Responses of above and below ground traits of 10 accessions of Triticum boeoticum to non-stress and imposed moisture stress conditions

Document Type : Research Paper

Authors

1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, P.O. Box 657833131, Hamedan, Iran

2 Department of Molecular Plant Biotechnology, Faculty of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran

3 Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran

Abstract

     Triticum boeoticum wild wheat is a remarkable gene pool to environmental stress resistance. It is one of the most valuable species of the Triticeae tribe for improving wheat cultivars to moisture-stress. This research was carried out to assess the changes and responses of different traits of 10 accessions of Triticum boeoticum under non-stress and imposed moisture stress conditions in 2015 and 2016. Most traits were significantly affected by accession (A), water treatments (WT), and A×WT interactions. The accessions showed a high-level of genetic diversity for all traits, except peduncle weight. The accessions Tb5 and TB3 with the highest amount of economic yield per plant (EYPP) and water use efficiency (WUE), were less affected by the imposed moisture stress, while accession Tb6 with the maximum amount of water use (WU), main root length (MRL) and some phenological traits, were the most affected. The traits of WUE and main stem weight (MSTW) showed the highest and the traits of excised leaf water retention (ELWR), MRL and WU showed the lowest alignment with EYPP, respectively. The ability of producing assimilates (by increasing biological yield per plant and MSTW) and the ability of faster assimilates-remobilization into grains (by increasing harvest index and WUE), has been a neglected aspect of breeding wheat program under drought stress. In other words, the ability of a genotype to produce more assimilates and allocate it to grains (by increased BYPP and WUE, respectively) instead of belowground-traits, will result to increase EYPP. For example, the Tb6 ecotype, due to the allocation of more assimilates to underground parts, had little grain yield. While the traits of WUE, BYPP, seed number per main spike, seed weight per main spike (SWPMS) and main spike weight (MSPW) showed a positive and significant (P<0.01) correlation to EYPP, the traits of ELWR, MRL, day to heading and day to anthesis, had a negative and significant (P<0.05) correlation with yield. Generally, a high amount of WUE, MSTW, SWPMS, MSPW and peduncle weight; with a low amount of ELWR, phenological traits (except grain filling period), MRL, WU, and root to shoot dry weight ratio (RDWSDW) were suggested for the improvement of grain yield. SWPMS and MSPW were two main-components of grain yield in the favorite accessions (Tb5 and Tb3). Tb5 and Tb3 may have value for breeding wheat better adapted to moisture stress conditions in future.

Keywords

Main Subjects


Abd-el-Haleem, S.H.M., M. A. Reham, S.M.S.
    Mohamed, 2009. Genetic analysis and RAPD
     Polymorphism in some Durum Wheat Genotypes.
     Global Biotechnology and Biochemistry, 4; 1-9.
Abid, M., A. Shafaqat, Q. Lei Kang, Z. Rizwan, T.
     Zhongwei, J.  Dong, L. John, D. Tingbo, 2018.
     Physiological and biochemical changes during
     drought and recovery periods at tillering and jointing
     stages in wheat (Triticum aestivum. L). Scientific
     Reports, 8; 40-56.
Abedi, T., H. Pakniyat, 2010. Antioxidant Enzyme
     Changes in Response to Drought Stress in Ten
     Cultivars of Oilseed Rape (Brassica napus L.). Czech
     Journal of Genetics and Plant Breeding, 46; 27–34.
Abolhasani, K., G. Saeidi, 2006. Evaluation of drought
     tolerance in safflower based on tolerant and
     susceptibility indices to water stress. Water and Soil
     Science, 10; 407-418.
Abuja, I., C.H. Devos, A. M. Bones, 2010. Plant
     molecular stress responses face climate change.
     Trend in Plant Science, 15; 664-674.
Ahmadi, A., M. Saeedi A. Zalli, 2005. Drought
     resistance and its relation with yield, leaf area and
    crop growth rate during reproductive stage in bread
     wheat genotypes with different breeding
     backgrounds. Journal of Agricultural Sciences and
     Natural Resources, 12; 82-90.
Akpinar, B. A., B. Avsar, S. J. Lucas, H. Budak, 2012.
     Plant abiotic stress signaling. Plant Signal Behavior,
    
