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Abstract 
 
     Land cover is one of basic data layers in geographic information system for physical planning and environmental 
monitoring. Digital image classification is generally performed to produce land cover maps from remote sensing data, 
particularly for large areas. In the present study the multispectral image from IRS LISS-III image along with ancillary data 
such as vegetation indices, principal component analysis and digital elevation layers, have been used to perform image 
classification using maximum likelihood classifier and decision tree method. The selected study area that is located in 
north-east Iran represents a wide range of physiographical and environmental phenomena. In this study, based on Land 
Cover Classification System (LCCS), seven land cover classes were defined. Comparison of the results using statistical 
techniques showed that while supervised classification (i.e. MLC) produces an overall accuracy of about 72%; the 
decision tree method, which improves the classification accuracy, can increase the results by about 7 percent to 79%. The 
results illustrated that ancillary data, especially vegetation indices and DEM, are able to improve significantly 
classification accuracy in arid and semi arid regions, and also the mountainous or hilly areas. 
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1. Introduction   
 
     Land cover is a critical variable in 
epidemiology and can be characterized remotely. 
Land cover and land use are principal factors, in 
both space and time, controlling the cycling and 
exchange of carbon, energy and water within, and 
between the different earth systems (Brown de 
Colstoun and Walthall, 2006). Thus, land cover 
classification are essential for a variety of 
diagnostic and predictive models that simulate the 
functioning of the earth systems and are useful for 
investigating regional and global change (Brown  
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de Colstoun and Walthall, 2006). The limitation to 
achieve higher classification accuracies discussed 
by Defries et al (1998), Loveland et al (1999) and 
Hansen et al (2000), emphasize data quality of the 
input and the number and nature of the land cover 
classes of interest. Artifacts of data processing, 
substantial radiometric noise and geologication 
errors inhibit the ability to separate spectrally 
similar land cover classes. Many land cover types, 
show as much intra-class variability as they show 
inter-class spectral variability. This variability 
frequently exhibits multimodal distributions that 
cause serious difficulties for traditional classifiers 
such as Maximum Likelihood Classifiers (MLC) 
(Brown de Colstoun and Walthall, 2006). Until 
recently MLC has been the most common method 
used for supervised classification of remotely 
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sensed data (Richards, 1993). This methodology 
assumes that the probability distributions for the 
input classes possess a multivariate normal form. 
Increasingly, nonparametric classification 
algorithms such as decision trees (DT) are being 
used, which make no assumptions regarding the 
distribution of the data being classified (Carpenter 
et al, 1999; Foody, 1997; Friedl et al, 1999). The 
nonparametric properly means that non-normal, 
non-homogenous and noisy data sets can be 
handled, as well as non-linear relations between 
features and classes, missing values and both 
numeric and categorical inputs (Quinlan, 1993). 
DT classifiers have not been as widely used 
within the remote sensing community. The 
advantages that DT offer include an ability to 
handle data measured on different scales, lack of 
any assumptions concerning the distributions 
frequency of the data in each of the classes, 
flexibility, and ability to handle non-linear 
relationships between features and classes (Friedl 
& Brodley, 1997).  
     The study has two objectives; first, to 
investigate the ability of two classification 
methods (i.e., MLC and DT) to separation various 
land cover classes; secondly, to evaluate 
performance of ancillary data for improve image 
classification.  
 
2. Background 
 
2.1. IRS-1D Satellite 
 
     The IRS-1D satellite is the fourth in a series of 
commercial Indian satellites. It was launched in 
1997. For the IRS satellite the imaging time is 
around 10:00 a.m. every 24 days. Onboard the 
IRS-1D satellite is several sensors one of which 
the LISS-III. This sensor covers an area of 
141×141 km in its scene. Each pixel is 23.5×23.5 
m in the raw image data but here resampled to a 
24×24 m. LISS-III is a four-band multispectral 
sensor with narrow bands: 0.52-0.59 µm (green), 
0.62-0.68 µm (red), 0.77-0.86 µm (near infrared), 
1.55-1.70 µm (middle infrared). A subset of a 
2003 image from LISS-III sensor for the growing 
season (5 May) which includes the study area has 
been used. 

