Effect of irrigation with saline water on ion homeostasis and forage dry yield in Alfalfa ecotypes application of high salty water for Alfalfa plants irrigation

Document Type : Research Paper

Authors

1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, P.O.Box 313-45195, Iran

2 Department of Soil Science, Faculty of Agriculture, University of Tehran, Tehran, Iran

3 Depertment of Soil Science and Water Management, Faculty of Horticulture, Szent István University, Budapest, 29-43 Villányi ut, H-1118 Budapest, Hungary

Abstract

Salinity stress is a brutal environmental stress which decreases the yield production of plants. Questions rise on which of the ionic stress or lack of water has deleterious effects on plants forage dry yield. Also, questions remain on whether the K+ reduction or Na+ accumulation is more important in forage dry yield reduction under salinity stress. The present experiment was conducted to answer the above questions in four alfalfa ecotypes. To do so, 6-7 weeks seedlings were irrigated with high salty water (EC=20dS m-1) and RWC, MSI, height, forage dry yield, Na+ and K+ were measured 1, 3, 6, 10, and 16 days after the salt shock. The results showed that one day after irrigation with saline water, all measured traits changed adversely. Salinity stress by decreasing K+ and increasing Na+ content reduced the growth of alfalfa plants. RWC reduction was less than K+ reduction or Na+ accumulation, so ionic stress had more deleterious effects on forage dry yield of alfalfa plants. Root cells had a higher content of K+ and Na+ ions compared with leaves, hence, they had a major defensive role against salinity stress. The K+/Na+ ratio reduction in saline condition was the main element for decreasing plant forage dry yield. The application of high salty water for irrigation of alfalfa plants is possible if there is a good subsoil drainage system to remove the leached saline water regularly from the soil. It is also suggested that foliar application of potassium may be ameliorate harmful effects of salinity stress in plant growth.