7; 1450–1455.
Akpinar, B.A., S.J. Lucas, H. Budak, 2013. Genomics
     approaches for crop improvement against abiotic
     stress. The Scientific World Journal. Article ID,
     361921; 1-9.
Alizadeh, A., 2006. Soil water plant relationship. 2nd ed.
     The Astane-Ghodse of Razavi Press.
Amini, A., R. Amirnia, H. Gazvini, 2015. Evaluation of
     relationship between physiological and agronomic
     traits related to salinity tolerance in bread wheat
     (Triticum aestivum L.) genotypes. Journal of
     Agricultural Sciences of Iran, 17; 329-348.
Anand, A., H. N. Trick, B. S. Gill, S. Muthukrishnan,
     2003. Stable transgene expression and random gene
     silencing in wheat. Plant Biotechnology Journal, 1;
     241 –251.
Arminian, A., S. Houshmand, B. Shiran, 2010.
     Evaluation the relationship between grain yield and
     some of its related traits in a doubled-haploid bread
     wheat population. Electronic Journal of Crop
     Production, 3; 21-38.
Austin, R.B., M.A. Ford, C.L. Morgan, 1989. Genetic
     improvement in the yield of winter wheat: A further
     evaluation. Journal of Agricultural Science, 112;
     295–301.
Budak, H., B. A. Akpinar, T.Unver, M.Turktas, 2013.
     Proteome changes in wild and modern wheat leaves
     upon drought stress by two-dimensional
     electrophoresis and nano LC-ESI-MS/MS. Plant
     Molecular and Biology, 83; 89–103.
Budak, H., M. Kantar, K.K. Yucebilgili, 2013. Drought
     tolerance in modern and wild wheat. The Scientific
     World Journal, Article ID, 548246; 1 –16.
Blum, A., 1996. Crop responses to drought and the
     interpretation of adaptation. Plant Growth Regulation,
     20; 135-140.
Calderini, D.F., M. F. Dreccer, G. A. Slafer, 1995.
     Genetic improvement in wheat yield and associated
     traits, examination of previous results and the latest
     trends. Plant Breeding, 114; 108-112.
Chhuneja, P., K. Kumar, D. Stirnweis, S. Hurni, B.
     Keller, H. S. Dhaliwal, 2012. Identification and
     mapping of two powdery mildew resistance genes in
     Triticum boeoticum L. Theoretical and Applied
     Genetics, 124; 1051 –1058.
Dehshiri, M.R., T. Bahrampour, 2015.
     Genotypeenvironment interaction analysis using
     GGE biplot in grain maize (Zea mayse L.) hybrids
     under different irrigation conditions. Cereal Research,
     5; 83-94.
Ergen, N. Z., H. Budak, 2009. Sequencing over 13000
     expressed sequence tags from six subtractive cDNA
     libraries of wild and modern wheat's following slow
     drought stress. Plant Cell Environment, 32; 220–236.
FAO, 2014. Statistical Database. Food and Agriculture
     Organization of the United Nations, Rome, Italy
     (http//www.apps.fao.org).
Farshadfar, E., M. Farshadfar, F. Farshadfar, 2011.
     Screening agronomic, physiological and metabolite
     indicators of drought tolerance in bread wheat
     (Triticum aestivum L.). American Journal of
     Scientific Research, 38; 88-96.
Fallahi, H. A., J. Alat Jafar Bay, F. Seyyedi, 2012.
     Evaluation of drought tolerance in Durum wheat
     genotypes using drought tolerance indices. Seed and
     Plant Improvement Journal, 27; 15-22.
Garcia Del Moral, L.F., J.M. Ramos, L. Recalde, 1985.
     Relationships between vegetative growth, grain yield
     and grain protein content in six barley cultivars.
     Canadian Journal of Plant Science, 65; 523-532.
Ghafoor, A., Z. Ahmad, N.I. Hashmi, M. Bashir, 2003.
     Genetic diversity based on agronomic traits and SDS-
     PAGE markers in relation to geographic pattern of
     blackgram (Vigna mungo L.). Journal of
     Genetics and Breeding, 57; 5-14.
Gholparvar, A.R., M.R. Ghanadha, A. A. Zali, A. Ahmadi,
     E.M. Harvan, 2009. Factor analysis of morphological and
     Morpho-physiological traits in bread wheat (Triticum
     aestivum
.L) genotypes under drought and non-drought
     stress conditions. Pajouhesh and Sazandegi, 72; 52-59.
Gonzalez, A., I. Martin, L. Ayerbe, 2007. Response of
     barley genotypes to terminal soil moisture stress:
     phonology, growth and yield. Australian Journal of
     Agricultural Research, 58; 29-37.
Golabadi, M., A. Arzani, M. Maibody, 2006.
     Assessment of drought tolerance in segregating
     populations in durum wheat. African Journal of
     Agriculture Research, 1; 162-171.
Hasani, S., H. Pirdashti, R. Mesbah, N. Babaian Jolodar,
     2007. Evaluation of drought tolerance indices in yield
     of six cultivars of Virginia tobacco (Nicotiana
     tabacum.
L). Seed and Plant Improvement Journal,
     24; 129-144.
Hamayoon, R., H. Khan, N. L. Shahenshah, I. Munir, M.
     Arif, I. A. Khalil, A. Z. Khan, 2011. Performance of
     chickpea genotypes under two different
     environmental conditions. African Journal of
     Biotechnology, 10; 1534- 1544.
Janmohammadi, M., N. Sabaghnia, M. Nouraein, 2014.
     Path analysis of grain yield and yield components and
