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Abstract 
 
     Emissivity mapping of the Earth’s surface is the prerequisite to thermal remote sensing. A precise determination 
of a surface's temperature is dependent upon the availability of precise emissivity data for that surface. The present 
study area is a part of sugarcane plantation fields in the west part of Khuzestan province. In this work, Temperature 
Emissivity Separation algorithm (TES) was applied to five different ASTER L1B images. It was found out that TES 
method overestimates temperature in all the five thermal bands, and underestimates the emissivities as compared to 
the laboratory values. The differences in the emissivity values (as compared to laboratory values) varied from 10% in 
band 10 to 3% in band 14. The main reasons for these discrepancies were a lack of proper calibration of the thermal 
bands, the possible presence of radiometric noises in the calculation of the emissivity Maximum Minimum 
Differences (MMD) as well as mixed pixels. To overcome these uncertainties in the TES algorithm, an Improved 
TES method (ITES) was introduced. In the ITES method, the surface exiting thermal fluxes were simulated. The 
emissivities of four different reference surfaces, along with air temperature measured at nearby weather stations 
(believed to represent LST of full vegetated pixels) and the band 14 temperature, were employed as inputs. The 
results show noticeable improvements in the predicted emissivity to around 1% for band 10 and less than 1% for 
bands 13 and 14 as compared to the corresponding laboratory values. The root mean square error (RMSE) of 
emissivities for full vegetation cover was less than 0.015 and less than 0.01 for partial vegetated cover, bare soil, and 
sea water surface. Finally, emissivity maps for one sample image, employing the five thermal bands, were produced. 
It is believed that these maps can be used in other satellite images as layers of emissivity values for the purpose of a 
proper estimation of surface temperatures. 
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1. Introduction 

 
     Land surface emissivity is a key parameter 
for determination of Land Surface Temperature 
(LST) as well as in the environmental studies. 
Most natural surfaces are able to emit only part 
of their potential radiant energy (Caselles et al., 
1997). Therefore, direct temperature 
measurements by infrared (IR) thermometers 
(on a remote sensing system) can only give the 
radiant (apparent) temperature, which is known 
as the brightness temperature.  In order to obtain 
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the true or kinetic temperature, the emissivity of 
the observed surface must be known with an 
acceptable level of accuracy.  
     Many fields of studies such as geology, 
hydrology, vegetation monitoring, energy 
balance (evapotranspiration), desertification 
processes, land degradation, climate change, 
and global circulation models rely on the LST 
values with different levels of precision (Van de 
Griend and Owe, 1993; Sobrino et al., 2001; 
Mobasheri et al., 2007; Mobasheri, 2006; Lyon, 
1965; Kerr et al., 2004; Jiménez-Muñoz et al., 
2006 and Gillespie et al., 1998). Among these 
applications, desertification (through monitoring 
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vegetation water stresses and 
evapotranspiration) and land degradation 
process monitoring in a region are the most 
challenging topics that deserve special attention. 
Due to the fact that the spectral behavior of bare 
soils and desert land surfaces in thermal portion 
of the electromagnetic spectrum, are not 
changing within short lapses of time, any 
emissivity maps produced for these regions may 
persist for long and could be used for precise 
LST determination in these regions.  
     In order to retrieve accurate LST values from 
remote sensing or satellite data, the image must 
be accurately corrected for the emissivity of the 
surface of interest, as well as for atmospheric 
effects. Since 1970s, several techniques to 
perform these corrections have been published, 
with most of them applied to thermal data 
acquired at wavelengths between 8 and 14 μm. 
Different approaches have been used for 
retrieving LST and emissivity (Becker and Li, 
1995; Dash et al., 2002; Kerr et al., 2004; 
Sobrino and Raissouni, 2000; Sobrino et al., 
2001). Along with atmospheric and emissivity 
corrections, angular effects must also be 
corrected for, particularly for off-nadir views. 
The problem of angular effects on atmospheric 
parameters has been to a large extent solved, 
since radiative transfer codes like MODTRAN 
(Abreu and Anderson, 1996; Berk et al., 1999) 
allow the estimation of these parameters 
depending on the observation angle. However, 
the angular variation of land surface emissivity 
is not a well-known problem, especially for bare 

surfaces of soil and rocks. In general, an 
uncertainty in the emissivity of about 0.01 leads 
to an error in the LST estimate of about 0.75 K 
for a fixed amount of radiant flux density at 
300K (Mobasheri, 2006).  
     Emissivities are also important because they 
may be diagnostic of composition, especially for 
silicate minerals. Emissivity is thus important 
for studies of soil development and erosion and 
for estimating the amounts and changes in 
sparse vegetation cover, in addition to bedrock 
mapping and resource exploration (Gillespie et 
al., 1998). Direct measurements of emissivity of 
the ground surface are difficult, time 
consuming, and expensive. On the other hand, 
simultaneous determination of LST and 
emissivity is not possible even if the signal has 
been corrected for atmospheric effects, because 
measurements in n spectral bands of the thermal 
region leads to n equations that are always less 
than the n+1 unknowns, i.e., n spectral band 
emissivity values plus one LST value. This 
difficulty can be addressed by using the 
functional relationship between vegetation 
index and radiometric surface temperatures. 
With vegetation indices such as the Normalized 
Difference Vegetation Index (NDVI), there is 
potential to relate this index to temperature at 
the NDVI pixel resolution, which is usually 
higher than the resolution of the thermal bands. 