 
2.2. Maximum likelihood classifier 
 
     It is believed that the MLC procedure is based 
on the assumption that the members of each class 
follow a Gaussian frequency distribution in 

feature space. MLC is a pixel-based method, and 
can be defined as follows: a pixel with an 
associated observed feature vector x is assigned to 
class cj of N classes if 
gj(x) > gk(x) for all j≠k,    with j,k = 1,…, N. 
For the multivariate Gaussian distribution, the 
discriminating function gk(x) is given by: 

gk(x) = ln(p(x | cj)) = lnΣk + (x - µk)T Σ-1 (x - µk) 
Where µk and Σk are the sample mean vector and 
sample covariance matrix for class k. 
     Implementation of the MLC algorithm 
involves the estimation of class mean vectors (µk) 
and covariance matrices (Σk) from training data 
selected from known examples of each particular 
class. The function gi(x) is used to evaluate the 
membership probability of an unknown pixel for 
class j. The pixel is assigned to the class for which 
it has the highest membership probability value.  
 
2.3. Decision tree classifier  
 
     In the usual approach to classification, a 
common set of features is used jointly in a single 
decision step. An alternative approach is to use a 
multistage or sequential hierarchical decision 
scheme. The basic idea involved in any multistage 
approach is to break up a complex decision into a 
union of several simpler decisions, hoping the 
final solution obtained in this way, would 
resemble the intended desired solution. 
Hierarchical classifiers are a special type of 
multistage classifier that allows rejection of class 
labels at intermediate stages. 
     Classification trees offer an effective 
implementation of such hierarchical classifiers. 
Indeed, classification trees have become 
increasingly important due to their simple 
concepts and computational efficiency. A decision 
tree classifier has a simple form which can be 
compactly stored and that efficiently classifies 
new data. DT classifiers can perform automatic 
feature selection and complexity reduction, and 
their tree structure provides easily understandable 
and interpretable information regarding the 
predictive or generalization ability of the 
classification. To construct a classification tree by 
heuristic approach, it must be assumed that a data 
set consisting of feature vectors and their 
corresponding class labels are available. The 
features are identified based on the specific 
knowledge that we have from the problem in 
hand. 
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     A tree is composed of a root node (containing 
all the data), a set of internal nodes (splits), and a 
set of terminal nodes (leaves). Each node in a 
decision tree has only one parent node and two or 
more descendent node (Fig 1). A data set is 

classified by moving down the tree and 
sequentially subdividing it according to the 
decision framework defined by the tree until leaf 
is reached. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 1. A classification tree with four dimensional feature space and three classes. 
The xi are feature values; a, b, c, d, and e are the thresholds and A, B, and C are class labels (Pal and Mather, 2003). 

 
3. Material and methods 
 
3.1. Study area  
 
     The study was carried out in Ghorkhood region 
that is a protected area located in north-east of 
Iran (950-3000 m a.s.l., 43000 ha, see Fig. 2). 
This area comprises of different landscape unit, 
including valley bottoms and ravines, plateaus 
with different degree of dissection and rocky hilly 
uplands. The climate is cold semi-arid, with an 
annual average temperature of 13°C, and a mean 

annual precipitation of 360 mm (Keshtkar, 2008). 
In the study area 31 families, 118 genera and 196 
species were identified. The largest family is 
Poaceae with 17 genera and 32 species. The life 
form of plant species are including 11.2% 
phanerophytes, 16.8% chamaephytes, 43.9% 
hemicryptophytes, 8.2% geophytes and 19.9% 
therophytes (Keshtkar et al, in press), and the 
most important plant species in the area included: 
Artemisia sieberi, Salsola aucheri, Juniperus 
polycarpos, Bromus danthonia, Poa bolbosa, 
Festuca ovina and Acantholimon festucaceum.  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Fig 2. Location and land cover map (created using MLC) of the study area in north east of Iran 
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3.2. Field sampling 
 
