Modelling of some soil physical quality indicators using hybrid algorithm principal component analysis - artificial neural network

Document Type : Research Paper

Authors

1 College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2 Inter 3 GmbH - Institut for Ressources management, Otto-Suhr-Allee 59, 10585 Berlin, Germany

3 Soil Science Dept., Faculty of Agriculture, Jiroft University, Jiroft, Kerman, Iran

Abstract

One of the important issues in the analysis of soils is to evaluate their features. In estimation of the hardly available properties, it seems the using of Data mining is appropriate. Therefore, the modelling of some soil quality indicators, using some of the early features of soil which have been proved by some researchers, have been considered. For this purpose, 140 disturbed and 140 undisturbed soil samples were collected from Jiroft, southern Kerman, Iran. Some physical and chemical properties of soil, for example, sand, silt and clay percentage, organic matter (OM), calcium carbonate (CaCO3), electrical conductivity at saturation (ECe), porosity (F), and bulk density (BD) were measured using standard methods. Some soil physical property indicators, including plant available water (PAW), relative field capacity (RFC), air capacity (AC) and saturated hydraulic conductivity (Ks) were also calculated. Using the hybrid algorithm of principle component analysis-artificial neural network (PCA-ANN), the calculated indicators were predicted by the easily available properties. The results showed that PCA-ANN had an acceptable accuracy in the modelling of soilphysical quality. The coefficient of determination (R2) of training and testing data for PAW, RFC and AC were 0.82 and 0.81, 0.90 and 0.79, 0.99 and 0.99, respectively. The optimization of Ks did not have the desired results. In other words, the R2 values of the training and testing data for this indicator were equal to 0.25 and 0.13, respectively. 