The governing thermal equation for the 
radiance reaching the sensor is of the form 
(Mobasheri, 2006): 
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In which xn, ym are the pixel position 
coordinates in the scene, S↓ is the downwelling 
directional irradiance, S↑ the upwelling 
directional radiance, L is the sensor received 
directional radiance, and R is the radiance 
emitted by the adjacent pixels, (all in W m-2 sr-1 

μm-1), ε is the spectral emissivity, ρ the spectral 
reflectance, T is the pixel kinetic temperature, 
and τ the atmospheric transmissivity. As can be 
seen in equation (1), all terms are pixel 
dependant and may vary from pixel to pixel. 
This renders a treatment of such equations very 
difficult. 
     Inversion of equation (1) for T and ε has 
been attempted using deterministic and 
nondeterministic approaches; the former 
approaches are applicable to areas for which one 

or more of the unknowns is known (Labed and 
Stoll, 1991).  
     The task of temperature measurement for 
scenes such as oceans, snowfields and glaciers, 
and closed-canopy forests is deterministic 
(Labed and Stoll, 1991). However, deterministic 
solutions require that the atmospheric 
parameters in equation (1) be directly measured, 
but this is not always feasible.  
     Methods such as “split-window” algorithms 
rely on empirical regressions relating surface 
radiance measurements to surface temperatures 
(Mobasheri, 2006). Many attempts have focused 
on extending the "split-window" technique to 
land surfaces (Abrams and Hook, ASTER User 
Handbook). However, they all involve large 
errors due to the unknown surface emissivity 
differences. This introduces an even a greater 
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source of inaccuracy than the atmospheric 
effects (Tonooka et al., 2005). In general, land 
surface emissivities must be accurately 
measured if accurate kinetic temperatures are to 
be recovered. 
     As mentioned before, most channels measure 
data in the 8 to 14 μm region. The Advanced 
Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) was launched on the first 
of NASA’s Earth Observing System polar-
orbiting spacecrafts, EOS-1. This sensor 
consists of fourteen channels, five of which are 
devoted to the thermal-infrared (TIR) region of 
the spectrum from 8 to 14μm (Table 1) for the 
purpose of land-surface "kinetic" temperatures 
and emissivities retrieval, especially where none 
of these parameters are known as a priori. 
Because of their high spatial resolution (90 m), 
ASTER T and ε data can be verified through 
field experiments and to some extent by spectral 
libraries if pure pixels can be identified. 
     In order to equalize the number of unknowns 
and measurements so that the set of Planck 
equations for the measured thermal radiances 
can be inverted to temperature and emissivities, 
a Temperature and Emissivity Separation (TES) 
algorithm is developed. This algorithm relies on 
an empirical relationship between spectral 
contrast and minimum emissivity determined 
from laboratory and field emissivity spectra. It 
is designed to produce the surface temperature 
in one band and emissivity in 5 bands.  

 
     Table 1: Characteristics of the ASTER Thermal Channels 

Channel no. Bandpass (�m) (µm) 
10 
11 
12 
13 
14 

8.125-8.475 
8.475-8.825 
8.925-9.275 
10.25-10.95 
10.95-11.65 

 

     Surface temperatures are independent of 
wavelength and can be retrieved using even one 
single band radiance data, provided that the 
emissivity of the observed surface in that band 
is known. Except for land cover types such as 
water, vegetation, and snow or ice, however, the 
emissivity of the land surfaces are not known a 
priori, and must be determined to an acceptable 
degree of accuracy.  
      In the TES algorithm, the additional data 
comes from a regression between minimum 
emissivity and their spectral contrast with 
laboratory spectra. For this, at least three to four 
spectral bands are required to measure the 
contrast in the images. Therefore, it is necessary 
to have multispectral measurements to 
determine land surface temperatures. Gillespie 
et al. (1998) claimed that the ASTER's estimated 

temperature accuracy at 300K is 1K, and 3K at 
240K. However, the ASTER instrument team 
compensate all measurements for the 
atmospheric transmissivity and path radiance 
both of which are determined independently 
(Sobrino et al., 2005), and report values for 
downwelling sky irradiance. So it might be 
possible to calculate accurate values of T and ε. 
     In regions where the spectral contrast is low, 
such as vegetated areas, the emissivity can be 
retrieved through the NDVI index (Jiménez-
Muñoz et al., 2006). This index can be 
calculated using channels 2 (red) and 3 (near 
IR) of ASTER, which are not within the thermal 
region of the spectrum. In this work, the 
capability of the TES algorithm to estimate 
surface emissivity is assessed using emissivity 
values calculated by NDVI as well as through 
library values.  

