environments. Despite 

the complexity and inaccessibility of RFNs, stochastic methods provide a functional framework to predict their 

characteristics in the subsurface. An efficient tool for modeling RFNs is the Discrete Fracture Network (DFN) 

which also includes a number of geostatistical techniques that consider spatial variability structure. The ad-

vantages of these techniques are: realistic results, ease of application, and uncertainty assessments. Multiple-point 

geostatistics/statistics (MPS) is a modern and effective geostatistical tool for realistically simulating RFNs. In the 

present study, we modeled the RFNs in a location near the Qarabagh area, in the western Urmia Lake; in this 

regard, we used the Single Normal Equation Simulation (SNESIM) algorithm of the MPS geostatistical method 

using Training Images (TIs) instead of variograms. The required datasets and information for this modeling was 

provided using the field measurements of the fracture orientations and dips, as well as the outcrop photographs. 

The outcomes of these models can be used in predicting the salinity distribution in the surrounding area. There-

fore, through the SNESIM algorithm, TIs obtained from the outcrop photographs, and direct measurements, 100 

RFN realizations were generated at each station. These realizations were then averaged to predict the locations 

with higher and lower fracture probabilities and to assess the general trend of the fracture distributions.  

 

Keywords: Discontinuities modeling; Multi-point statistics/geostatiatics; Training images; Salinity; Qarabagh 

area; Urmia Lake 

          

 

1. Introduction 

 

     Investigation of Rock Fracture Networks 

(RFNs) is an essential step in environmental and 

hydrogeological issues. Moreover, several stud-

ies  over various environments have  reported the 

significant effects of RFNs on salinity distribu-

tion models. For instance, Loefman (1997) con-

structed numerical flow and transport models for 

the Äspö research site in Sweden. Their research 

was based on the geochemical field data using a 

coupled groundwater-salt transport model which 

also considers RFNs as an effective factor. A 

similar study was reported in Skagius (2010) 
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about a Swedish repository site. Karvonen 

(2013) investigated surface hydrological charac-

terization together with the salt transportation 

modeling in the Olkiluoto nuclear power plant 

site in western Finland; they considered RFNs as 

a key element in  this model of transport. RFNs 

have roles in similar problems related to the dis-

tribution of the salinity in various environments; 

therefore, their modeling and prediction could be 

an effective approach to evaluating saline envi-

ronments such as Urmia Lake. Unfortunately, the 

gradual death of Urmia Lake over the recent dec-

ades, increased salinity, and growth of aerosol 

distribution risk have noticeably endangered the 

neighboring ecosystems and human life; as a re-

sult,  the area of the present study is currently ad-

jacent to the salt sheets instead of the water.   
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     On the other hand, joints and fracture systems 

in rock masses have shown a large degree of 

complexity in their geometry and other charac-

teristics (such as filling materials). However, the 

amount and quality of information and parame-

ters obtained from surveying such areas are usu-

ally noticeably limited. Even in drilling some 

boreholes, the obtained images are restricted by 

their diameter and depth, generating a large de-

gree of uncertainty. In order to reduce such un-

certainties, the best solution  is to model these 

discontinuities (Jing and Stephansson, 2007; 

Zeeb et al., 2013). 

     To simulate discontinuities and fractures in 

rocks, several techniques have been developed; 

these methods can geometrically and geotechni-

cally be divided into three categories: determin-

istic, stochastic (statistical), and geostatistical. In 

the first method, the geometry of rock mass is de-

fined only by a limited number of main disconti-

nuities (Tatomir, 2012). In the second  approach, 

the geometric parameters of the joint sets are  

generated and simulated using their proven dis-

tribution functions. A Boolean (or object-based) 

method can be utilized here to construct the RFN 

geometries (Dowd et al., 2007; Xu et al., 2010). 

Lepillier et al. (2020) presented a workflow to 

incorporate the outcrop measurements from lin-

ear scanline surveys into the RFN modeling sys-

tem. Li et al. (2020) also proposed a new ap-

proach for the two-dimensional prediction of 

RFNs and evaluated their connectivity and ef-

fects on rock permeability. The third technique 

uses geostatistical tools for modeling and pre-

dicting RFNs. Basically, in these methods,  the 

parameters defining joint sets are estimated by 

geostatistical methods. These parameters have a 

spatial dependency or autocorrelation such as 

dip, dip direction, dimensions, and joint open-

ings. Traditional geostatistical prediction of 

RFNs are usually used only in  few steps of Pois-

son RFNs modeling (Dowd et al., 2007). For ex-

ample, Billaux et al. (1987) performed the geo-

statistical modeling of RFNs; they used a fracture 

density variogram  to model the fracture centers 

in a two-dimensional space (Koike et al., 2012).  

