Abrahart, R.J., L.M. See, 2007. Neural network
emulation of a rainfall-runoff model. Journal of
Hydrology and Earth System Sciences, 4; 287–326.
Amorocho, J., W.E. Hart, 1964. A critique of current
methods in hydrology systems investigation.
Transactions, American Geophysical Union, 45;
307-321.
Braddock, R.D., M.L. Kremmer. L. Sanzogni, 1998.
Feed forward artificial neural network model for
forecasting rainfall-runoff. Environmental
Sciences, 9; 419-432.
Bowden, G.J., H.R. Maier, G.C. Dandy, 2002. Optimal
division of data for neural network models in water
resources applications. Journal of Water manage,
38; 1-11.
Buch, A.M., H.S. Mazumdar, P.C. Pandey, 1993. A case
study of runoff simulation of a himalayan glacier
basin.Proceeding of International Joint Conference
on Neural Networks, Nagoya, Japan. pp. 971-974.
Campolo, M., P. Andreussi, A. Soldati, 1999. River
flood forecasting with a neural network model.
Water Resources Research 35; 1191–97.
Cannon, A.J., P.H., Whitfield, 2002. Downscaling recent
stream-flow conditions in British Columbia.
Canada Using Ensemble Neural Networks. Journal
of Hydrology, 259; 136-151.
Cheng, X., M., Noguchi, 1996. Rainfall–Runoff
modeling by a neural network approach.
Proceedings of the 4th International Conference on
Water Resources and Environmental Research,
Adelaide, Australia, pp. 143–50.
Dawson, C.W., 1996. A neural network approach to
software project effort estimation. Applications of
Artificial Intelligence in Engineering, 1; 229–237.
Dawson, C.W., R.L. Wilby, 2001. Hydrological
modeling using artificial neural networks. Progress
in Physical Geography, p. 80–108.
Dooge, J.C.I., 1977. Problems and methods of rainfallrunoff
modeling. In: Ciriani, T.A., U. Maione and
J.R. Wallis (Eds.). Mathematical Models for
Surface Water Hydrology: The Workshop Held at
the IBM Scientific Center, Pisa. Wiley, London,
pp: 71-108.
Fernandoa, A.K., A.Y. Shamseldinb, R.J. Abrahart,
2011. Comparison of two data-driven approaches
for daily river flow forecasting, Proceedings of
19th International Congress on Modeling and
Simulation, Perth, Australia, pp.1077-1083.
Fischer, M.M., S. Gopal, 1994. Artificial neural
networks: a new approach to modeling
interregional telecommunication Flows. Journal of
regional Science, 34; 503–527.
Giustolisi, O., D. Laucelli, 2005. Improving
generalization of artificial neural networks in
rainfall-runoff modeling. Journal of hydrology
Science, 50; 439-457.
Halff, A.H., H.M. Halff, M. Azmoodeh, 1993.
Predicting from rainfall using neural networks,
process engineering, Journal of Hydrology, 18;
760–765.
Harun, S., N.I. Ahmat Nor, M.A.H. Kassim, 2002.
Artificial neural network model for rainfall-Runoff
Relationship. Journal of technology, 37; 1-12.
Hertz, J., A. Krogh, R.G. Palmer, 1991. Introduction to
the theory of neural computation.Journal of
Hydrology, 14; 630-645.
Hettiarachchi, P.M., J. Hall, A.W. Minns, 2005.The
extrapolation of artificial neural networks for the
modeling of rainfall–runoff relationships. Journal
of Hydro informatics, 7; 291-296.
Hjemfelt, A.T., M. Wang, 1993. Artificial neural
networks as unit hydrograph applications, process
engineering. Journal of hydrology, 10; 754–759.
Hsu, K.l., H.V. Gupta, S. Sorooshian, 1995. Artificial
neural network modeling of the rainfall-runoff
process. Journal of water resource manage, 31;
2517-2530.
Huo, Z., S. Feng, S. Kang, G. Huang, F. Wang, P. Guo,
2012. Integrated neural networks for monthly river
flow estimation in arid inland basin of northwest
China. Journal of hydrology, 420–421; 159–170.
Jafari, M., M. Vafakhah, H. Abghari, A. Tavasoli, 2012.
Runoff coefficient forecasting usingartificial
neuralnetworkin Neyshabur Bar-Arieh watershed,
Iran Natural Ecosystem Journal, 2; 85-97.
Jain, S.K, D. Das, D.K. Srivastava, 1999. Application of
ANN for reservoir inflow prediction and operation.
Journal of Water Resources Planning and
Management, 125; 263–271.
Jain, S.K., D. Chalisgaonkar, 2000. Setting up stagedischarge
relations using ANN. Journal of
Hydrologic Engineering, 5; 428-433.
Jain, A., S. Srinivasulu, 2006. Integrated approach to
model decomposed flow hydrograph using artificial
neural network and conceptual techniques. Journal
of Hydrology, 317; 291-306.