 
2. Study Area 
 
     The study area is a part of the Amirkabir and 
Dea`bal-Khazaie sugarcane sites located in the 
north-west of Persian Gulf some 25 kilometers 
south of Ahvaz in Khuzestan province, Iran. 
The field is located in UTM Zone 38, between 
30º50'N and 31º30'N latitude and 47º35'E and 
48º30'E longitude (Fig. 1). The selection of this 
area was based on the availability of the field 
data required in this research as well as the 
existence of bare soil, vegetated cover and water 
surfaces in the very same scene. Of course once 
the methodology approved, the method can be 
applied to the desert regions as well. 
 
3. Data Collection and Image Processing 
 
     The required standard Level 1-B 
Terra/ASTER images for the period 2004 to 
2005, that covers different sugarcane growing 
seasons, were supplied. To ensure the quality of 
the satellite images, analysis of the weather 
conditions was carried out. Subsets of the 
satellite images for different times were 
produced. The images were corrected for 
atmospheric effects using the ATCOR-2 
program. Input data for this program were the 
altitude above sea level, pixel size, date and 
time of image acquisition, calibration file, 
weather parameters such as humidity and 
visibility, sun azimuth, latitude, and longitude. 
In addition, geometrical correction was done by 
rotating the image by an angle given in the 
image’s header [Aster User Handbook Version 
2]. Maps at 1:25000 scale were used in the 
image geo-referencing control process. Some 20 
frames of ASTER images were investigated, 5 
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frames suitable for the study region being 
selected. The acquisition dates of these images 

are shown in Table 2. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 1.  Location of the study area in a sample image 

 
   Table 2. Some characteristics of the images used in 
   this study 

Image No. Acquisition Date 
1 Jun  9, 04 
2 Jul 27, 04 
3 Aug 5, 04 
4 Sep 6, 04 
5 Sep 9, 05 

 

     The availability of simultaneous field data 
and satellite images, along with the weather 
parameters collected from synoptic stations as 
well as the presence of vast homogeneous 
vegetated areas, made the study region suitable 
for the research. 
 
4. Methodology 
 
     Following corrections and preprocessing 
stages, several reference vegetation covers were 
selected by imposing threshold values on the 
NDVI. The emissivities of these reference 
surfaces were evaluated by applying TES 
algorithm. These values were compared with 
those calculated using the NDVI method and 
those obtained from laboratory. Then the 
radiance flux densities were simulated and 
compared with those received through the 
sensors (after being corrected for atmospheric 
effects) and a linear regression between the two 
in each band were fit. Using these corrected 
radiance values, the TES algorithm was run 
again, where the resulting emissivities showed 
better agreement with those from the NDVI 
method and these from the spectral libraries.  
     One of the main problems in the assessment 
of remote sensing data compared to field data is 
the difference in the spatial scale of the two 
measurements. While field radiometric 
measurements have a representative scale of 1 

m2, the pixel area of ASTER is of the order of 
8100 m2. Comparisons between these two 
measurements are valid only when the test area 
(from the temperature and emissivity point of 
view) is homogeneous. Water surfaces, bare 
soils, dry lagoons, and dense vegetation 
canopies are example samples of these test 
areas, and can be used for testing the satellite 
thermal data (Tonooka et al., 2005). However, 
the variation of the emissivity of green 
vegetation in different parts of the thermal 
spectral region is minimal (Salisbury et al., 
1988).  
     Many studies regarding water masses and 
sugarcane canopies have been conducted 
(Tonooka et al., 2005; Mobasheri, 2008; 
Mobasheri et al., 2007; Alesheikh et al., 2007).  
     The present study introduces an 
Improvement to TES algorithm (ITES) which is 
functional under any conditions. The presently 
used methods of emissivity estimation are 
initially critically reviewed. These are the TES 
algorithm and the NDVI method. 
 
4.1. Temperature and Emissivity Separation 
Algorithm 
 
     The TES (Temperature and Emissivity 
Separation) is a method for the estimation of 
land surface emissivity εi and temperature T 
using ASTER land-emitted thermal radiation 
and down-welling atmospheric irradiances 
(Gillespie et al., 1998). The method is based on 
the radiative transfer equation applied to the 
thermal radiance Li emanating from the surface 
(Jiménez-Muñoz et al., 2006): 
Li=εiBi(Ts)+π