Keywords

Main Subjects


Al-Mudaris, M.A., 1998. Notes on various parameters 
     recording the speed of seed germination. JARTS, 
     99; 147-154.
Al-Niemi, T.S., W.F. Campbell, M.D. Rumbaugh, 1992. 
     Response of alfalfa cultivars to salinity during 
     germination and post-germination growth. Crop 
     Science, 32; 976–980.
Ansari, M., F. Shekari, M.H. Mohammadi, B. Biró, G. 
     Végvári, 2017. Improving germination indices of 
     alfalfa cultivars under saline stress by inoculation 
     with beneficial bacteria. Seed Science and 
     Technology, 45; 1-10.
Ashraf, M., M. Foolad, 2013. Crop breeding for salt 
     tolerance in the era of molecular markers and marker-
     assisted selection. Plant Breeding, 132; 10–20.
Ashraf, M., N. A. Akram, 2009. Improving salinity 
     tolerance of plants through conventional breeding and 
     genetic engineering: an analytical comparison. 
     Biotechnol Adv., 27; 744–752.
Aşık, B.B., M.A. Turan, H. Celik, A.V. Katkat, 2009. 
     Effects of humic substances on plant growth and 
     mineral nutrients uptake of wheat (Triticum durum 
     cv. Salihli) under conditions of salinity. Asian J Crop 
     Sci., 1; 87–95.
Babakhani, B., R.A. Khavari-Nejad, H.R. Sajedi, H. 
     Fahimi, S. Saadatmand, 2011. Biochemical responses 
     of Alfalfa (Medicago sativa L.) cultivars subjected to 
     NaCl salinity stress. African Journal of 
     Biotechnology, 10; 11433-11441.
Campanelli, A., C. Ruta, I. Morone-Fortunato, G. De 
     Mastro, 2013. Alfalfa (Medicago sativa L.) clones 
     tolerant to salt stress: in vitro selection. Central 
     European Journal of Biology, 8; 765-776.
Collins, R.P., 2012. The role of calcium and potassium 
     in salinity tolerance in brassica rapa L. cv. RCBr 
     Seed (Doctoral dissertation, Coventry University).
Cornacchione, M.V., D.L. Suarez, 2015. Emergence, 
     forage production, and ion relations of Alfalfa in 
     response to saline waters. Crop science, 55; 444-457.
Cuin, T.A., S, Shabala, 2007. Compatible solutes reduce 
     ROS induced potassium efflux in Arabidopsis roots. 
     Plant Cell Environ., 30; 875–885.
Da Silva, E.C., R.J.M.C. Nogueira, F.P. De Araújo, N.F. 
     De Melo, A.D. De Azevedo Neto, 2008. 
     Physiological responses to salt stress in young umbu 
     plants. Environmental and Experimental Botany, 
     63; 147-157.
Eimanifar, A., F. Mohebbi, 2007. Urmia Lake 
     (northwest Iran): a brief review. Saline syst, 3; 1-8.
Emam, Y., E. Bijanzadeh, R. Naderi, M. Edalat, 2009. 
     Effects of salt stress on Vegetative growth and ion 
     accumulation of two alfalfa (Medicago sativa L.) 
     cultivars. Desert, 14; 163-169.
Farahbakhsh, M., H. Toufighi, 1997. Relationships 
     between electrical conductivity and total soluble salts 
     content in salt affected soils of Iran. Iranian journal of 
     agricultural science (in Persian with English abstract), 
     28; 86-96.
Gill, S., N. Tuteja, 2010. Reactive oxygen species and 
     antioxidant machinery in abiotic stress tolerance in 
     crop plants. Plant Physiol Biochem, 48; 909-930.
Grattan, S.R., C.M. Grieve, 1999. Salinity–mineral 
     nutrient relations in horticultural crops. Sci Hort., 78; 
     127–157.
Gupta, B., B. Huang, 2014. Mechanism of salinity 
     tolerance in plants: physiological, biochemical, and 
     molecular characterization. International Journal of 
     Genomics, 20; 1-18.
He, T., G.R. Cramer, 1993. Salt tolerance of rapid 
     cycling Brassica species in relation to 
     potassium/sodium ratio and selectivity at the whole 
     plant and callus level. Journal of Plant Nutrition, 
     16; 1263-1277.
He, Y., J. Fu, C. Yu, X. Wang, Q. Jiang, J. Hong, K. Lu, 
     G. Xue, C. Yan, A. James, L. Xu, U. Xu, J. Chen, D. 
     Jian, 2015. Increasing cyclic electron flow is related 
     to Na+ sequestration into vacuoles for salt tolerance in 
     soybean. Journal of Experimental Botany, 66; 6877-
     6889.
Hong, C. Y., Y. Y. Chao, M. Y. Yang, S. C. Cho, C. 
     Huei Kao, 2009. Na+ but not Cl– or osmotic stress is 
     involved in NaCl-induced expression of glutathione 
     reductase in roots of rice seedlings. Journal of Plant 
     Physiology, 166; 1598–1606.
Ibrahim, E.A., 2016. Seed priming to alleviate salinity 
     stress in germinating seeds. Journal of Plant 
     Physiology, 192; 38–46.
Kaya, C., M. Ashraf, O. Sonmez, S. Aydenir, T.A.L. 