     From May 5 to May 12, 2003 we took samples 
of terrain characteristic in 280 selected points. 
These points were defined as areas of 24×24 m 
(equivalent to the IRS-1D pixel), around the point 
located with the GPS (Global Positioning 
System). Since the beginning of the grazing 
season in the region is at June of each year, the 
image of May 5th was selected when the plant 
species were in active growth stage, which was 
the best time if we wanted to carry out the field 
sampling when the vegetation was still fresh. In 
lands containing natural vegetation cover we 
recorded land cover type, canopy cover, 
topographic position, slope, aspect and altitude. 
But in non-natural areas just land cover type and 
topographical data were recorded.  
     A classification scheme defines the land cover 
classes to be considered for remote sensing image 
classification. Thus, we used Land Cover 
Classification System (LCCS) that developed by 
FAO (FAO, 1997) to detection different land 
cover types. The study area composed of both 
man-made (Village) and natural regions (forest 
and non-forested areas). Forest area is included 
needle leaved evergreen, and Non-forested areas 
are composed of farm land, shrubland, meadow 
and barren land. Although some of these areas 

were covered with clouds and cloud shadows on 
the main image.  

 
3.3. Generation of ancillary data 
 
     Principal components analysis (PCA), Digital 
Elevation Model (DEM) and Vegetation Indices 
(VI) data layers were used as additional bands 
(referred as ancillary data) to perform and 
improve DT classification. 
 
a) Principal Component Analysis 
 
     PCA is often used as a method for reducing the 
number of images (Fig 3). It allows redundant 
data to be compacted into fewer bands namely the 
dimensionality of the data is reduced (Jensen, 
1996; Faust, 1989). The first components of PCA 
was used for distinguish and mask shades in the 
image. Following Jensen (1996) percentage of 
total variance for each component was calculated 
as: 
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     Where λPC is eigenvalue that is the variance of 
the Principal Component PC; N is the number of 
Principal Components. 

 

 
Fig. 3. A scheme for PCA 

 
b) Production of DEM and slope maps  
 
     DEM was originally a term reserved for 
elevation data provided by the USGS, but it is 
now used to describe any digital elevation data. 
We produced DEM layer by digital topographic 
maps at a scale of 1:25,000 with 10 m contour 
interval. Triangulated Irregular Network model 
was used to produce a raster DEM at 23m spatial 
resolution to match with that of LISS-III image. 
Secondary location information derived from 
DEM includes slope layer. Using DEM map is the 
best way to prepare this map. Since the region’s 
gradient is one of determining factors in 
distribution of plant types, preparing such a map is 
of significant importance. 

c) Calculation of VI  
 
     As the study area is dominated by different 
types of vegetation, VI were used as ancillary data 
layers in the classification process to enhance the 
separability among different vegetation classes. 
Since this study was carried out in a semi-arid 
region, we also tried to use indices specific to arid 
and semi-arid regions (i.e. soil line indices such as 
TSAVI and MSAVI) which can decrease the 
effects of background soil reflectance as much as 
possible or eliminate them completely (Table 1). 
For selection and use of vegetation indices in DT 
method, the correlation analysis between field 
data and percentage cover of plant species were 
performed in statistical software. 

 



 Keshtkar et al. / DESERT 17 (2013) 137-146  

 
141

 Table 1. Various vegetation indices used in this study and their formulas 
Formula Definition Nomenclature 

NIR-RED Deference Vegetation Index DVI 
ŋ (1-0.25)-(R-0.125) / 1-R 
ŋ=[2(NIR2-R2)+1.5NIR+0.5R]/(NIR+R+0.5) 

Global Environmental Monitoring Index GEMI 

(NIR-GREEN)/(NIR+GREEN) Green Normalized Difference Vegetation  Index GNDVI 
NIR/(NIR+RED) Infrared Percentage Vegetation Index IPVI 
NDVI/(3.26-2.9+NDVI) Leaf Area Index LAI 
(NIR-MIR)/(NIR+MIR) Leaf Water Content Index LWCI 
(MIR-RED)/(MIR+RED) MIRV MIRV 
(NIR-RED)*(1+L)/(NIR+RED+L) 
L=1-(2*a*NDVI*WDVI) 