     some agronomic traits in bread wheat. Acta
     Universitatis Agriculturae ET Silviculturae
     Mendelianae Brunensis, 62; 945-952.
Khansari,V. A., H. Sabouri, A. Byabani, A. Gholizadeh,
     H. A. Falahi, M. Zarei, 2016. Study of correlation and
     causality analysis of agronomic traits in wheat- wheat
     and sugar beet-wheat rotations. Journal of Applied
     Eco-physiological Plant Research. 2:145-156.
Kilic, H., T. Yağbasanlar, 2010. The effect of drought
     stress on grain yield, yield components and some
     quality traits of durum wheat (Triticum turgidum ssp.
     durum) cultivars. Notulate Botanicae Horti
     Agrobotanici, 38; 164-170.
Komeili, H., H. RashedMohassel, M. Ghodsi, A.
     ZareFaizabad, 2007. Evaluation of drought tolerance in wheat new genotypes under water stress conditions. Journal of Agricultural Research, 2; 314-301.
Mguis, K. h., A. Albouchi, M. Abassi, A. Khadhri, M.
     Ykoubi-Tej, A. Mahjoub, N. Ben Brahim, Z.
     Ouerghi, 2013. Responses of leaf growth and gas
     exchanges to salt stress during reproductive stage in
     wild wheat relative Aegilops geniculata Roth and
     wheat (Triticum durum). Acta Physiologiae
     Plantarum, 35; 1453–1461.
Misbah, S., G. Shabbir, A. Rasheed, A. Gul kazi, T.
     Mahmood, A. Mujeeb-Kazi, 2015. Performance of
     diverse wheat genetic stocks under moisture stress
     condition. Pakistan Journal of Botany, 47; 21-26.
Mohammadi, S.A., B.M. Prasanna, 2003. Analysis of
     genetic diversity in crop plants: salient statistical
     tools and considerations. Crop Science, 43; 1235 –
     1248.
Moosavi, S. S., M. Nazari, M. Maleki, 2017. Responses
     of above and below-ground traits of wheat wild
     relative (Aegilops tauschii) and bread wheat (Triticum
     aestivum
L.) to imposed moisture stress. Desert, 22;
     209-220.
Modarese Sanavi, S., A, Sorosh Zade, 2003. The effects
     of row spacing and seeding rate on yield and yield
     components of wheat promising lines M-75-10.
     Journal of Agricultural Sciences and Natural
     Resources, 10; 83-97.
Mujeeb-Kazi, A., A. Gul, I. Ahmad, M. Farooq, S.
     Rizwan, H. Bux, 2007. Aegilops tauschii, as a spot
     blotch (Cochliobolus sativus) resistance source for
     bread wheat improvement. Pakistan Journal of
     Botany, 39; 1207–1216.
Munns .R., R. A. James, B. Xu, A. Athman, S.J. Conn,
     C. Jordans, 2012. Wheat grain yield on saline soils is
     improved by an ancestral Na+ transporter gene.
     Nature Biotechnology, 30; 360–173.
Nabovati, S., M. Aghaee Sarbarzeh, R. Choukan, F.
     Ghanavati, G. Najafian, 2010. Genetic variation in
     agronomic characteristics and grain quality traits of
     durum wheat genotypes. Seed and Plant Improvement
     Journal, 26; 331-350.
Naghdipour, A., M. Khodarahmi, A. Pourshahbazi, M.
     Esmailzadeh, 2011. Factor analysis for grain yield
     and other traits in durum wheat. Journal of Agronomy
     and Plan Breeding, 7; 84-96.
Navabpour, S., G. Kazemi, 2013. Study the relations
     between grain yield and related traits in wheat by path analysis. Crop Production Publication, 6; 191-
     203.
Noori, A., A. A. Mehrabi, H. Safari, 2017. Study of
     correlation and path coefficient analysis of agronomic
     traits and grain yield for Aegilops cylindrical
     accessions under non-stress and drought stress
     conditions in Ilam. Journal of Crop Breeding, 9; 76-
     84.
Pour Aboughadareh, A. A., S. S. Alavikia, M.
     Moghaddam, A. A. Mehrabi, M. A. Mazinani, 2016.
     Diversity of Agro-Morphological traits in populations
     of einkorn wheat (Triticum boeoticum and Triticum
     urartu
) under normal and water deficit stress
     conditions. Journal of Crop Breeding, 8; 37-46.
Rashid, A., Q. Saleem, A. Nazir, H. S. Kazım, 2003.
     Yield potential and stability of nine wheat varieties
     under water stress conditions. International Journal of
     Agriculture and Biology, 5; 7-9.
Rezaei, A., 1996. The relationship between flour quality
     and high molecular weight of glotenin sub unit in
     wheat. Iranian Agriculture Science, 1; 11 -21.
Royo, C., M. Abaza, R. Blanco, L.F. Garcia Del Moral,
     2000. Triticale grain growth and morphometry as
     affected by drought stress, late sowing and simulated
     drought stress. Australian Journal of Plant
     Physiology, 27; 1051 -1059.
Shiri, M., A. A. Mehrabi, F. A. Shahriyari, A. R.
     Bagherii, 2010. Evaluation of genetic diversity of
     wild einkorn wheats in west and North West Iran
     using SSR markers. Journal of Applied Biology, 8;
     125-136.
Singh, M., R. K. Singh, 1973. Correlation and path
     coefficient analysis in barley. Indian Journal of
     Agricultural Sciences, 43; 455-458.
Shiv, S., M.A. Iquebal, N. P. Singh, R.K. Solanki, 2012.
     Genetic diversity studies in chickpea (Cicer arietinum
    
