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Abstract 
 
     During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% 
of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became 
available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting 
SRTM data for recognition and extraction of topographic features is a challenging task and could provide useful 
information for landscape studies at different scales. In this study the 3 arc second SRTM digital elevation model was 
projected on a UTM grid with 90 meter spacing for a mountainous terrain at the Polish - Ukrainian border. Terrain 
parameters (morphometric parameters) such as slope, maximum curvature, minimum curvature and cross-sectional 
curvature are derived by fitting a bivariate quadratic surface with a window size of 5×5 corresponding to 450 meters on 
the ground. These morphometric parameters are strongly related to topographic features and geomorphological processes. 
Such data allow us to enumerate topographic features in a way meaningful for landscape analysis. Kohonen Self 
Organizing Map (SOM) as an unsupervised neural network algorithm is used for classification of these morphometric 
parameters into 10 classes representing landforms elements such as ridge, channel, crest line, planar and valley bottom. 
These classes were analyzed and interpreted based on spectral signature, feature space, and 3D presentations of the area. 
Texture contents were enhanced by separating the 10 classes into individual maps and applying occurrence filters with 
9×9 window to each map. This procedure resulted in 10 new inputs to the SOM. Again SOM was trained and a map with 
four dominant landforms, mountains with steep slopes, plane areas with gentle slopes, dissected ridges and lower valleys 
with moderate to very steep slopes and main valleys with gentle to moderate slopes was produced. Both landform maps 
were evaluated by superimposing contour lines. Results showed that Self Organizing Map is a very promising and 
efficient tool for land form identification. There is a very good agreement between identified landforms and contour lines. 
This new procedure is encouraging and offers new possibilities in the study of both type of terrain features, general 
landforms and landform elements. 
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1. Introduction 
 
     A Digital Elevation Model (DEM) is a regular 
grid of elevation values, which characterizes the 
form of the land surface (Giles and Franklin, 
1998). Various numerical geomorphometric and 
GIS techniques are being developed to automate 
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quantification of terrain related features. 
Information extracted from a DEM can be used in 
automated terrain classification and 
geomorphological studies. Characterizing 
landforms should reveal much about topographic 
expression and geomorphic processes. Landform 
as physical constituent of terrain may be extracted 
from digital elevation data using various 
approaches including classification of 
morphometric parameters (Dikau, 1989), fuzzy 
logic methods and unsupervised (ISODATA) 
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classification (Adediran et al., 2004; Burrough et 
al., 2000; Irvin et al., 1997), supervised 
classification (Brown et al., 1998; Hengl and 
Rossiter, 2003; Prima et al., 2006), probabilistic 
clustering algorithm (Stepinski and Collier, 2004; 
Stepinski and Vilalta, 2005), multivariate 
descriptive statistics (Dikau, 1989; Evans, 1972) 
,double ternary diagram classification (Crevenna 
et al., 2005) Morphometric features analysis 
(Ehsani and Quiel, 2008a, 2009b), landscape 
elements analysis (Ehsani and Quiel, 2007; Ehsani 
and Quiel, 2009a) and yardang analysis(Ehsani 
and Quiel, 2008b). Landforms possess at least two 
important properties. First, they are the  result of 
past geomorphic and geologic processes and 
second, provide a controlling boundary condition 
for actual geomorphic processes (Dehn et al., 
2001). For disciplines dealing with landforms, the 
properties of consideration are different. For 
geomorphologists both properties of landforms are 
important. But a common perspective of all 
landform studies regardless of discipline is to 
delimit homogeneous areas from digital elevation 
data. Digital elevation models (DEM) can be 
compiled from contour lines or other sources like 
the Shuttle Radar Topography Mission (SRTM). 
The SRTM data is a product from a collaborative 
mission by the National Aeronautics and Space 
Administration (NASA), the National Geospatial-
Intelligence Agency (NGA- previously known as 
National Imagery and Mapping Agency, or 
NIMA), the German space agency (DLR), and 
Italian space agency (ASI). On February 11th 
2000, the space shuttle Endeavour with the SRTM 
payload on board was launched to an altitude of 
233 Km. During 11 days the SRTM data were 
collected to produce a consistent DEM covering 
all landmasses on earth between 60° N and 57° S 
at a spatial resolution of 1 arc sec (Blumberg, 
2006; Rabus et al., 2003a; Rabus et al., 2003b; 
Wright et al., 2006). In 2003 the National 
Aeronautics and Space Administration (NASA) 
released the SRTM data with 3 arc second (~ 90 
m) for all areas and 1 arc second (~ 30 m) for the 
United States (Hancock.G.R. et al., 2006; Kaab, 
2005; Kellndorfer et al., 2004; Miliaresis and 
Paraschou, 2005; Rabus et al., 2003b).   
     Automatic classification of geomorphological 
land units mainly focuses on morphometric 
parameters (Bue and Stepinski, 2006; Giles and 
Franklin, 1998; Miliaresis, 2001). First order 