Modified Soil Adjusted Vegetation Index MSAVI 

MIR/NIR Moisture Stress Index MSI 
(NIR-RED)/(NIR+RED) Normalized Difference Vegetation Index NDVI 
(NIR-RED)/RED NRR NRR 
(RVI-1)/(RVI+1) Normalized Ratio Vegetation Index NRVI 
(RED-GREEN)/(RED+GREEN) PD322 PD322 
NIR/(RED+MIR) RA RA 
NIR/RED Ratio Vegetation Index 1 RVI 1 
Sqrt (NIR/RED) Ratio Vegetation Index 2 RVI 2 
(NDVI+1)*100 Transformed Normalized Difference Vegetation Index TNDVI 
a (NIR-a * RED+b)/RED+a * NIR-a*b Transformed Soil Adjusted Vegetation Index TSAVI 
(NIR-RED)/(NIR+RED)+0.5 Transformed Vegetation Index TVI 
RED*NIR/GREEN Vegetation Index 1 VI 1 
RED*NIR Vegetation Index 2 VI 2 

 
3.4. Preparing image         
 
     Geometric distortions manifest themselves as 
errors in the position of a pixel relative to other 
pixels in the scene. It is very necessary in 
mountainous areas where distortion can be high 
due to the steep relief. A series of pre-processing 
procedures were performed on the images before 
their categorization. In the first stage, a two 
dimensional geometric correction was performed 
on the bands using the Polynomial method 
(nearest neighbor algorithm for resampling), 
achieving a positional error of 0.56 of a pixel 
(13.2 m), with an output pixel size of 24×24 m. 
The orthorectification was then performed on the 
image using the DEM and the Rational Function 
method because the region was mountainous and 
the research area was located at the periphery of 
the window which intensifies the displacement 
phenomenon due to the terrain’s ups and downs.  
     Since the SWIR band has 70 m spatial 
resolution, while the other bands have 24 m 
spatial resolution, we resized the SWIR band to 
create 24 m data to the same size as the other data. 
Atmospheric corrections were found unnecessary 
since we used single image for all further analyses 
and classifications (Song et al, 2001).  
 
3.5. Image classification  
 
     The aim of the classification is to categorize all 
of the pixels in the IRS-1D satellite image (LISS-

III sensor) into land cover classes. The basic 
assumption is that pixels with similar spectral 
properties belong to a certain type of land cover, 
and to do so the MLC and DT procedures are used 
in this study. For more information a brief 
summary of the properties of each of these 
methods is given in background section. In 
addition to raw bands, we used the PCA, DEM 
and VI as ancillary data layers for improves to 
classify image. In order to perform a reliable 
image classification the class separability need to 
be enhanced. For this reason, we used a well 
established measure called the Bhattacharyya 
distance (Richards & Jia 1999) to quantify the 
separation between training data classes. The 
training samples were then reviewed based on the 
obtained results and their size, distribution and 
numbers were modified. This operation was 
repeated several times in order to select the best 
samples. 

 
3.6. Accuracy estimation 
 
     No image classification is said to be complete 
unless its accuracy has been assessed. For this 
reason we have calculated a number of accuracy 
measures such as overall accuracy, Kappa 
coefficient, user’s and producer’s accuracy. The 
overall accuracy and Kappa coefficient are used to 
indicate the accuracy of whole classification (i.e. 
number of correctly classified pixels divided by 
the total number of pixels in the error matrix), 