More advanced applications of geostatistical 

tools for modeling RFNs were introduced and 

discussed using simulated annealing in the 

framework of geostatistical criteria to more com-

pletely account for the spatial continuity models 

(Assteerawatt, 2007; Tatomir, 2012). 

     Zeeb et al. (2013) also evaluated the sampling 

methods for characterizing RFNs from the out-

crop measurements; they suggested an approxi-

mate number of 225 measurements to acquire a 

sufficient accuracy in stochastic or other RFN 

models. Further similar attempts were reported in 

relevant references (Tóth 2018 and Morgan, 

2019).   

     The multiple-point statistics/geostatistics 

(MPS) was further employed in the geostatistical 

prediction of the RFNs (Dowd et al., 2007). This 

concept was first proposed by Guardiano and 

Srivastava (1993).  This method accounts for the 

correlations between three or more loca-

tions/points at a time. Hence, it is  capable of re-

producing the connectivity of many locations and 

complex curvilinear geological structures. The 

main  components of MPS  are Training Images 

(TIs), algorithms, and hard and soft data (Arpat 

2005). Boucher (2008 and 2009) implemented 

super-resolution mapping with MPS. Ge and Bai 

(2011) extracted linear objects from remotely 

sensed imagery using MPS. The use of MPS in 

gap filling applications of remote sensing (Mari-

ethoz et al., 2012) and facies modeling consider-

ing more complex geometries were also reported 

(Strebelle and Journel, 2001).  Bruna et al. 

(2019) used outcrop photographs to generate the 

TIs of the MPS method in order to characterize 

the subsurface reservoir rocks. 

     In this field, several MPS algorithms have 

been developed, each with their own specific 

strengths and weaknesses. SNESIM, SIMPAT, 

IMPALA, and FILTERSIM  are among the im-

portant MPS algorithms. In this study, SNESIM 

algorithm (Strébelle and Journel, 2000) was used 

to simulate RFNs within the study area in a two-

dimensional space.  

     In the study area (located in Western Azerbai-

jan Province, Iran), discontinuities were sur-

veyed, and their unknown parts were predicted 

using the SNESIM algorithm of the MPS 

method. The MPS algorithms better reproduce 

the RFN geometries, especially their connectiv-

ity, which is a determinative factor in transport 

modeling.   

 

2. Materials and Methods 

 

2.1. Study area and field measurements 

 

     As mentioned above, the study area is situated 

northwest of Urmia Lake (55 km to the north of 

Urmia) close to the Qarabagh village of the Sal-

mas County, Western Azarbayjan Province, Iran. 

     To investigate the exposed RFNs, we selected 

two existing road trenches where the fractures 

were outcropped. 

Figure 1 depicts the location map of the two men-

tioned road trenches and a satellite image of the 

study area. 

     In trenches 1 and 2, orientations (azimuths), 

dip angles, trace lengths, and apertures (open-

ings) were measured for 272 and 224 joints and 
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fractures, respectively (Figure 2). Table 1 sum-

marizes the recordings resulting from the meas-

ured fracture characteristics along a scanline. We 

used the scanline method to record the existing 

fractures and joints in the study area. In this 

method, one or more lines aligned towards ap-

propriate directions are considered using the 

tools such as tape measures. The places where 

fractures cross the tape measure are then rec-

orded along with their directions, lengths, open-

ings, and factors of that kind. For scanline meas-

urement purposes of the fractures in this study, 

we used a metallic tape measure which was 

moved to different places in the recording out-

crop.  

     The extracted information concerning these 

fracture directions at each station were later used 

to categorize the recorded fractures.  

Moreover, several almost planar photographs 

(from the top) were taken at each measurement 

station; these images were later used in generat-

ing Training Images (TIs) and checking the rec-

orded fractures and their connectivity. In creating 

TIs, the field measurement was employed to-

gether with the taken photographs; this was done 

to complement and probably correct the record-

ings from either of them.  

