Agarwal, A., R. Singh, S. Mishra, P. Bhunya, 2005. ANNbased
sediment yield models for Vamsadhara river
basin (India). Water SA, 31(1); 95–100.
Agil, M., I. Kita, A. Yano, S. Nishiyama, 2007. Analysis
and prediction of flow from local source in a river basin
using a Neuro-fuzzy modeling tool. J Environ Manag,
85; 215–23.
Alp, M., H.K. Cigizoglu, 2007. Suspended sediment load
simulation by two artificial neural network methods
22; 2–13.
Altun, H., A. Bilgil, B.C. Fidan, 2007. Treatment of multidimensional
data to enhance neural network estimators
in regression problems. Expert Syst Appl, 32(2); 599–
605.
ASCE Task Committee on the application of ANNs in
hydrology, 2000. Artificial neural networks in
hydrology, II: hydrologic application. J Hydrol Eng,
5(2); 124–37.
Bazoffi, P., G. Baldasarre, S. Vasca, 1996. Validation of
the PISA2 model for the automatic assessment of
reservoir sediment deposition. In Proceedings of the
International Conference on Reservoir Sediment
Deposition, Albertson M (ed.). Colorado State
University; 519–528.
Bhattacharya, B., R. Price, D. Solomatine, 2005. Datadriven
modelling in the context of sediment transport.
Phys Chem Earth, 30; 297–302.
Broomhead, D., D. Lowe, 1988. Multivariable functional
interpolation and adaptive networks. Complex Systems,
2; 321-355.
Brown, M., C. Harris, 1994. Neuro-fuzzy adaptive
modelling and control. Upper Saddle River, New
Jersey: Prentice-Hall.
Cigizoglu, H.K., 2005. Application of the generalized
regression neural networks to intermittent flow
forecasting and estimation. ASCE Journal of
Hydrologic Engineering, 10(4); 336e341.
Cigizoglu, H.K., M. Alp, 2006. Generalized regression
neural network in modelling river sediment yield. Adv
Eng Softw, 37; 63–8.
Dogan, A., H. Demirpence, M. Cobaner, 2008. Prediction
of groundwater levels from lake levels and climate data
using ann approach. Water SA, 34(2); 1–10.
Eberhart, R.C., R.W. Dobbins, 1990. Neural Network PC
Tools: A Practical Guide. Academic Press, San Diego,
414 pp.
El-Bakyr, M.Y., 2003. Feed forward neural networks
modeling for KeP interactions. Chaos, Solitions and
Fractals, 18(3); 995-1000 (Elsevier).
Engelund, F., E. Hansen, 1967. A monograph on sediment
transport in alluvial streams. Copenhagen: Danish
Technical (Teknisk Forlag).
Ferguson, R.I., 1986. River loads underestimated by rating
curves. Water Resour Res, 22; 74–6.
Hagan, M.T., M.B. Menhaj, 1994. Training feed forward
techniques with the Marquardt algorithm. IEEE
Transactions on Neural Networks, 5(6); 989-993.
Haykin, S., 1994. Neural Networks: a comprehensive
foundation. New York: MacMillan.
Hornik, K., M. Stinchcombe, H. White, 1989. Multilayer
feedforward networks are universal approximators.
Neural Netw, 2(5); 359–66.
Azamathulla, H.M., M.C. Deo, P.B. Deolalikar, 2008,
Alternative neural networks to estimate the scour below
spillways, Advances in Engineering Software, 39(8);
689-698.
Horowitz, A.J., 2008. Determining annual suspended
sediment and sediment-associated trace element and
nutrient fluxes. Sci Total Environ, 400; 315–43.
Jain, S.K., 2001. Development of integrated sediment
rating curves using Anns. J Hydraul Eng, 127(1); 30–7.
Jang, J.S.R., 1993. ANFIS: adaptive-network-based fuzzy
inference system. IEEE Trans. Sys. Manage and
Cybernetics, 23(3); 665–685.
Jang, J.S.R., C.T. Sun, 1995. Neuro-fuzzy modelling and
control. Proc IEEE, 83; 378–406.
Jang, J.S.R., C.T. Sun, E. Mizutani, 1997. Neuro-fuzzy and
soft computing: a computational approach to learning
and machine intelligence. Upper Saddle River, New
Jersey, USA: Prentice Hall.
Kim, B., S.E. Lee, M.Y. Song, J.H. Choi, S.M. Ahn, K.S.
Lee, et al, 2008. Implementation of artificial neural
networks (ANNs) to analysis of inter-taxa communities
of benthic microorganisms and macroinvertebrates in a
polluted stream. Sci Total Environ, 390; 262–74.