 Keshtkar et al. / DESERT 17 (2013) 137-146  

 
142 

whereas the other two measures indicate the 
accuracy of individual classes. User’s accuracy is 
regarded as the probability that a pixel classified 
on the map actually represents that class on the 
ground or reference data, whereas producer’s 
accuracy represents the probability that a pixel on 
reference data has been correctly classified. To 
determine the accuracy of classification, a number 
of randomly selected points measured in the field 
survey to the accuracy assessment of the 
classification. The field sample locations were 
overlaid on classified maps to assess 
corresponding classes. Statistically valid sampling 
strategy was adopted to assess overall accuracy 
(Stehman, 1996). Finally, the contingency table 
was tested using Kappa coefficient (Lillesand & 
Kiefer, 1999). Kappa coefficient computed as 
follows: 
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Where: 
xii= The No. of observations in row i and column 
i (on the major diagonal) 
xi+= Total observation in row i (shown as 
marginal total to the right of the matrix) 

x+i= Total observation in column i. 
     Geomatica 9 and ArcGIS 9.1 software were 
used to carry out the required processing and 
analyses on satellite images and digital maps. All 
statistical analyses have been performed using the 
statistical software Minitab 13, and the LCCS 2.4 
software was used for the execution of FAO 
model. 
 
4. Results 
 
     The results depicts that the most slopes in the 
study area are covered with trees. In the mountain 
valleys, a patchwork of meadow and shrubland 
was observed at intermediate altitudes while at 
higher altitudes meadow prevailed. Although 
there are differences in forest composition 
between north ward and south ward slopes, we 
suggest that the observed differences in forest 
composition are largely anthropogenic in origin. 
These differences are most likely a legacy of 
socialist forest management practices and policies, 
because almost all forests were harvested at least 
once in the 20th century. Finally, according to 
LCCS we divided the research area into seven 
classes which are illustrated in Table 2.  

 
           Table 2. Characteristics of land cover classes 

Description LCCS Code Land cover class 
Mixed woodland 22689-L31M2N2N5O5O11P3Q7 Woodland 
Short herbaceous vegetation with dwarf shrubs 21273-12366-M2N2N4O5O11Q6 Meadow 
Very stony bare soil 6005-7-L11O5O11P10Q6U2 Bare land 
Shifting cultivation of small sized field(s) of herbaceous crop(s) 11248-13227-11O5O11P10Q6W4 Farm land 
Low density rural area(s) A4-A13A16-L11O5O11P10 Rural area 
Broadleaved deciduous dwarf shrubland with high shrub emergents 20174-12050-M2N2N4O5O11Q6 Open Shrubland 
Broadleaved deciduous sparse dwarf shrubs and sparse short 
herbaceous 

20241-6023-
L11M2N2N5O5O11P10Q6 

Sparse Shrubland 

 
     The existing natural complexities in the region 
and therefore, the blending of pixel have led to the 
spectral interference between some of the 
categories. Results that are presented in table 3 
indicate the amount of such interferences to some 
extent (Bhattacharya distance criterion). The 
lowest separability is related to separation 
between rural area and bare land. Also, the results 
depict the separation between sparse shrubland 
with rural area, barren lands and open shrubland is 
not easy. 
     Results also show that the first PCA 
component has the highest volume of information 
by having 95.35% of the total information of the 
bands while other components have 2.58, 1.82 and 
0.25% of the share, respectively. Reviewing the 

specific coefficient of the first component (PC1) 
shows that the band 4 has the highest amount of 
information with a specific coefficient of 0.649 
while the band 3 has the lowest share with a 
specific coefficient of 0.377 (Table 4). Comparing 
the specific coefficients of the forth component 
(PC4) for bands 1 and 2 indicate that these two 
bands are highly correlated. 
     For use of VI in DT method, and in order to 
investigate the relationship of reflectance VI and 
the obtained percentage of vegetation canopy at 
the points of sampling, digital numbers of pixels 
for the sampling points were extracted from those 
indices and entered into the statistical software 
together with the field data, and a correlation 
analysis was then performed on them. The results 
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show that the TSAVI index has the highest 
correlation (r=0.569, significant level=0.01) with 
vegetation canopy percentage at sampling spots. 
Also, a number of other indices namely GEMI, 

GNDVI, LWCI, MIRV, MSAVI, NDVI, RVI1 
and VI1 have a significant relationship (at 
significant level=0.05) with vegetation cover. 