     Una, M.A. Cullu, 2009. The influence of arbuscular 
     mycorrhizal colonization on key growth parameters 
     and fruit yield of pepper plants grown at high salinity. 
     Scient Horticul., 121; 1–6.
Khajeh-Hosseini, M., A.A. Powell, I.J. Bingham, 2003. 
     The interaction between salinity stress and seed 
     vigour during germination of soybean seeds. Seed 
     Science and Technology, 31; 715-725.
Leland, E.F., M.G. Catherine, V.M. Eugene, M.L. Scott, 
     1994. Time of salt stress affects growth and yield 
     components of irrigated wheat. Agronomy Journal, 
     86; 100–107.
Levitt, J., 1980. Responses of plants to environmental 
     stresses. Water, radiation, salt, and other stresses. 
     Academic Press, NewYork. 
Li, R., F. Shi, K. Fukuda, Y. Yang, 2010. Effects of salt 
     and alkali stresses on germination, growth, 
     photosynthesis and ion accumulation in alfalfa 
     (Medicago sativa L.). Soil Science & Plant Nutrition, 
     56; 725-733.
Maas, E.V., G.J. Hoffman, 1977. Crop salt tolerance-
     current assessment. J. Irrig. Drain. Div., 103; 115-134.
Maathuis, F.J.M., A. Amtmann, 1999. K+ nutrition and 
     Na+ toxicity: The basis of cellular K+/Na+ ratios. 
     Annals of Botany, 84; 123-133.
Mhadhbi, H., V. Fotopoulos, P.V. Mylona, M. Jebara, 
     M.E. Aouani, A.N. Polidoros, 2013. Alternative 
     oxidase 1 (Aox1) gene expression in roots of 
     Medicago truncatula is a genotype-specific 
     component of salt stress tolerance. Journal of Plant 
     Physiology, 170; 111-114.
Munns, R., 2002. Comparative physiology of salt and 
     water stress. Plant Cell Environ., 25; 239-250.
Munns, R., M. Tester, 2008. Mechanisms of salinity 
     tolerance. Annual Review of Plant Biology, 59; 651–
     681.
Neres, M.A., D.D. Castagnara, E.E. Mesquita, M.A. 
     Zambom, L.C.D. Souza, P.S.R.D. Oliveira, C.C. 
     Jobim, 2010. Production of alfalfa hay under different 
     drying methods. Revista Brasileira de Zootecnia, 
     39; 1676-1683.
Parida, A.K., A.B. Das, 2005. Salt tolerance and salinity 
     effects on plants: a review. Ecotoxicology and 
     Environmental Safety, 60; 324–349.
Poustini, K., A. Siosemardeh, M, Ranjbar, 2007. Proline 
     Accumulation as a response to Salt stress in 30 wheat 
     (Triticum aestivum L.) cultivars differing in salt 
     tolerance.’ Genetic Resources and Crop Evolution., 
     54; 925-934.
Roy, S.J., S.J. Negrao, S.M. Tester, 2014. Salt resistant 
     crop plants. Current Opinion in Biotechnology, 26; 
     115–124.
Sairam, R.K, P.S. Deshmukh, D.S. Shukla, 1997. 
     Tolerance to drought and temperature stress in 
     relation to increased antioxidant enzyme activity in 
     wheat. J. Agron. Crop Sci., 178; 171-177.
Sarruge, J.R.S, H.P. Haag, 1974. An´alises qu´ımicas em 
     plantas, USP-ESALQ, Piracicaba, 56p.
Shabala, S., L. Shabala, E. Van Volkenburgh, 2003. 
     Effect of calcium on root development and root ion 
     fluxes in salinized barley seedlings. Functional Plant 
     Biology, 30; 507–514.
Shannon, M.C, C.M. Grieve, 1999. Tolerance of 
     vegetable crops to salinity. Sci. Hortic., 78; 5–38.
Smart, R.E., G.E. Bingham, 1974. Rapid estimates of 
     relative water concentration. Plant physiology, 53; 
     258–260.
Szabados, L., A. Savouré, 2010. Proline: a 
     multifunctional amino acid. Trends in plant science, 
     15; 89-97.
Tavakkoli, E., P. Rengasamy, G.K. McDonald, 2010. 
     High concentrations of Na+ and Cl–ions in soil 
     solution have simultaneous detrimental effects on 
     growth of faba bean under salinity stress. Journal of 
     Experimental Botany, 61; 4449-4459.
Testerink, C., 2014. Root morphology changes upon salt stress. 
     Plant Physiology Preview, 30; 1-39. 
Wang, M, Q. Zheng, Q. Shen, S. Guo, 2013. The Critical 
     Role of Potassium in Plant Stress Response. Int. J. 
     Mol. Sci., 14; 7370-7390.
Wang, W.B., Y.H. Kim, H.S. Lee, K.Y. Kim, X.P. 
     Deng, S.S. Kwak, 2009. Analysis of antioxidant 
     enzyme activity during germination of alfalfa under 
     salt and drought stresses. Plant physiology and 
     Biochemistry, 47; 570–577.
Zheng, Y., A. Jia, T. Ning, J. Xu, Z. Li, G. Jian, 2008. 
     Potassium nitrate application alleviates sodium 
     chloride stress in winter wheat cultivars differing in 
     salt tolerance. J. Plant Physiol., 165; 1455–1465.