-1(1-εi)Li
atm↓                                (2) 

where Bi is the Plank function for radiation flux 
density emanating from a Lambertian surface 
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with temperature Ts toward the sensor in a unit 
solid angle, -1(1-εi). Li

atm↓ is the reflected 
downward sky thermal radiance from the 
surface in a unit solid angle toward the satellite 
sensor. What we receive at the sensor in channel 
i (Li

sen) would then be: 
 atm

iiisen
i LLτL                                          (3) 

where τi is the band atmospheric transmittance 
and Li

atm↓ the atmospheric path radiance towards 
the sensor. 
     Using a proper atmospheric correction such 
as ATCOR2 or ISAC along with the 
atmospheric local parameters, one can extract Li 

from equation (3) for each of the ASTER 
thermal channels. To solve Eq. (2) using data 
from five ASTER channels, one faces at least 6 
unknowns: five radiation fluxes in five spectral 
bands and one surface temperature Ts. Thus, it is 
necessary to introduce one independent 
measurement. ASTER uses a semi-empirical 
relation between the minimum emissivity and 
spectral contrast (Maximum–Minimum 
Difference, MMD) determined from laboratory 
spectra. 
     Assuming Li and Li

atm↓ as the input data and 
introducing an initial value for the emissivity in 
each band, five different values for the land 
surface temperature will be obtained, where the 
maximum value will be selected as Ts. This 
value can be introduced again in Eq. (2) to 
obtain the emissivity values for the ASTER 
thermal bands. This procedure can be repeated 
iteratively until convergence between these 
values occurs. This iterative procedure is called 
the NEM (Normalized Emissivity Method). In 
fact, equation (2) calculates 5 temperatures that 
are expected to be the same, but in practice, 
some differences do exist. These differences 
must be smaller than the noise equivalent 
temperature (NEΔT), which is about ± 0.3 K for 
the ASTER sensor (Abrams and Hook, ASTER 
User Handbook).  
     However, the accuracy of this method is 
limited. In order to obtain more accurate 
emissivity values, two other modules were 
deployed. These are the RATIO and the MMD 
(Maximum–Minimum Difference) modules. In 
the RATIO module, the ratio of NEM 
emissivity to the average value (βi) was 
calculated, and in the MMD module the final 
values for the emissivity were obtained using 
the following expression: 
















)min( j

min
jj

                                               (4) 

where εmin is the minimum emissivity that can 
be obtained from the following empirical 
relationship (Gillespie et al., 1998): 

737.0
min MMD687.0994.0                           (5) 

where MMD is the spectral contrast calculated 
as: 

)min()max(MMD jj  .                            (6) 

     The TES algorithm is capable of recovering 
surface emissivities within about 0.015 and 
surface temperatures within about 1.5K 
(Gillespie et al., 1998). However, for surfaces 
with low spectral contrast (MMD<0.03), the 
results are not convincing. In these cases, the 
TES algorithm sets εmin to 0.983, a value that is 
appropriate for water and vegetation canopies 
(Gillespie et al., 1998).  
     Although this threshold value for MMD 
improves computations of temperatures for 
targets with low MMD, the case is problematic 
for targets with emissivities close to the 
threshold value (0.03). This can occur at 
transitions ranging from vegetation to soil. 

 
4.2. NDVI Method of Land Surface Emissivity 
Determination 
 
     Because of uncertainties involved with the 
TES algorithm, the surface emissivity was 
calculated by another method independent of 
the thermal data. For this, different approaches 
based on NDVI values have been introduced  
most of which are based on the following 
simplified equation for homogeneous and flat 
surfaces (Sobrino and Raissouni, 2000; Lyon, 
1965; Valor and Caselles 1996): 

ivsivvii C)P(1εPεε                                     (7) 

where εvi and εsi are the band emissivity values 
for vegetation and for bare soil, respectively, 
and Pv the fractional vegetation cover. Ci is a 
term for empty spaces within the canopy and 
depends on the canopy internal reflectance, 
canopy structure and geometry. For a 
homogeneous field with a known soil 
composition, Ci can be set to zero (Sobrino et 
al., 2001) as is the case in this work. Pv can be 
obtained from NDVI values according to (Valor 
and Caselles 1996): 

2

sv

s
v

NDVINDVI

NDVINDVI
P 











                                    (8) 

where NDVIv and NDVIs are the NDVI values 
of full vegetation cover (Pv=1) and bare soil 
(Pv=0), respectively, which can be obtained 
from the NDVI histogram. In those pixels with 
NDVI<NDVIs, Pv will be set to zero, whereas 
for those pixels with NDVI>NDVIv the Pv will 
be set to 1. 
     The critical issue in Eq. (7) is the selection of 
the soil emissivities. The results of Eq. (8) are 
accurate enough to retrieve surface emissivities 
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from Eq. (7) (Abreu and Anderson, 1996). The 
NDVI index can be obtained using ASTER 
reflectance in bands 2 (RED) and 3 (NIR) 
through the following equation: 

REDNIR

REDNIR
NDVI




 .                                          (9) 