 
                                               Table 3. Degree of separation between classes    

 ME RA FL WL SH CL BL OS 
RA 1.7        
FL 1.8 1.7       
WL 1.4 1.5 1.9      
SH 2 2 2 2     
CL 2 1.8 2 2 2    
BL 1.9 0.6 1.8 1.7 2 2   
OS 1.3 1.2 1.7 1.2 2 2 1.2  
SS 1.6 0.8 1.7 1.3 2 1.9 1.1 1 

Range of variable in this method is between 0-2 that 0 means non-separation, 0-1 means low separation, 1-2 means high 
separation and 2 means complete separation among classes (ME= Meadow, RA= Rural Area, FL= Farm Land, WL= 
Wood Land, SH= Shade, CL= Cloud, BL= Bare Land, OS= Open Shrublans and SS= Sparse Shrubland). 

 
                                               Table 4. The statistical results of PCA of LISS-III image 

 PC1 PC2 PC3 PC4 
Green Band 0.474 0.404 -0.094 0.777 
Red Band 0.461 0.642 0.120 -0.601 
NIR Band 0.377 -0.284 -0.861 -0.187 
MIR Band 0.649 -0.586 0.484 -0.032 
% Variance 95.35 2.58 1.82 0.25 
Cumulative Variance 95.35 97.93 99.75 100 

 
     In current study all spectral bands were 
imported to software for supervised classification 
by MLC, but different combination data 
composed of spectral bands along with ancillary 
data used to separate various classes in DT 
approach. Finally, the land cover types were 
separated using the following band combinations: 
     Woodland (Red and NIR bands with DEM and 
slope map), Bare land (TSAVI index, Red, NIR 
and MIR bands), Farm land (Red, NIR and MIR 
bands along with NDVI index and DEM), 
Meadow (GEMI index along with Red and NIR 
bands), Open shrubland (TSAVI index, Red and 
NIR bands), Sparse shrubland (Red and NIR 
bands with TSAVI index), Cloud (all of bands and 
DEM) and Shade (the first component of PCA).  
     The overall accuracy and Kappa coefficient of 
land cover maps obtained from two models used 
in current study is shown in Table 5. The 
classification based on MLC produced an 
accuracy of 70.2%, while the highest accuracy of 
79.3% was obtained by the DT approach. To 
assess the accuracy of individual land cover 
classes, producer’s and user’s accuracies were 
also determined for the classified images (Table 
6). A glance at producer’s and user’s accuracy 
values show that the accuracy of most of the 
classes has increased in DT classification process. 
This illustrates that the misclassifications between 

the classes have been reduced. Classified images 
often manifest a noisy (salt-and-pepper) 
appearance. To remove these stray pixels so as to 
produce smooth land cover classification, a 3×3 
majority filter was applied over the two classified 
images. The resulting product was considered as 
the final land cover map to be used as input for 
subsequent GIS based study. 

 
5. Discussion and Conclusion 
 
     One of objectives of this study was to evaluate 
performance of ancillary data for improve image 
classification in the mountainous area. Remote 
sensing data are attractive for land cover 
classification, particularly in the mountainous 
regions, where most of the areas are inaccessible 
due to the rugged terrain. However, classification 
just on the basis of the reflectance characteristics 
of remote sensing data may not be appropriate in 
mountainous areas. Therefore, the use of ancillary 
datasets in addition to remote sensing data has 
been recommended. The case study presented in 
this paper showed a remarkable increase in 
accuracy of land cover classification on 
incorporation of ancillary data layers with IRS 
LISS-III image. The addition of the ancillary data 
substantially reduced the misclassifications 
incurred due to the similarity in spectral 
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characteristics of some classes in areas with low 
vegetation coverage.  
     The existing natural complexities in the region 
and therefore, the blending of pixel have led to the 

spectral interference between some of the 
categories. Some of the cases below can also be 
named as factors creating such interferences: 

 
                                                        Table 5. Comparison of classifications obtained from DT and MLC 

 Overall Accuracy (%) Kappa Coefficient 
DT 79.3 0.76 

MLC 70.2 0.62 

 
       Table 6. Producer’s and User’s accuracy (%) of individual classes derived from classified images using DT and MLC methods  