Kisi, O., 2004a. River flow modeling using artificial neural
networks. Journal of Hydrologic Engineering, ASCE
9(1); 60–63.
Kisi, O., 2004b. Multi-layer perceptrons with Levenberg–
Marquardt optimization algorithm for suspended
sediment concentration prediction and estimation.
Hydrological Sciences Journal, 49(6); 1025–1040.
Kisi, O., 2005. Suspended sediment estimation using
neuro-fuzzy and neural network approaches.
Hydrological Sciences Journal, 50(4); 683–696.
Kisi, O., E. Karahan, Z. Sen, 2006. River suspended
sediment modelling using a fuzzy logic approach.
Hydrol Process, 20(20); 4351–4362.
Kisi, O., T. Haktanir, M. Ardiclioglu, O. Ozturk, E. Yalcin,
S. Uludag, 2008. Adaptive neuro-fuzzy computing
technique for suspended sediment estimation. Adv Eng
Softw, 40; 438–444.
Legates, D.R., G.J. McCabe Jr, 1999. Evaluating the use of
goodness-of-fit measures in hydrologic and
hydroclimatic model validation. Water Resour Res,
35(1); 233–241.
Tuan, L.T., T. Shibayama, 2003. Application of GIS to
Evaluate Long-Term Variation of Sediment due to
Coastal Environment, Coastal Engineering Journal,
JSCE, 45(2); 275-293.
Lohani, A.K., N.K. Goel, K.K. Bhatia, 2007. Deriving
stage–discharge–sediment concentration relationships
using fuzzy logic. Hydrol Sci J, 52(4); 793–807.
Masters, T., 1993. Practical neural network recipes in C++.
San Diego (CA): Academic Press.
Mirbagheri, S.A., K.K. Tanji, R.B. Krone, 1988a.
Sediment characterization and transport in Colusa Basin
Drain. J Environ Eng, 114(6); 1257–73.
Mirbagheri, S.A., K.K. Tanji, R.B. Krone, 1988b.
Simulation of suspended sediment in Colusa Basin
Drain. J Environ Eng, 114(6); 1274–93.
Nagy, H.M., K. Watanabe, M. Hirano, 2002. Prediction of
load concentration in rivers using artificial neural
network model. J Hydraul Eng, 128(6); 588–95.
Nash, J.E., J.V. Sutcliffe, 1970. River flow forecasting
through conceptual models part I — a discussion of
principles. J Hydrol, 10(3); 282–90.
Nayak, P.C., K.P. Sudheer, D.M. Rangan, K.S. Ramasastri,
2004. A neuro-fuzzy computing technique for modeling
hydrological time series. Journal of Hydrology, 291(1–
2); 52–66.
Nourani, V., A.A. Mogaddam, A.O. Nadiri, 2008. An
ANN-based model for spatiotemporal groundwater
level forecasting. Hydrol Process, 22; 5054–5066.
Nourani, V., M.T. Alami, M.H. Aminfar, 2009. A
combined neural-wavelet model for prediction of
Ligvanchai watershed precipitation. Eng Appl Artif
Intell, 22; 466–472.
Nourani, V., M. Komasi, A. Mano, in press. A multivariate
ANN-wavelet approach for rainfall-runoff modeling.
Water Resources Management, Published online,
doi:10.1007/s11269-009-9414-5.
Ocampo-Duque, W., M. Schuhmacher, J.L. Domingo,
2007. A neural-fuzzy approach to classify the ecological
status in surface waters. Environ Pollut, 148; 634–641.
Poggio, T., F. Girosi, 1990. Regularization algorithms for
learning that are equivalent to multilayer networks.
Science, 2247; 978-982.
Raghuwanshi, N., R. Singh, L. Reddy, 2006. Runoff and
sediment yield modeling using artificial neural
networks: Upper Siwane River, India. J Hydrol Eng,
11(1); 71–79.
Rajaee, T., S.A. Mirbagheri, M. Zounemat-Kermani, V.
Nourani, 2009. Daily suspended sediment concentration
simulation using ANN and neuro-fuzzy models. Science
of the Total Environment, 407; 4916-4927.
Rajaee, T., V. Nourani, M. Zounemat-Kermani, K. Ozgur,
2011. River Suspended Sediment Load Prediction:
Application of ANN and Wavelet Conjunction Model .
Journal of Hydrologic Engineering, ASCE, 16(8); 613-
627.
Raman, H., N. Sunilkumar, 1995. Multivariate modelling
of water resources time series using artificial neural
networks. Hydrol Sci J, 40(2); 145–63.