     The NDVI method data when compared with 
the field measured data shows a RMSE of less 
than 0.005 for full vegetated pixels and a RMSE 
of about 0.015 for bare soil (Tonooka et al., 
2005; Van de Griend and Owe, 1993). Thus, 
emissivity values retrieved, using the NDVI 
method are comparable to the actual ones at an 
acceptable level of accuracy. Selection of soil 
emissivity in equation (7) is an important task 
which depends upon reconnaissance of the soil 
composition in the region of interest. The 
ASTER spectral library 
(http://speclib.jpl.nasa.gov) contains 52 soil 
classes. The extracted reflectance data for bands 
10 to 14 (8.3-11.3μm) along with Kirshohf’s 
law of εj=1-ρj (εj and ρj are emissivity and 
reflectance in band j respectively) were 
employed for the emissivity calculations.  
     According to collected information from the 
region (Mobasheri, 2008), the soil in the study 
area stands in the Inceptisol class. The average 
value of the 7 different soils in this class was 
used in this research. Highly vegetated cover 
behaves like a blackbody, and a constant value 
of εv,j=0.99 is applied for the emissivities in all 
ASTER thermal channels for full vegetated 
pixels in the study area (Mobasheri, 2006).  
     Based on the NDVI method, different 
surface covers, such as bare soil, sparsely 
vegetated areas, full vegetation cover, and water 
surfaces, can be differentiated (Valor and 
Caselles, 1996). The method of differentiation is 
the definition of some thresholds, i.e., 
NDVI<0.2 for soil, 0.2   ≤ NDVI  ≤ 0.5 for sparse 
vegetated cover, and NDVI>0.5 for full 
vegetated cover (Sobrino et al., 2005). Based on 
these, values of NDVIs =0.2 for soil and NDVIv 
=0.5 for vegetation are employed in equation 
(7). Then for pixels with NDVI < NDVIs one 
has Pv=0, and for those pixels with NDVI > 
NDVIv, Pv=1. 
 
5. Results and Discussion 
 
     Due to the complexities involved in a direct 
assessment of the emissivities through satellite 
images (Carlson and Ripley, 1997), a 
comparison between the satellite data, and the 
data resulting from the NDVI method and those  
retrieved from spectral libraries was carried out. 
Four different land surface covers in the region 
were selected. These were full sugarcane cover, 

partly vegetated (different proportions), bare 
soil, and deep water bodies in the Persian Gulf. 
In all selected ASTER images, 5 to 10 pixels 
(90 meters) were selected as sample pixels for 
the different types of land cover. Generally, 
these kinds of pixels do not exhibit sensitivity to 
the wavelength compared to the bare soil and to 
the partly vegetated surfaces. In addition, the 
sensitivity of full vegetated areas, emissivity to 
the viewing angle is low and can be ignored 
(Sobrino et al., 2005).  
     Since the NDVI for full cover pixels is 
greater than 0.5, Pv in equation (7) is taken to be 
1. The NDVI takes negative values for water 
surfaces. Figure (2) shows emissivity values 
extracted from five ASTER bands for full 
vegetated cover pixels using TES algorithm and 
the NDVI methods along with the emissivities 
of three other vegetation cover types 
(coniferous, grass and deciduous) extracted 
from the ASTER spectral library 
(http://speclib.jpl.nasa.gov) intended for a  
comparison. Since the emissivity curves from 
the NDVI method were all of the same nature, 
only one of them is shown. 
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Fig. 2. Spectral emissivity calculated from the TES 
algorithm for five different dates and the NDVI method 

along with the emissivity curves for three other vegetation 
cover types 

 

     Figure (2) shows that the emissivity values 
calculated through NDVI method have a more 
or less uniform value of 0.99, and its standard 
deviation for the selected pixels was about zero, 
while the standard deviation using TES method 
was around 0.02. Moreover, the difference 
between the TES and NDVI methods was as 
high as about 11% in band 10, and as low as 3% 
in bands 13 and 14. This could be due to the 
relation between εmin and MMD (equation 6), 
where the appearance of an MMD greater than 
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0.03 in this region causes the calculation of 
smaller emissivities than expected. The large 
difference between the emissivities in bands 10 
to 12 for different dates could be due to the 
atmospheric effects. 
     As mentioned before, the TES algorithm is 
sensitive to spectral contrast while the range of 
emissivity values and temperature depends on 
MMD, so incomplete correction of atmospheric 
effects, especially downward scattered 
radiation, could effectively reduce the accuracy 
of the calculated emissivity values (Dash et al., 
2002). On the other hand, bands 13 and 14 in 
the 10 to 12 �m region can produce better 
results as compared to the other 3 thermal 
bands. This could be due to the reduction of 
atmospheric absorption in these spectral bands.  
     Figure 3 shows the emissivity values for the 
bare soil pixels produced through TES 
algorithm, NDVI method, and the ASTER 
spectral library. The region is a furrow field 
with an Inceptisol class of soil. The emissivity 
values calculated using the NDVI method 
reasonably match those extracted from the 
spectral library. This is not surprising because 
when we use equations (8) to calculate Pv, Pv 

would be zero because NDVI<NDVIs for all 
pixels, and consequently equation (7) gives the 
library values for the pixel emissivity. The 
reduction in the emissivity values in band 12 is 
due to the considerable fluctuation in the 
spectral emissivity of the Inceptisol class 
(Figure 3). 
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Fig. 3. Soil spectral emissivities calculated using different 
methods for five different ASTER images 