Keywords

Main Subjects


Alliaume, F., W.A.H. Rossing, M. García, K.E. Giller,
     S. Dogliotti, 2013. Changes in soil quality and plant
     available water capacity following systems redesign
     on commercial vegetable farms. European Journal of
     Agronomy, 46; 10– 19.
Alison, L. E., C.D. Modie, 1965. Carbonate. In: C. A.
     Black, (Ed.), Methods of soil analysis. Part II,
     Am. Soc. Agron., Madison, WI. P. 1379-1396.
Al-Sulaiman, M. A., A. M. Aboukarima, 2016.
     Prediction of Unsaturated Hydraulic Conductivity of
     Agricultural Soils Using Artificial Neural Network
     and c#. Journal of Agriculture and Ecology Research
     International, 5; 1-15.
Anlauf, R., P. Rehrmann, 2012. Effect of compaction on
     soil hydraulic parameters of vegetative landfill covers.
     Geomaterials, 2; 29–36.
Andrewsa, S.S., C.B. Florab, J.P. Mitchellc, D.L. Karlen,
     2003. Growers’ perceptions and acceptance of soil
     quality indices. Geoderma, 114; 187– 213.
Andrews, S S., D. L. Karlen, C.A. Cambardella, 2004.
      The soil management assessment framework: A
     quantitative soil quality evaluation method. Soil
     Science Society American Journal, 68; 1945-1962.
Archer, J.R., P.D. Smith, 1972. The relation between bulk
     density, available water capacity, and air capacity of
     soils. Journal of Soil Science, 23; 475-480.
Armenise, E., M.A. Redmile-Gordon, A.M. Stellacci, A.
     Ciccarese, P. Rubino, 2013. Developing a soil quality
     index to compare soil fitness for agricultural use under
     different managements in the Mediterranean
     environment. Soil Tillage Res., 130; 91–98.
Asgharzadeh, H., M.R. Mosaddeghi, A.A. Mahboubi, A.
     Nosrati, A.R. Dexter, 2010. Soil water availability for
     plants as quantified by conventional available water,
     least limiting water range and integral water capacity.
     Plant Soil, 335; 229-244.
Blake, G. R., Hartge, K. H., 1986. Particle Density, in:
     Klute, A. (eds), Methods Of Soil Analysis, Part
     1(Physical and Mineralogical Methods), Second
     Edition, Madison, Wisconsin USA, pp. 363-382.
Bodhinayake, W., B.C. Si, 2004. Near-saturated surface
     soil hydraulic properties under different land uses in
     the St Denis National Wildlife Area Saskatchewan,
     Canada. Hydrol. Process, 18; 2835–2850.
Botula, Y.D., A. Nemes, P. Mafuka, E. Van Ranst, W.M.
     Cornelis, 2013. Prediction of water retention of soils
     from the humid tropics by the nonparametric k-nearest
     neighbor approach. Vadose Zone J, 12;
     http://dx.doi.org /10.2136/vzj2012.0123.
Bouyoucos, G. J., 1951. A recalibration of hydrometer
     method for making mechanical analysis of soil.
     Agronomy Journal, 43; 434-438.
Cockroft, B., K.A. Olsson, 1997. Case study of soil
     quality in south eastern Australian management of
     structure for roots in duplex soils. In: Gregorich, E.G.,
     Carter, M.R. (Eds.), Soil Quality for Crop Production
     and Ecosystem Health. In: Developments in Soil
     Science, vol. 25. Elsevier, New York, NY. Pp. 339–
     350.
Idowu, O.J., H.M. van Es, G.S. Abawi, D.W. Wolfe, J.I.
     Ball, B.K. Gugino, B.N. Moebius, R.R. Schindelbeck, 
     A.V. Bilgili, 2007. Farmer-Oriented Assessment of
     Soil Quality using Field, Laboratory, and VNIR
     Spectroscopy Methods Plant and Soil. In review.
Ghanbarian-Alavijeh, B., A.M. Liaghat, S. Sohrabi, 2010.
     Estimating Saturated Hydraulic Conductivity from
     Soil Physical Properties using Neural Networks
     Model. International Scholarly and Scientific
     Research and Innovation, 4; 58-63.
Ghosh, S., B. Wilson, S. Ghoshald, N. Senapati, B.
     Mandal, 2012. Organic amendments influence soil
     quality and carbon sequestration in the Indo-Gangetic
     plains of India. Agriculture, Ecosystems and
     Environment, 156; 134– 141.
Hebb, Ch., D. Schoderbek, G. Hernandez-Ramirez, D.
     Hewinsd, C.N. Carlyle, E. Bork, 2017. Soil physical
