Ahmed, S., 2007. Application of geostatistics in hydrosciences. In Groundwater, Edited by: Thangarajan, M. 78–111. The Netherlands: Springer.
Beven, K. J., J. Fischer, 1996. Remote sensing and scaling in hydrology. In Scaling up in hydrology using remote sensing. Ed. J. B. Stewart, T. Engman, R. A. Feddes and Y. Kerr, 1-18 New York: John Wiley.
Chen, X.W., 2002. Using remote sensing and GIS to analyses land cover change and its impacts on regional sustainable development. International Journal of Remote Sensing, 23; 107-124.
Karimian et al. / Desert 24-2 (2019) 319-330
330
Dams, J., S.T. Woldeamlak, O. Beatellan, 2008. Predicting land-use change and its impact on the groundwater system of the Kleine Nete catchment, Belgium. Hydrology and Earth System Sciences, 12; 1369–1385.
Delhomme, J.P., 1974. La cartographie d'une grandeur physique a partir des donnees de differentes qualities. In International Association of Hydro-geologists ed. Proc. of IAH Congress (Montpellier, France) Montpellier; 185–194. France: IAH.
Deutsch, C.V., A.G. Journel, 1992. GSLIB: Geostatistical software library and user's guide, New York: Oxford University Press.
Ekrami, M., Z.A. Sharifi, H. Malekinejad, M.R. Ekhtesasi, 2011. Investigating quantitative and qualitative changes of groundwater resources in Yazd-Ardakan plain over 2000-2009. Toloe Behdasht, 10; 82-91.
Khan, M.N., V.V. Rastoskuev, Y. Sato, S. Shiozawa, 2005. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77; 96-109.
Kitanidis, P.K, 1997. Introduction to geostatistics, Cambridge: Cambridge University Press.
Marengo, E., M.C. Gennaro, E. Robotti, A. Maiocchi, G. Pavese, A. Indaco, A. Rainero, 2007. Statistical Analysis of Groundwater Distribution in Alessandria Province (Piedmont- Italy). Microchemical Journal, 88; 167-177.
Mortezaei, Q., A. Kohandel, 2015. Investigating the impact of land use changes on groundwater resources using satellite images (Case Study: Chaharmahal Bakhtiari). Journal of Watershed Management Sciences and Engineering, 9; 1-9.
Mouser, P.J., 2005. A multivariate statistical approach to spatial representation of groundwater contamination using hydrochemistry and microbial community profiles. Environmental Science and Technology, 39; 7551–7559.
Pijanowski, B.C., D.G. Brown, B.A. Shellito, G.A. Manik, 2002. Using neural networks and GIS to forecast land use changes: A Land Transformation
Model. Computers Environment and Urban Systems, 26; 553-575.
Rahman, M.H., R.M. Habibnejad, L. Gholami, 2017. Evaluation of land use role on groundwater quality changes in Lajan Basin. Natural Ecosystems of Iran, 8; 83-99.
Rahmati, A., N. Mahmoodi, A. Mosaedi, F. Hidari, 2013. Assessing the effect of landuse and lithology on spring water quality in Piranshahr watershed, Iranian Journal of Watershed Management Science, 8; 19-26.
Scanlon, B., R. Reedy, D. Tonestromw, D. Prudicz, K. Dennehy, 2005. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11; 1577– 1593.
Shaban, M., 2006. The application of digital data + ETM in mapping land use to improve rangeland management in Mouteh Wildlife Refuge. The first conference, University of Rangeland management.
Shakiba, A., B. Mirbagheri, A. Khairi, 2011. Drought evaluation and its impact on groundwater resources using the SPI Index in East of Kermanshah Province. First National Conference on Drought and Climate Change, Karaj, Dehydration and Drought Research Center in Agriculture and Natural Resources.
Singh, S.K., C.K. Singh, S. Mukherjee, 2010. Impact of land-use and land cover change on groundwater quality in the Lower Shiwalik hills: a remote sensing and GIS based approach. Central European Journal of Geosciences, 2; 124-131.
Tabatabaei, H.R., N. Lalehzari, M. Noormehnad, H. Khazaii, 2010. The effect study of land use changes on ground water quality (Case study: Shahrekoord plain). Journal of Research in Agricultural Science, 6; 37-46.
Yuan, F., K. Sawaya, B. Loeffelholz, M. Bauer, 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by multi temporal Landsat remote sensing. Remote Sensing of Environment, 98; 317–328