 
     The spectral emissivities calculated from the 
TES algorithm are more or less the same but 
smaller than those calculated from NDVI  
 

method and those extracted from spectral library 
curves. The difference is greater for shorter 
wavelengths i.e. about 10% for band 10, and 1% 
for bands 13 and 14. This could be due to the 
relationship between εmin and MMD. However 
the standard deviation for the TES algorithm 
was on the order of 0.01. 
     For the mixed region of soil and vegetation, 
where the fraction of vegetation Pv is less than 
unity, the emissivity is expected to have values 
somewhere between soil and vegetation 
emissivities. The calculated emissivity using the 
TES algorithm for a Pv value of 0.5 for different 
ASTER images are shown in Figure (4). 
Emissivity calculated through NDVI method is 
also shown for comparison. Again, since the 
emissivity curves calculated through NDVI 
method for different dates were almost the same 
for each Pv value (with the standard deviation of 
less than 0.001) only one curve is shown. 
Although the emissivity curve calculated 
through TES is similar to those of bare soil and 
full vegetation, there are differences between 
these curves for different Pv values; the 
difference ranging from 9% in band 10 to 2% in 
bands 13 and 14. The standard deviation of the 
emissivities of the selected pixels (calculated 
through TES algorithm) was less than 0.01 for 
Pv=0.5. This could be due to inhomogeneity of 
the surface covers in this region. For the NDVI 
method, the standard deviation was found to be 
less than 0.001 for this case. 
     To analyze the emissivity of water surface 
calculated by TES algorithm, a region in the 
Persian Gulf was selected. To be able to 
compare the calculated emissivities with those 
obtained from spectral libraries, a region in the 
deep waters far from the shore was selected. Of 
course the NDVI method was not used in this 
case. Figure (5) shows the results of the TES 
algorithm for five ASTER images along with 
those collected from spectral libraries for frost 
water, foamy water, and sea water. In this case, 
as for full vegetation, the MMD values were 
higher than 0.03 because of low spectral 
contrast, and consequently the calculated 
emissivities were smaller than expected. In the 
sea water case, the difference between the TES 
emissivities and the spectral library values were 
higher in bands 10 to 12 (9%) while lower in 
bands 13 and 14 (3%).  
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Fig. 4. Spectral emissivity calculated using different 
methods for Pv = 0.5 for 5 different ASTER images 
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Fig. 5: Calculated sea water emissivities from the TES 

algorithm for 5 ASTER images along with the emissivity 
curves from laboratory values. 

 
 

5.1. Improved TES Algorithm (ITES) 
 
     The results so far have demonstrated that the 
TES predicted emissivities do not have an 
acceptable accuracy and are always smaller than 
those calculated from the NDVI method and 
from the laboratory measured values. Generally 
speaking, this discrepancy comes from thermal 
band calibration, improper atmospheric 
corrections, and radiometric noise propagations. 
These effects are all wavelength dependent and 
cause inaccuracies in the MMD calculations, 
especially for surfaces with low spectral 
contrast. Analysis of each of these sources of 
error is difficult if not impossible. 
     According to the SEBAL algorithm (Carlson 
and Ripley, 1997), the temperature of a well 
watered full vegetation canopy can be 
considered to be the air temperature near the 
surface. As a result, the temperature in channel 
14 for full vegetation can be compared with the 
air temperature measured at a nearby weather 
station. Of course, the horizontal gradient of the 
air temperature is considered to be smaller than 
the noise involved with the processed image. 
The temperatures collected from the weather 
stations at the satellite passing time are 
compared with those calculated from the TES 
algorithm (Table 3). It can be seen that the 
channel 14 temperature is always the closest 
value to the temperature measured at the 
weather stations, but always lower. 
     However, the band 14 emissivity values are 
in good agreement with values obtained using 
the NDVI method and those measured in the 
laboratory. Thus, the channel 14 TES measured 
temperature can be used as an initial guess of 
the true field temperature. 

                 Table 3. TES calculated temperature minus 2 meters height weather temperature measured at nearby weather stations 
Acquisition Date Ch.10 (C) Ch.11(C) Ch.12 (C) Ch.13 (C) Ch.14 (C) 

Jun  9, 04 -4.74 -3.65 -2.95 -0.65 -0.40 
Jul 27, 04 -7.68 -6.23 -5.44 -3.34 -2.90 
Aug 5, 04 -4.68 -3.76 -3.19 -1.00 -0.62 
Sep 6, 04 -6.27 -4.71 -3.55 -0.97 -0.62 
Sep 9, 05 -5.63 -4.59 -3.70 -1.25 -1.15 

 

     The optical depth for July 27 is believed to 
have been high due to the presence of dust in 
the region and the resulting low visibility. At 
this stage, it is tried to develop a model to 
simulate the thermal spectral flux density 
received at the sensor using the temperature 
estimated from channel 14 and the following 
equation:   

)(TLεL 14
BB
jj_Simulatedj  , j=10, 11, …, 14.    (10) 