Restrepo, J.D., J.P.M. Syvitski, 2006. Assessing the Effect
of Natural Controls and Land Use Chane on Sediment
Yield in a Major Andean River: The Magdalena
Drainage Basin, Colombia. Ambio: a Journal of the
Human Environment, 35; 44-53.
Sahoo, G.B., C. Ray, E. Mehnert, D.A. Keefer, 2006.
Application of artificial neural networks to assess
pesticide contamination in shallow groundwater. Sci
Total Environ, 367; 234–51.
Salas, J.D., J.W. Delleur, V. Yevjevich, W.L. Lane, 1980.
Applied modeling of hydrological time series. Denver:
Water Resources Publications.
Sarangi, A., A.K. Bhattacharya, 2005. Comparison of
Artificial Neural Network and regression models for
sediment loss prediction from Banha watershed in India.
Agricultural Water Management, 78; 195–208.
Sayed, T., A. Tavakolie, A. Razavi, 2003. Comparison of
adaptive network based fuzzy inference systems and Bspline
neuro-fuzzy mode choice models. Water
Resources Research, 17(2); 123–130.
Schuller, B., 1999. Automatisches Verstehen gesprochener
mathematischer Formeln. Diploma thesis, Technische
Universit¨at M¨unchen, Munich, Germany.
Sha, W., 2007. Comment on: ‘flow forecasting for a
Hawaii stream using rating curves and neural
networks’ by G.B. Sahoo and C. Ray. Journal of
Hydrology 340 (1–2), 119–121. Journal of Hydrology,
317; 63–80.
Sinnakaudan S.K., A.A.B. Ghani, M.S.S, Ahmad, N.A.
Zakaria, 2006. Multiple linear regression model for total
bed material load prediction. Journal of Hydraulic
Engineering, 132(5); 521-528.
Tahmoures, M., A. Karimi, 2008. Estimation of Daily
Suspended Sediment Yield Based on Neural Networks
and Neuro-Fuzzy Technique, Pajouhesh-va-sazandegi
Journal, 21; 61–75.
Taurino, A.M., C. Distante, P. Siciliano, L. Vasanelli,
2003. Quantitative and qualitative analysis of VOCs
mixtures by means of a microsensors array and different
evaluation methods. Sensors and Actuators, 93; 117-
125.
Tay, J.H., X. Zhang, 1999. Neural fuzzy modeling of
anaerobic biological wastewater treatment systems.
J.Environ, 125(12); 1149-1159.
Tayfur, G., S. Ozdemir, V.P. Singh, 2003. Fuzzy logic
algorithm for runoff-induced sediment transport from
bare soil surfaces. Adv Water Resour, 26; 1249–1256.
Tokar, A.S., P.A. Johnson, 1999. Rainfall runoff modelling
using artificial neural networks. J Hydrol Eng, 4(3);
232–239.
Tsai, C.H., L.C. Chang, H.C. Chiang, 2009. Forecasting of
ozone episode days by cost-sensitive neural network
methods. Sci Total Environ, 407; 2124–35.
Vanacker, V., M. Vanderschaeghe, G. Govers, E. Willems,
J. Poesen, J. Deckers, B. De Biévre, 2009. Linking
hydrological, infinite slope stability and land use change
models through GIS for assessing the impact of
deforestation on landslide susceptibility in high Andean
watersheds. Geomorphology, 52; 299-315.
Verstraeten, G., J. Poesen, 2001. Factors controlling
sediment yield fromsmall intensively cultivated
catchments in a temperate humid climate.
Geomorphology, 40; 123–44.
Williams, G.P., 1989. Sediment concentration versus water
discharge during single hydrologic events in rivers. J
Hydrol, 111(1–4); 89–106.
Yang, C.T., 1996. Sediment transport, theory and practice.
New York: McGraw-Hill.
Zhu, Y.M., X.X. Lu, Y. Zhou, 2007. Suspended sediment
flux modeling with artificial neural network: an
example of the Longchuanjiang River in the Upper
Yangtze Catchment, China. Geomorphology, 84; 111–
25.
Zounemat-Kermani, M., M. Teshnehlab, 2008. Using
adaptive neuro-fuzzy inference system for hydrological
time series prediction. Appl Soft Comput, 8; 928–936.
Zounemat-Kermani, M., A.A. Beheshti, B. Ataie-Ashtiani,
S.R. Sabbagh-Yazdi, 2009. Estimation of currentinduced
scour depth around pile groups using neural
network and adaptive neuro-fuzzy inference system.
Appl Soft Comput, 9; 746–55.