     quality varies among contrasting land uses in Northern
     Prairie regions. Agriculture, Ecosystems and
     Environment, 240; 14–23.
Karlen, DL., S.S. Andrews, JW. Doran, 2001. Soil
     quality: Current concepts and applications. Advances
     in Agronomy, 74; 1-40.
Karlen, D.L., C.A. Ditzler, S.S. Andrews, 2003. Soil
     quality: why and how? Geoderma, 114; 145–156.
Karhua, K., T. Mattilab, I. Bergstr, M.K. Regina, 2011.
     Biochar addition to agricultural soil increased CH4
     uptake and water holding capacity - Results from a
     short-term pilot field study. Agriculture, Ecosystems
     and Environment, 140; 309–313.
Khotabaeia, M., H. Emami, A.R. Astaraei, A. Fotovat,
     2013. Improving Soil hysical Indicators by Soil
     Amendment to a Saline-Sodic Soil. Desert, 18; 73-
     78.
Marquez, C.O., V.J. Garcia, C.A. Cambardella, R.C.
     Schultz, T.M. Isenhart, 2004. Aggregate size stability
     distribution and soil stability. Soil Science Society
     American Joiurnal, 68; 725-735.
Marzaioli, R., Ascoli, R.D., De Pascale, R.A., Rutigliano,
     F.A., 2010. Soil quzwartality in a Mediterranean area
     of Southern Italy as related to different land use types.
     Applied Soil Ecology, 44; 205–212.
Moebius, B.N., H.M. van Es, R.R. Schindelbeck, O.J.
     Idowu, D.J. Clune, J.E. Thies, 2007. Evaluation of
     laboratory-measured soil physical properties as
     indicators of soil physical quality. Soil Sci., 172; 895-
     912.
Moncada, M.P., D. Gabriels, W.M. Cornelis, 2014. Data-
     driven analysis of soil quality indicators using limited
     data. Geoderma, 235–236; 271–278.
Mueller, L., B.D. Kay, B. Been, C. Hu, Y. Zhang, M.
     Wolff, F. Eulenstein, U. Schindler, 2008. Visual
     assessment of soil structure: Part II. Implications of
     tillage, rotation and traffic on sites in Canada, China
     and Germany. Soil Tillage. Research, 103; 188–196.
Noori, R., A. R. Karbassi, A. Moghaddamnia, D. Han, M.
     H. Zokaei-Ashtiani, A. Farokhnia, M. Ghafari
     Gousheh, 2011. Assessment of input variables
     determination on the SVM model performance using
     PCA, Gamma test, and forward selection techniques
     for monthly stream flow prediction. Journal of
     Hydrology, 401; 177-189.
Oliveira, T.C., L.F.S. da Silva, M. Cooper, 2014.
     Evaluation of Physical Quality Indices of a Soil under
     a Seasonal Semideciduous Forest. R. Bras. Ci. Solo,
     38; 444-453.
Obe, O.O., D.K. Shangodoyin, 2010. Artificial Neural
     Network Based Model for Forecasting Sugar Cane
     Production. Journal of Computer Science, 6; 439-445.
Obriot, F., M. Stauffer, Y. Goubard, N. Cheviron, G.
     Peres, M. Eden, A. Revallier, L. Vieublé-Gonod, S.
     Houot, 2016. Multi-criteria indices to evaluate the
     effects of repeated organic amendment applications on
     soil and crop quality. Agriculture, Ecosystems and
     Environment, 232; 165–178
Rajkai, K.L., S.N. Kabos, M.Th. van Genuchten, 2004.
     Estimating the water retention curve from soil
     properties: comparison of linear, nonlinear and
     concomitant variable methods. Soil and Tillage
     Research, 79; 145–152.
Raats, P.A.C., D.E. Smiles, A.W. Warrick, 2002.
     Contributions to environmental mechanics:
     Introduction. In Environmental Mechanics: Water,
     Mass and Energy Transfer in the Biosphere (Raats,
     P.A.C., Smiles, D.E., Warrick, A.W., Eds.), pp. 1–28.
     Geophys. Monogr 129. American Geophysical Union:
     Washington, DC.
Reynolds, WD., BT. Bowman, CF. Drury, C.S. Tan, X. L
     u., 2002. Indicators of good soil physical quality,
     density and storage parameters. Geoderma, 110; 131-
     146.
Reynolds, W.D., G.C. Topp, 2008. Soil water desorption
     and imbibition: tension and pressure techniques. In:
     Carter MR, Gregorich EG. (Eds.), Soil Sampling and
    Methods of Analysis, 2nd edition. Canadian Society of