     In fact, equation (10) is an equivalent to the 
first part on the right hand side of equation (2), 

where the effects of other radiance components 
such as path radiance and sky reflected radiation 
are included. Table (4) shows a list of 
emissivities obtained using the NDVI method 
and laboratory values used in this simulation. 
The simulated fluxes calculated from equation 
(10) were compared with those retrieved from 
ASTER sensor (after being corrected for 
atmospheric effects). A linear relationship 
between the simulated and measured radiances 
(Lj in equation 2) in each spectral band was 
found.  
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                     Table 4. Reference emissivities (εj) used for simulation 
Land cover Ch. 10 Ch. 11 Ch. 12 Ch. 13 Ch. 14 
Full veg. 0.990 0.990 0.990 0.990 0.990 
Pv~50% 0.968 0.975 0.968 0.981 0.981 
Bare soil 0.942 0.956 0.941 0.970 0.969 
Sea water 0.983 0.984 0.985 0.990 0.990 

 

     To develop a relationship between the 
simulated and measured radiances, three of the 
five ASTER images were employed. A linear fit 
to the simulated fluxes for different surface 
covers versus measured values in each band 
shows high correlations. The fitted equation was 
of the form: 

jjjj BLAadj_L  .                                      (11) 

     The coefficients A and B and the R2 for 
equation (11) are shown in Table (5). 

 
          Table 5. Coefficients used in equation (11) 

Ch. No. Bj Aj R2 
10 -0.265 1.133 0.993 
11 0.147 1.071 0.997 
12 1.431 0.931 0.994 
13 0.948 0.941 0.997 
14 0.813 0.946 0.998 

 

     Once again, the TES algorithm was applied 
to the ASTER images using simulated 
radiances. An initial value of 0.985 for 
emissivity, which is suitable for grey bodies, 
was introduced into the algorithm. According to 
Gillespie et al. (1998), a threshold value of 0.03 
for calculated MMDs was used for the 
differentiation of pixels with low and high 
contrasts. If the apparent MMDs are larger than 
0.03,  εmin can be calculated from equation (5), 
but for calculated MMDs less than 0.03, the 
estimated emissivities and temperature from the 
NEM will be selected as the final values and the 
processing stopped. This procedure results in 
higher emissivities for pixels with MMDs less 
than 0.03 and consequently produces less 
discontinuity in the spectral emissivity curves. 
Table (6) shows the MMDs calculated from the 
TES algorithm using simulated radiances for 
vegetation covers and sea water. It can be seen 
that, except for the case of full vegetation cover, 
the MMDs are less than the threshold value of 
0.03.  
 
Table 6. Averaged MMDs for vegetation cover and sea 
water extracted from the TES algorithm with simulated 
radiance applied to the ASTER images 

Acquisition 
Date 

Averaged MMDs 
For full veg. cover 

Averaged MMDs 
For sea water 

Jun  9, 04 0.015 0.004 
Jul 27, 04 0.013 0.004 
Aug 5, 04 0.011 0.006 
Sep 6, 04 0.036 0.019 
Sep 9, 05 0.018 0.011 

Lab. values 0.003 0.007 
 

     The improved TES algorithm was then 
applied to the two remaining ASTER images of 
Jun 9, 2004 and Sep 6, 2004, that had not been 
used in the regression. The emissivities 
calculated through ITES, those calculated from 
the TES and NDVI methods, and laboratory 
obtained values are compared in Figure 6. As 
can be seen, the calculated emissivities using 
the ITES are in good agreement with those 
calculated through the NDVI method and the 
laboratory obtained values for all images. 
     In the case of full vegetation (Fig. 6), the 
maximum difference between the emissivities 
measured through the ITES and NDVI methods 
is about 3.4% in band 10. For other bands, the 
maximum difference is between 0.06 and 2%, 
which is more appropriate than what the TES 
algorithm produced before improvement. The 
case of fractional (50%) vegetation shows good 
agreement with the ITES and NDVI 
emissivities. Here, the highest discrepancy is 
2.5% for band 10. The largest difference was 
about 10 to 13% for the TES algorithm where it 
shows acceptable improvements. For the other 
channels, the discrepancies reached 1.3% in the 
worst cases, which again were considerable 
improvements as compared to the TES results 
(4%). The difference between the ITES results 
and the NDVI (or laboratory) emissivity values 
for bare soil was about 3.8% for channel 10 and 
between 0 to 1.7% for the other channels. The 
difference for the TES algorithm stood between 
4 and 11% respectively.  
     Note that the results so far have been 
compared with the NDVI calculated 
emissivities, where in the NDVI method we 
considered the best possible case i.e. the effects 
of empty spaces, shadows, while canopy 
internal reflections (Cj in equation 7) being 
ignored. In addition, the value of εs,j in equation 
(7) is ideally selected from laboratory values for 
Inceptisol class soils, which is not the case in 
reality. Fig. (6) also shows the calculated 
emissivity of sea water from the ITES algorithm 
as well as from laboratory values. Again, the 
maximum difference between these two spectral 
curves is in band 10 and about 1.4%. This 
discrepancy could be due to the presence of 
surface suspended sediments such as kaolinite, 
orthoclase, chlorite, calcite, gypsum, muscovite, 
halite, anhydrite, apatite, biotite, quartz, and 
albite in the pixels (Mobasheri, 2008), so it is 
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expected that the emissivities of the pixels will 
be larger than that of sea water. 
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Fig. 6: Calculated emissivities using the ITES algorithm for 
full vegetation (sugarcane), mixed areas, bare soil, and sea 
water, for images from June 9, 2004, July 27, 2004, August 

