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Abstract 

Meteorological stations usually contain some missing data for different reasons.There 

are several traditional methods for completing data, among them bivariate and 

multivariate linear and  non-linear correlation analysis, double mass curve, ratio and 

difference methods, moving average and probability density functions are commonly 

used. 

In this paper a blended model comprising the bivariate exponential distribution and the 

first-order Markov chain is introduced for estmating of missing precipitation data. In 

this method, the day having the missing precipitation record is marked as either wet or 

dry using the first-order Markov chain and randomly generated numbers. If the Markov 

chain model marks the day as wet, then a bivariate exponential distribution is used for 

estimating the magnitute of the missing precipitation datum. Application of the model to 

the precipitation data from Tehran Mehrabad station shows a good correlation between 

the statistics of the predicted precipitation data with observed ones. 

 

Key words: Tehran, Iran, bivariate exponential distribution, Markov chain, random 

number. 
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Introduction 
Meteorological datasets may lack records 

for some months or years. Destruction of a 

meteorological station by adverse natural 

events such as storms and floods, 

misfunctioning of meteorological 

instruments for some time and missing to 

record the data by the observers are among 

the possible reasons for missing data. In 

such conditions there is a need to complete 

the data before any analysis could be 

performed. Many different traditional 

methods such as the double-mass curve, 

cummulative curve, ratio to neighbouring 

stations, running averages, gradual trend in 

means, linear and non-linear single and 

multi-variable correlation analysis have 

been introduced for estimating of missing 

data. 

Karl and Knight (1998) and Brunetti et al. 

(2001) fitted the Gamma Distribution 

Function (GDF) to daily precipitation data 

for each month to estimate the parameters 

of the GDF and use the best fit for 

calculating the missing values. Based on 

historical precipitation datasets with 

missing data from a station, Todorovic and 

Woolheiser (1975), Katz (1977) and 

Woolheiser (1992) used a first order 

Markov chain and randomly generated 

numbers to define the wet days and the dry 

days. Woolheiser and Pegram (1979), 

Wilson et al. (1992) and Hanson et al. 

(1994) applied the bivariate exponential 

distribution to fill the missing precipitation 

data. 

 In the present study, we introduce a 

blended model based on the bivariate 

exponential distribution and the Markov 

chain with randomly generated numbers for 

estimating of missing data and evaluate its 

results for the Tehran Mehrabad station. 

 

Materials and Methods 

Bivariate Exponential Distribution and 

Markov Chains 

In this section, the bivariate  exponential 

distribution and the Markov Chain are 

described. By definng a wet day as a day 

during which precipitation occurs, we will 

have: 

)(kX t =|0 , if day t is dry at position k  

             |1,  if day t is wet at position k     (1) 

where k the position of the station and t is 

time. The magnitude of precipitation during 

day t at the station k is: 

)()()( kXkrkY ttt ⋅= .                          (2) 

Combining Equations (1) and (2) results in: 
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The conditional probability in a first-order 

Markov chain is: 
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For a Markov chain with limited number of  

possible states, we can produce the square 

P matrix, which in general equals the 

transfer probablity matrix: 

 

  



                            BIABAN (Desert Journal), Vol 11, No. 2, 2006. pp. 49-55                             3  
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

mmmjmm

imijii

mj

mj

PPPP

PPPP

PPPP
PPPP

P

LL

MMMM

LL

MMMM

LL

LL

21

21

222221

111211

            (5) 

where m is the number of elements of the 

state vector. 

In the first-order bi-conditional Markov 

chain model, we can define symbols P01, 

P10, P00 and P11 as: 

P01(k): the probability of the occurance of a 

wet day following a dry day, 

P10(k): the probability of the occurance of a 

dry day following a wet day, 

P00(k): the probability of the occurance of a 

dry day following a dry day, and 

P11(k): the probability of the occurance of a 

wet day following a wet day. 

The above-mentioned definitions lead to: 

)(1)(),(1)( 01001110 kPkPkPkP −=−=          (6) 

The probabilities are calculated as: 
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where n11 is the conditional frequency of a 

wet day following a wet day, n10 is the 

conditional frequency of  dry day following 

a wet day, n00 the conditional frequency of  

a dry day following a dry day, and n01 is the 

conditional frequency of a wet day 

following a dry day. Using the calculated 

values, we can produce the probability 

transfer function of the Markov chain as: 
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The critical probability, Pc(k), is then 

defined as: 
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To decide whether day t is with or without 

precipitation, we produce a random 

number, Ut(k), between [0, 1] and 

determine Xt(k): 
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If  Xt(k) = 0, then the day is dry and Yt(k) = 

0. If  Xt(k) = 1, then the day is wet and the 

bivariate exponential distribution is used to 

estimate the magnitude of precipitation as 

follows. 