 

2.2. Geostatistical simulations using the Multi-

ple-Point Statistics (MPS) algorithm 

 

     Established and formulated by Matheron 

(1963), geostatistics relies on the regionalized 

variables concept. This concept requires the ex-

istence of a spatial continuity (or variability) 

structure. These spatial continuity (or variability) 

structures can be calculated and modeled using 

several geostatistical tools such as covariograms 

(or variograms); these tools can be later used to 

predict the variables of interest at unknown (un-

measured) locations with a limited number of 

measured points. As a most popular geostatistical 

estimator, kriging is known as the Best Linear 

Unbiased Estimator (B.L.U.E.) because it makes 

unbiased predictions (without a systematic error) 

using a linear combination of the known values 

and has minimum estimation variance.  

 

 

 

Fig. 1. Location of measurement sites (trenches 1 and 2) on the satellite image of the study area 
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Fig. 2. The location map of the fracture recording stations in the two measurement trenches: trench 1 (the top figure) and trench 2 

(the bottom figure) 
 

Table 1. The measured characteristics of RFNs at a recording station 

Scanline characteristics: 
Azimuth: 14 

The scanline length: 2300cm 

Recording region: Qrabagh village  

name 
X(m) Y(m) Z(m)   

507181 4216913 1470   
ID Strike Dip Dip direction Spacing (cm) Opening (mm) Fracture trace length (cm) 
JS1 35 56 305 44 2 50 

JS2 60 65 330 55 0 70 

JS3 54 80 324 76 1 50 
JS4 100 73 10 79 0 40 

JS5 105 68 15 110 8 100 

JS6 63 50 333 149 3 70 
JS7 37 78 307 174 1 55 

JS8 45 63 315 220 5 500 
JS9 60 61 330 240 0 32 

JS10 110 75 20 265 1 80 

JS11 95 56 5 274 0 71 
JS12 55 51 325 371 0 105 

JS13 40 80 310 398 0 62 

J14 115 55 25 520 0 70 
JS15 98 62 8 541 0 110 

JS16 63 50 333 567 0 20 

JS17 38 62 308 570 3 130 
JS18 60 70 330 585 0 123 

JS19 110 64 20 605 13 100 

JS20 118 53 28 680 0 90 
JS21 35 82 305 745 1 84 
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Geostatistical methods also provide estimations 

with their estimation variances, enabling users to 

evaluate the uncertainties involved in the estima-

tion procedure. These advantages make geosta-

tistical tools one of the most efficient and reliable 

methods for predicting the unknown values in a 

wide range of applications.      

    However, the use of conventional spatial con-

tinuity (or variability) measures like covario-

grams (or variograms)  offers certain shortcom-

ings.  The problem originates from the fact that 

all the above-mentioned spatial continuity (or 

variability) tools use a two-point framework in 

calculating and modeling these structures. Nev-

ertheless, these two-point statistics are unable to 

sufficiently  capture the variability nature of the 

complex geological features such as curvilinear 

structures or RFNs (Caers and Zhang, 2004). 

     In this connection, Multiple-Point Statis-

tics/Geostatistics (MPS)  are applied to more 

complicated features such as fracture traces, as 

mentioned earlier. It also facilitates the integra-

tion of subjective information and soft data in the 

prediction models.  

     In the study area, MPS was implemented to 

predict the RFNs using the SNESIM algorithm 

(Strébelle and Journel, 2000) and field measure-

ments.  

     The MPS algorithm  essentially predicts the 

conditional local mass density functions of the 

existing categories in each simulation location 

using a stored data-base which can be expressed 

as a multiple-point histogram. This histogram is 

created by scanning a TI (believed to resemble 

the target reality) within a predefined template 

containing three or usually more cells/points and 

storing the observed patterns within the stated 

template. Accordingly, the frequency of the pat-

terns observed in the TI is calculated and stored 

within this database. In the next step, a simula-

tion grid is defined to perform the simulation. Af-

terwards, the algorithm moves through a random 

path and calculates the mass density functions at 

each simulation grid-node, conditioned to the ob-

served measurements.    

     To do so, the first step is to create the required 

TIs.  

  

2.3. Training images (TIs) 

 

     TIs are databases related to geological pat-

terns that resemble the reality; thus, they reflect 

the variability structure of the system under 

study. Therefore, if the plausible geological pat-

terns of the model are inferred and drawn, the ap-

propriate TIs can be constructed. TIs can be 

achieved from different sources, including inter-

preted photographs of outcrops, a sketch drawn 

and properly digitized by an expert, an uncondi-

tional simulation using object-based methods, or 

the result of a process-imitating simulation. A TI 

merely conveys the geometrical characteristics 

of the target reality or the complex spatial rela-

tionships among multiple subsurface features.  

Hence, the TI is not conditioned to any data point 

and does not hold any information depending on 

the location (Honarkhah and Caers, 2010). 