MLC DT 
Land cover class 

producer’s accuracy User’s accuracy producer’s accuracy User’s accuracy 
Woodland 65 71 74 69 
Meadow 58 63 79 81 

Bare land 96 71 52 83 
Farm land 100 42 92 76 
Rural area 0 0 0 0 

Open Shrubland 59 50 58 79 
Sparse Shrubland 61 84 64 80 

Cloud 39 64 100 100 
Shadow 100 100 100 100 

 
     The existence of understory in woodlands and 
relatively high distances between trees resulted in 
most of spectral reflectance of these regions to be 
allocated to the under-canopy. Therefore, we 
observed the spectral interference between such 
lands, woodland, shrublands and meadows. 
Curran et al (1992), Abuelghasem et al (1999), 
Mickelson et al (1998) and Nemani et al (1993) 
had same reports.  
     Another problem is the spectral interference 
between open shrubland and sparse shrubland 
classes. This interference is due to high soil 
reflectance in these two types, in addition to the 
existence of similar plants (having similar 
vegetative types). This causes the soil reflectance 
to dominate the vegetation reflectance. Uses of 
soil line indices, especially TSAVI, reduce this 
problem to some extent. Rondeaux et al (1995) 
described TSAVI as the best index to estimate the 
percentage of vegetation canopy. The results of 
current study confirm this TSAVI is a determining 
variable in separating three different types (i.e. 
woodland, open shrubland and sparse shrubland) 
in DT method. According to Smith et al (1990) if 
plant cover is lower than 40% than soil effects 
may prevail over plant effects. Results of a study 
by Baret & Guyot (1991) also showed that the use 
of soil line indices in arid and semi-arid region 
with sparse vegetation, led to good results.  
     The other problem is related to rural regions. 
The results showed that the separation of rural 
areas is not easily possible because most of the 
residential homes in this region are made of thatch 

and stone which show exactly similar spectral 
behavior as that of bare lands. The very small area 
of this type compared to other types is one of the 
limiting factors affecting the separation procedure 
and plays an important role in decreasing the 
validity of categorization. Since none of the 
methods used in this study were not able to 
separate the rural lands, this category was omitted 
from the final maps (Fig 4). 
     The primary objective of this study was to 
investigate the ability of two classification 
methods (i.e., MLC and DT) to separation various 
land cover classes. Compared to the common 
classification methods, the knowledge-based DT 
classification improved the results. The results of 
this study confirm that DT can explore the 
complex relationships between spectral bands and 
classes and also can identify the most suitable 
combination of bands in increasing the class 
separability between any two classes. The DT 
approach is simple and flexible and does not 
depend on the implicit assumption regarding the 
relationship between the spectral information and 
class proportions. In addition, the structure of DT 
is interpretable and uncovers the hierarchical 
relations among bands and class proportions. The 
results of classifications LISS-III image along 
with ancillary data clearly demonstrate that DT 
produces noticeable classification accuracy in 
comparison to the conventional MLC, especially 
when the data contains a large proportion of 
mixed pixels. Through adding derived data in 
decision-tree classification, classification accuracy 
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was improved by 9.1 percent, Kappa coefficient 
increased by 0.14. In particular, the classes 
namely open shrubland, sparse shrubland, 
woodland, farmland and meadow showed a 
substantial increase in accuracy. At least one 
explicit reason may be stated for this increase in 
accuracy. The class woodland was considerably 
misclassified with the classes’ open and sparse 
shrublands when only spectral data were used in 
MLC method. Since, at high elevations, the 

presence of these classes is scarce, addition of 
topographic layers (DEM and slope) reduced this 
misclassification in DT method. The present study 
thus highlights the effectiveness of integrating 
ancillary data with the spectral data to enhance the 
quality of land cover classifications in 
mountainous regions. Also, DT is a potentially 
useful approach to produce meaningful 
classifications from remote sensing data. Pal and 
Mather (2003) obtained same result in their study.  

 

 
Fig. 4. The land cover classification with the highest accuracy (i.e., 79%), produced by DT method 
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