The median value of the daily precipitation 

records of the wet days ( ) is determined 

and the mean values of the upper 50% 

dM

)( 1β and the lower 50% )( 2β are 

calculated. The probability density function 

is: 
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with: 

0)()( 21 >≥ kk ββ     and .1)(0 ≤< kα . 

It gives the cumulative distribution function 

as: 
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where )(kα is the parameter value of the 

exponential function at th position and 

 is the median. 

k
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We calculate as: )(krt

))(ln()( min krkrt υβ−=                          (13) 

where )(kυ is a random number within the 

interval [0, 1] and  is minimum 

observed precipitation. To define 

minr

β , we 

generate another random number, q, in the 

[0, 1] range and compare it with )(kα ; 

1ββ =  if )(kq α<  and 2ββ =  if  

).(kq α>  Finally, by using  from 

Equation (13) the value of the missing data 

of the daily precipitaion is estimated from 

Equation (2). 

)(krt

 

Results & Disscussion 

Application of the Blended Model 

Daily precipitation data in April from the 

Tehran Mehrabad station for the 29-year 

period of 1958-1986 (inclusive) are used to 

evaluate the performance of the blended 

model. The data are used to construct the 

transfer probability matrix of the Markov 

chain and to calculate median and values of  

α , 1β  and 2β . 

The April precipitation dataset for the study 

period is complete with no missing values. 

We artificially set the values for the five 

days of April 2-6 of a single year as missing 

and used the methodology outlined in 

Section 2 to estimate the values for each 

day. The procedure was repeated 29 times, 

each time deleting and estimating data for 

the five days of one year.  

For the total 145 days set as missing, we 

found 33 days as wet and 112 days as dry, 

quite close to the observed 35 wet days and 

110 dry days. For 95 days, the estimated 

wet condition was the same as that 

observed one. For 26 cases, the model 

defined the day as wet while it was dry and 

for 24 cases, the model estimated the day as 

dry while it was actually wet. 

The estimated daily precipitation values are 

compared with those observed in Figure 1. 

The scatter diagram shows estimated daily 

precipitation using the blended model for 

days 2 to 6 of April during the period 1958-

1986 versus those observed at the Tehran 

Mehrabad station are presented in Figure 2. 

The total precipitation, mean and the 

standard deviation of the estimated daily 

precipitation for the second to sixth of April 

were 124.3 mm, 0.9 mm and 2.7 mm, 

respectively. The corresponding observed 

values were 116.2 mm, 0.8 mm and 2.5. 

The results show that the blended model is 

quite successful in estimating the statistical 

characteristics of the missing daily 

precipitation in Tehran, It is not, however, 

successful in predicting the wetness 

condition of exact dates. 
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Figure 1: Observed and estimated precipitation using the blended model for days 2 to 6 April in the 

period 1958-1986 at the Tehran Mehrabad station. The five first days are for 1958 and the last five 

days are for 1986 
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Figure 2: Scatter diagram showing estimated daily precipitation using the blended model for days 2 

to 6 of April during the period 1958-1986 versus those observed at the Tehran Mehrabad station. 

The dashed diagonal is the 1:1 line 

 

Conclusion 

Based on the first-order Markov chain and 

the bivariate exponential distribution, a 

blended model was introduced for 

estimating missing precipitation data. 

Unlike most of other methods of estimating 

missing data, the blended model does not 

require information from neighbouring 
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stations. This implies that the blend model 

is an appropriate tool for the estimation of 

missing data in scarce data regions, where a 

reliable station is too far that the 

assumption of  consistency between 

neighbouring stations could be fulfilled.  

The blended model was used to estimate 

daily precipitation at the Tehran Mehrabad 

station during April 2 to April 6, 1958-

1987. Observations showed that of the 145 

days studied, 110 days were dry and 35 

days were wet. The model predicted 112 

days as dry, but for only 86 days the dates 

of the predicted and obsreved dry days 

matched; on 26 predicted dry days the real 

condition were wet. The dates of predicted 

and observed wet days matched on only 

nine days; the model predicted 24 days as 

wet, while they were really dry. The mean 

and the standard deviation of the predicted 

daily precipitation were, respectively, 0.9 

mm and 2.7 mm, very close to 0.8 mm and 

2.5 mm observed. Comparing the modelled 

total number of dry and wet days and the 

mean and variations of daily precipitation 

with those observed reveals that the 

introduced model captures the statistical 

features of the daily precipitation data very 

well. However, the model is not a strong 

tool for predicting the amount of 

precipitation on a specific day. The model 

needs to be tested in different climatic 

conditions and its results must be compared 

with those from different traditional 

methods of filling meteorological data gaps 

before a firm conclusion about its 

efficiency can be made. This is the subject 

of a subsequent paper.  
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