L.) germplasm. Journal of Food Legumes, 25; 31‒36.
Sinha, G.C.P., N. N. Sharma, 1979. Correlation,
     regression and path analysis studies in wheat
     varieties. Indian Journal of Agronomy, 25; 225-229.
Slafer, G.A., E.H. Satorre, F.H. Andrade, 1994.
     Increases in grain yield in bread wheat from breeding
     and associated physiological changes. In: Slafer, G.
     A. (Ed.), Genetic Improvement of Field Crops.
     Marcel Dekker, Inc., New York, pp. 1–68.
Sohail, Q., T. Inoue, H. Tanaka, A.E Eltayeb, Y.
     Matsuoka, H. Tsujimoto, 2011. Applicability of  
     drought tolerance traits to breeding of hexaploid
     wheat. Breeding Science, 61; 347-357.
Sultan. M., L. Hui, L. J. Yang, Z.H Xian, 2012.
     Assessment of drought tolerance of some Triticum L.
     species through physiological indices. Czech Journal
     of Genetics and Plant Breeding, 48; 178–184.
Valkoun. J. J., 2001. Wheat pre-breeding using wild
     progenitors. Euphytica, 119; 17–23.
Wortmann, C. S., 1998. An adaptation breeding strategy
     for water definite in bean developed with application
     of the DSSAT 3 dry Bean Model. African Crop
     Science Journal, 6; 215-225.