Jeong, D.I., Y-O. Kim, 2005. Rainfall-Runoff models
using artificial neural networks for ensemble
stream flow prediction, hydrological processes.
Journal of Hydrology, Published online in Wiley
Inter Science (www.interscience.wiley.com). DOI:
10.1002/hyp.5983.Process. 19; 3819–3835.
Kalteh, A.M., 2008. Rainfall-Runoff modeling using
artificial neural networks (ANNs): modeling and
understanding. Caspian Journal of Environmental
Sciences (CJES), 2008, 6; 53-58.
Karunanithi, N., W.J. Grenney, D. Whitley, K. Bovee,
1994. Neural network for river flow pre15 Diction.
Journal of Computing Civil Engineering, 8; 201–
220.
Imrie, C.E., S. Dumcan, A. Korre, 2000. River flow
prediction using artificial neural networks:
generalization beyond the calibration range. Journal
of Hydrology, 233; 138-153.
Legates, D.R., G.J. McCabe, 1999. Evaluating the use of
‘goodness-of-fit’ measures in hydrologic and hydro
climatic model validation. Water Resources
Research, 35; 233–241.
Maier, H.R., G.C. Dandy, 2000, Neural networks for the
prediction and forecasting of water resources
variables: A review of modeling issues and
application, Environmental Modeling and
Software, 15; 101–124.
Minns, A.W., M.J. Hall, 1996, Artificial neural networks
as rainfall–runoff models. Hydrological Sciences
Journal, 41; 399– 417.
Mutlu, E., I. Chaubey, H. Hexmoor, S.G. Bajwa, 2008.
Comparison of artificial neural network models for
hydrologic predictions at multiple gauging stations
in an agricultural Watershed. Hydrological
processes, 22; 5097–5106.
Nayak, P.C., Y.R. Satyajirao, K.P. Sudheer, 2006.
Groundwater level forecasting in a shallow aquifer
using artificial neural network. Water Resources
Management, 20; 77-90.
Norgaard, M., O. Ravn, N.K. Poulsen, L.K. Hansen,
2000. Neural networks for modelling and control of
dynamic systems, Springer, UK. 3; 246.
Poggio, T., F. Girosi, 1990. Networks for approximation
and learning proceedings of the IEEE, vol 78, pp.
1481-1497.
Rajurkar, M.P. U.C. Kothyari, U.C. Chaube, 2002.
Artificial neural networks for daily Rainfall-Runoff
modeling. Journal of Hydrology, 47; 865-877.
Sadeghi S.H.R., A. Tavasoli, H.R. Moradi, 2010.
Simulation intra-change storm of runoff coefficient
with use in factors rain for Neyshabur Bar
watershed, Iran. Journal of Science and Watershed
Management Engineering, 4; 21-33.
Sarangi, A., A.K. Bhattacharya, 2005, Comparison of
artificial neural network and regression models for
sediment loss prediction from Banha watershed in
India. Agricultural Water Management, 78; 195–
208.
Smith, J., R.B. Eli, 1995. Neuralnetwork models of
rainfall-runoff process. Journal of water Resource
Planning and Management, 4; 232-239.
Solaimani, K., 2009. Rainfall-Runoff prediction based
on artificial neural network (A case study: Jarahi
Watershed). American-Eurasian Journal of
Agriculture and Environment Science, 5; 856-865.
Srinivasulu, S., A. Jain, 2006. A comparative analysis of
training methods for artificial neural network
rainfall–runoff models. Apply Soft Computing, 6;
295–306.
Sudheer, K.P., A.K. Gosain, K.S. Ramasastri, 2002. A
data-driven algorithm for constructing artificial
neural network rainfall–runoff models.
Hydrological Process, 16; 1325–1330.
Thirumalaiah, K., M.C. Deo, 1998. Real-Time flood
forecasting using neural networks. Computer-
Aided Civil and Infrastructure Engineering, 13;
101–11.
Tokar, A.S. and P.A. Johnson, 1999. Rainfall-Runoff
modeling using artificial neural networks. Journal
of Hydrology Engineering, 4; 232-239.
Varoonchotikul, P., 2003. Flood forecasting using
artificial neural networks, vrijeuniversiteit unescoihe
Institute for Water Education Press.
Wilby, R.L., R.J. Abrahart, C.W. Dawson, 2003.
Detection of conceptual model rainfall-runoff
processes inside an artificial neural network.
Journal of Hydrology, 48; 163-181.
Wu, C.L., K.W. Chau, Y.S. Li, 2009. Methods to
improve neural network performance in daily flow
prediction. Journal of Hydrology, 372; 80–93.
Wu, C.L., K.W, Chau, 2011. Rainfall–Runoff modeling
using artificial neural network coupled with
singular spectrum analysis, Journal of Hydrology,
399 (3-4), pp. 394–409.
Zhang, B., R.S. Govindaraju, 2003. Geomorphology-
Based artificial neural networks (GANNs) for
estimation of direct runoff over watersheds.
Journal of Hydrology, 273; 18-34.