     In order to produce the required TIs, the pho-

tographs taken at each station were used. A 30 

cm  arrow aligned towards the north was placed 

on each photographing site to facilitate the recog-

nition of the geographical directions and the 

length scales on the photographs. Moreover, the 

recorded fracture information in these stations 

were implemented as ancillary information to 

correct and accomplish the photograph data. An 

important feature  considered at this stage was 

the connectivity of the fractures that should be 

correctly reflected in the TIs. Next, the deduced 

TIs were drawn based on their inferred azimuths 

and fracture trace lengths.  

     Moreover, the average opening of the availa-

ble joints in the region was considered in the 

drawn fracture line thickness; the whole TIs were 

saved in jpg format. Figure 3  is an example of 

the steps of sketching such a TI. After that, using 

a MATLAB code, the TIs were converted into a 

readable format in SGeMS software. 

 

2.4. The SNESIM algorithm 

 

     Strébelle and Journel (2000) developed a 

MPS algorithm called Single Normal Equation 

Simulation (SNESIM) which later became one of 

the most popular MPS procedures in a wide 

range of applications. The name of the algorithm 

emphasizes the use of only a single normal equa-

tion while modeling the probability of a category 

at a specific simulation grid node. 

The SNESIM algorithm steps can be simply ex-

pressed as below: 

1. Define a multiple-point template 𝑇𝑗 to scan the 

TI. 

2. Scan the TI using the multiple-point template 

𝑇𝑗 and store the observed proportional frequen-

cies of patterns in a database called search tree. 

3 Assign the existing conditioning data to their 

closest simulation grid-node. 

4. Define a random path visiting all the simula-

tion grid-nodes only once. 

5. At each location u:  

a. Determine the present conditioning data 

event  conJ(𝐮) inside the template 𝑇𝑗. 

b. Calculate the conditional probability distribu-

tion function (cdf: prob(I(u) = k |conJ(𝐮)) 
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based on the proportions of the patterns stored in 

the search tree. 

c. Randomly draw a value from this cdf and as-

sign the simulated value to the location u. Con-

sider the simulated value as conditioning data in 

the following steps. 

6. Repeat step 5 until all nodes in the grid are 

simulated (Madriz, 2009; Remy et al., 2009). 

     The search trees in SNESIM are designed to 

quickly calculate the probability distribution 

functions, facilitate the access of the algorithm to 

the patterns, and reduce the calculation time dur-

ing the simulation procedure.  

 

 
Fig. 3. The steps (a) to (c) for creating a TI by connecting the fracture trace lines to each other on a taken photograph, represented 

for one of the measurement stations  

 

2.5. Hard data 

 

     The term “hard data” refers to a data value 

that should exactly be reproduced by the model-

ing method at its measured location (Honarkhah 

and Caers, 2010). Therefore, hard data condition-

ing is beyond a simple insertion of the data into 

the model and freezing it (Arpat, 2005). 

     The hard data is highly necessary in simula-

tion. It is made based on the properties recorded 

in the field, namely  the location, orientation, and 

trace (Fig. 4). To prepare the hard data-sets based 

on the recorded location of fractures on the scan-

line, azimuth, and trace of fractures, they  were 

drawn in AutoCAD Map3D. They were drawn 

with the desired thickness after calling them to 

the ArcGIS software. For the ease of running a 

simulation, we considered a thickness equal to 

the average opening of the fractures. 

     After this step, the images were converted 

into a readable format in MATLAB using the ex-

isting codes on SGeMS (Hansen, 2004). 

 

3. Results and Discussion 

 

3.1. Overview 

 

     As explained in Section 2, the TIs of RFNs 

were primarily created at each measurement sta-

tion; their conditioning (hard) data were then de-

termined by drawing the field measured location, 

trace line lengths, and directions through their 

scanlines. Next, the MPS simulations were gen-

erated using SNEMSIM algorithm.  Finally, the 

average map of the RFNs in the vicinity of each 

station was calculated and illustrated. The fol-

lowing sections explain the details of these out-

comes. 

 

3.2. Creating TIs 

 

     As previously mentioned, creating appropri-

ate TIs is an important step in predicting RFNs 

within a geostatistical framework of the MPS 

method.  
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     The details of creating TIs  were  delineated 

in the previous section (Section 2-4). 

     The TIs were drawn for each recording station 

using the photographs combined with the direct 

measurements. Figure 4  illustrates a TI created 

through the explained routine. It is worth men-

tioning that the average fracture opening value 

inferred from the field measurements here was 

2.5 mm; this value was considered as the average 

thickness of the fracture lines in the TIs. 