5, 2004, September 6, 2004 and September 9, 2005 
 
5.2. Accuracy Assessment 
 
     To assess the accuracy of the ITES algorithm 
in surface emissivity prediction, the mean 
difference between ITES (εi

ITES) and NDVI 
(and/or laboratory) values (εi

NDVI&Lab) were 
considered as biases, and the standard deviation 
of these biases for 5 thermal channels and 
RMSEs were calculated using the following 
equations: 

)ε(ε
5

1
bias Lab&NDVI

i

14

10i

ITES
i  



                         (12)  

22 σbiasRMSE  .                                      (13) 
 
     The calculated emissivity values for full 
vegetation covers have an RMSE less than 
0.015. For partial vegetated covers, bare soil, 
and sea water, the calculated emissivity is less 
than 0.01. On the other hand, the maximum 
temperature among 5 thermal bands was 
selected as the surface temperature. This 
temperature was then compared with the air 
temperature measured at the nearby weather 
station. The RMSE for full vegetation surfaces 
was less than 1.5K.  
 
5.3. Classification by emissivity values 
 
     In this work, four different classes of land 
covers were used as references. Using the 
emissivities of these references, one can 
calculate the temperatures of these references to 
an acceptable degree of accuracy. 
Assuming a negligible horizontal temperature 
gradient for the region (a reasonable assumption 
in an ASTER scene), one can determine the 
temperature of the other pixels by interpolation 
between these reference temperatures. Using the 
produced layer of temperature and the ITES 
algorithm, one can produce a map of emissivity 
for the region. This is done for the ASTER 
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image of Aug 5, 2004. The output map of 
emissivity was sliced in steps of 0.01 and is  

shown in Fig. (7) for all ASTER thermal bands.  
 

 

 

      

                              
 

Fig. 7. Emissivity maps in steps of 0.01 for five thermal bands in the Aug 5, 2004 ASTER image 

 
6. Conclusion 
 
     The main goal of this study was to produce 
maps of emissivities using thermal bands of the 
high spatial resolution ASTER images. In this 
regard, the ability of the TES algorithm was 

investigated using some reference surfaces with 
known emissivity values. 
     It was found that due to some sources of 
uncertainties, such as thermal band calibration, 
improper atmospheric corrections, and 
radiometric noise propagations, the TES 
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algorithm’s outputs do not result in proper 
emissivity values and consequently produce 
incorrect temperature values. To overcome this 
difficulty, the flux densities received by the 
sensor were simulated using the highest TES 
predicted temperature (band 14) and the 
emissivities of reference surfaces. These 
simulated radiances were introduced in to the 
TES algorithm to obtain new values of 
temperature and emissivities. 
     This procedure continued for 2 to 3 iterations 
until stability in the values was achieved. This 
method is shown in Fig. (8) as a flowchart. 
Applying the produced emissivity maps to a 
limited region for 5 different dates, images of 
temperature in five bands were calculated and 
shown in Fig. (9). The results showed that this 
method is a success, and can modify the TES 
results for emissivity and temperature to an 
acceptable level of accuracy. The maps of 

emissivities produced in this way can be used in 
other satellite images for upgrading their 
environmental parameter productions if 
precautions such as proper geo-referencing and 
spatial resampling are taken into consideration. 
To promote the applicability of this algorithm, 
we suggest the following: a) performing the 
absolute atmospheric correction using the 
proper atmospheric profile of the region, b) 
making field measurements of the emissivity of 
some reference surfaces that have negligible 
variation in time, c) using the recalibration 
method based on the image acquisition time and 
radiometric calibration coefficients (RCC) with 
versions 1.x and 2.x to minimize the calibration 
errors for ASTER thermal bands, and d) running 
the algorithm on additional images in different 
seasons of different years and from different 
geographical locations. 

 

 
Fig. 8. Flowchart of the procedure of the research 
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a10       a11          a12           a13          a14 

 
b10       b11          b12           b13          b14 

 
c10       c11          c12           c13          c14 

 
d10       d11          d12           d13          d14 

 
e10       e11          e12           e13          e14 

 
Fig. 9. Images of LST for a sub region in ASTER bands 10, 11, 12, 13 and 14 after applying surface emissivity maps in 5 different 

dates a)-Jun9, 04; b)-Jul27, 04; c)-Aug5, 04; d)-Sep6, 04 and e)-Sep9, 05 
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