     Soil Science. Taylor and Francis, LLC, Boca Raton,
     FL. Pp. 981-997.
Reynolds W.D., C.F. Drury, C.S. Tan, C.A. Fox, X.M.
     Yang, 2009. Use of indicators and pore
     volumefunction characteristics to quantify soil
     physical quality. Geoderma, 152; 252-263.
Reichert; J.M., J.A. Albuquerque, D.R. Kaiser, D.J.
     Reinert, F.L. Urach, R. Carlesso, 2009. Estimation of
     water retention and availability in soils of Rio Grande
     do Sul. Revista Brasileira de Ciência do Solo. Rev.
     Bras. Ciênc. Solo, 33; 1547-1560.
Richards, L. A., 1954. Diagnosis and Improvement of
     Saline and Alkali Soils. Soil Science, 78; 7-33.
Robinson, D.A., I. Lebron, H. Vereecken, 2009. On the
     definition of the natural capital of soils: a framework
     for description evaluation, and monitoring. Soil
     Science Society American Joiurnal, 73; 1904–1911.
Safadoust, A., P. Feizee, A.A. Mahboubi, B. Gharabaghi,
     M.R. Mosaddeghi, B. Ahrens, 2014. Least limiting
     water range as affected by soil texture and cropping
     system. Agricultural Water Management, 136; 34– 41
Samuel-Rosa; A., R.S. Diniz Dalmolin, P. Miguel, 2013.
     Building predictive models of soil particle-size
     distribution. R. Bras. Ci. Solo, 37; 422-430.
Saxton, K. E., W. J. Rawls, 2006. Soil Water
     Characteristic Estimates by Texture and Organic
     Matter for Hydrologic Solutions. Soil Science Society
     American Joiurnal, 70; 1569–1578.
Sena, M.M., R.T.S. Frighetto, P.J. Valarini, H. Tokeshi,
     R.J. Poppi, 2002. Discrimination of management
     effects on soil parameters by using principal
     component analysis: a multivariate analysis case
     study. Soil and Tillage Research, 67; 171–181.
Shahab, H., H. Emami, G.H. Haghnia, A. Karimi, 2013.
     Pore size distribution as a soil physical quality index
     for agricultural and pasture soils in Northeastern Iran.
     Pedosphere, 23; 312–320.
Shirani, H., M. Habibi, A.A. Besalatpour, I.
     Esfandiarpour, 2015. Determining the features
     influencing physical quality of calcareous soils in a
     semiarid region of Iran using a hybrid PSO-DT
     algorithm. Geoderma, 259–260; 1–11.
Skopp, J., M.D. Jawson, J.W. Doran, 1990. Steady-state
     aerobic microbial activity as a function of soil water
     content. Soil Science Society American Joiurnal, 54;
     1619–1625.
Sys, C., E. Van Ranst, J. Debaveye, 1991. Land
     Evaluation. Part I, General Administration for
     Development Cooperation Eds., Brussels, Belgium,
Vomocil, J.A., 1965. Porosity. In: Black, C.A. (Ed.),
     Methods of Soil Analysis. Part 1. Agron. Monogr. 9.
     ASA, Madison, WI. pp. 299–314.
Warrick, A.W., 2002. Soil Physics Companion. CRC
     Press LLC, Boca Raton, USA.
White, R.E., 2006. Principles and Practice of Soil
     Science, 4th edition. Blackwell Publishing, Oxford,
     UK.
Walkley, A., I.A. Black, 1934. An examination of the   degtjareff method for determining soil organic matter,
     and a proposed modification of the chromic acid
     titration method. Soil Science Society American
     Joiurnal, 37; 29–38.
Willekens, K., B. Vandecasteele, A. De Vliegher, 2014.
     Soil quality and crop productivity as affected by
     different soil management systems in organic
     agriculture. Building Organic Bridges’, at the Organic
     World Congress. 13-15 Oct., Istanbul, Turkey.
White, R. E., 2006. Principles and Practice of Soil
     Science. 4th Edition, Blackwell Publishing, Oxford,
     UK. P. 363.
Yan, Xu., X. You, 2013. Estimating Parameters of Van
     Genuchten Model for Soil Water Retention Curve by
     Intelligent Algorithms. Applied Mathematics &
     Information Sciences, 7; 1977-1983.
Yang, J., Zh. He, W.J. Zhao, J. Du, L.F. Chen, X. Zhu,
     2016. Assessing artificial neural networks coupled
     with wavelet analysis for multi-layer soil moisture
     dynamics prediction. Sciences in Cold and Arid
     Regions, 8; 116-124.