 These TIs were then used as an input (together 

with the hard data) of SNESIM program to gen-

erate the required simulations.   

 

 

 
Fig. 4. A training image created using the taken photographs and drawn sketches through surveying RFNs 

 

3.3. Sketching the hard data 

 

     The fractures recorded at each station, with 

specific locations and orientations, were drawn 

according to the direct field measurements along 

the scanlines; they were inserted as conditioning 

(hard) data into the SNESIM algorithm before 

conducting the simulations. 

     Figure 5 shows  the sketch of the recorded 

RFNs as hard data at station 5. 

     These images were digitized and fed into the 

SNESIM program of the SGeMS software 

(Remy et al., 2009) along with the TIs to gener-

ate the required simulations.   

 

 

 
Fig. 5. A sketch of RFNs recorded in the field as hard data from one of the measurement stations 

 

3.4. MPS simulation results using the SNESIM 

algorithm 

 

     The Tis, hard (conditioning) data from the 

two previous stages,  and other simulation pa-

rameters (such as the extent of simulation do-

mains, search template dimensions, and number 

of realizations to be generated) were fed into the 

SNESIM simulation code to create 100 realiza-

tions at each recording station. Each of these re-

alizations indicated a plausible scenario of what  

could occur in reality  in each station or the areas 

nearby.  

     The simulation domains were considered as a 

200cm×200cm block to cover enough area for 

representing the characteristics of RFNs.  

    Figure 6 represents two simulation results (two 

realizations) for the fifth recording station. The 

simulation was repeated to generate 100 realiza-

tions, and the average of simulations at each lo-

cation was finally calculated (Figure 7). As stated 

in the Introduction, the results of these realiza-

tions can be  utilized as input for a fluid flow sim-

ulator or for the predictions of the salinity distri-

butions. As expected and shown by the figures, 

the simulations based on the MPS algorithms re-

produce the connectivity of RFNs very well. This 

feature is an important advantage of the MPS 

techniques, particularly compared to other RFNs 

modeling methods. The general trend  associated 

with the distributions of RFNs could also be as-

sessed through the averaged (E-type) map of the 

multiple realizations.  
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Fig. 6. Three (out of 100) realizations of the SNESIM algorithm for the prediction of rock fracture at station 5 in the study area 

 

 
Fig. 7. The average of 100 RFN realizations using SNESIM: the yellow color represents a higher probability of occurring joints 

while the blue color reflects a very low probability of the existence of joints 

 

5. Conclusion 

 

     The purpose of this study was to evaluate the 

potential of the MPS method in making reliable 

predictions of the RFNs in an area in the north-

western coast of Urmia Lake. This kind of pre-

diction can be useful in providing the required 

characteristics related to the transport modeling,  

especially for hydrogeological and salinity distri-

bution purposes. 

     Hence, the RFN characteristics were meas-

ured in the study area, and several almost planar 

photographs were taken at each recording sta-

tion. The direct measurements later served as 

conditioning data for MPS simulations. Further-

more, the obtained photographs  and the direct 

measurements were used in creating the TIs. 

Generating TIs is a  highly important and sensi-

tive part of MPS simulations. Therefore, all the 

information and geological data  had to be used 

to  create the realistic TIs. Having TIs and condi-

tioning data, the simulations were performed 

through the SNESIM algorithm. The realizations 

were represented, and their averages were calcu-

lated at each simulation site.  

     It is obvious that the MPS outcomes displayed 

a very realistic connection between the fractures 

and provided a reliable model of RFNs in the 

study area. The dominant number of field obser-

vations represented a general trend in the NE-SW 

direction. The high density of fractures could be 

due to the existence of large and small faults near 

the study area. 

      The results of this study suggested the ap-

plicability of MPS algorithms in predicting the 

RFNs using field observations from direct meas-

urements and photography in  similar cases.  

     Additionally, the following suggestions could 

be made for a follow-up research in the study 

area: 

1) Using Markov chain Monte Carlo method for 

RFNs modeling based on borehole data in the 

study area provided the drillings  are possible (for 

detailed studies) for comparing their efficiencies 

with the MPS methods. 

2) Implementing and developing photogrammet-

ric methods to provide more detailed while quick 

and accurate information for constructing even 

more accurate RFN models.  
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3) Using the simulation results in flow and 

transport models to evaluate the environmental 

risks existing in the study area or similar cases. 
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