derivatives (slope and aspect) and second order 
derivatives (cross-sectional curvature, minimum 
and maximum curvature) of a DEM, as discussed 
by Evans (Evans, 1972), provide numerical and 
quantifiable parameters for landforms and 
geomorphological processes. The attempt to 
classify the shape of terrain using a set of 
numerical parameters (derivatives) is known as 
morphometry. The generic landform elements are: 
pits, peaks, channels, ridges, passes and planes 
known as morphometric features and can be 
extracted from DEM derivatives by an 
unsupervised neural network algorithms (e.g. self 
organizing maps) (Ehsani and Quiel, 2007). These 
morphometric features are smallest homogeneous 
divisions of the land surface, at the given 
scale/resolution. These are areas with relatively 
homogeneous morphometric properties, bounded 
by lines. A ridge for instance can be observed at 
various scales ranging from few hundred meters to 
hundreds of kilometers. The spatial distribution of 
landforms is often scale-dependent. In this study, 
we developed a semi-automatic procedure using 
Self Organizing Map (SOM) as an unsupervised 
artificial neural network for both landform 
elements and larger landform features mapping. A 
Self Organizing Map clusters or visualizes high 
dimensional input vectors into two dimensional 
output based on regularities and correlations 
between them (Jianwen and Bagan, 2005; 
Kohonen, 2001; Li and Eastman, 2006).  
 
2. Study area 
 
     The study area is located between 48° 52' 21" 
and  49° 25' 14" N latitude and 21° 59' 34" and  
23° 1' 46" E  longitude (Fig. 1) centered around 
the common border point of  Poland, Slovakia and 
Ukraine with a total area of 4 543 km2. It covers 
the biosphere reserve “Eastern Carpathians” with 
the Bieszczady national park in Poland, Uzanski 
national park in Ukraine and Poloniny national 
park in Slovakia. The study area is characterized 
by mountain ranges stretching from southeast to 
northwest. This part of the Carpathian Mountains 
(Bieszczady) with highest elevation of 1324 m 
covers the center of the study area. The bedrock is 
composed mainly of Carpathian flysch consisting 
of sandstone and shale (Denisiuk and Stoyko, 
2000; Tobias Kuemmerle et al., 2006) and in the 
southwest volcanic rocks. 



 Ehsani & Malekian / DESERT 16 (2011) 111-122  

 
113 

 
Fig. 1. DEM derived from Shuttle Radar Topography Mission, 3 arc second (left) and RGB color composite of 

Landsat 7, ETM+ bands 3, 2 and 1 of the study area at the border of Poland, Slovakia and Ukraine (right) 

 
3. Material and Methods 
 
3.1. Material 
 
The data set in this study consists of: 
 
● Landsat ETM+ data path 186, row 26 dated 
2000-09-30 were acquired from the Global Land 
Cover Facility (GCLF) server at the University of 
Maryland, Institute for Advanced Computer 
Studies (UMIACS). GLCF provides free access to 
an integrated collection of critical land cover and 
earth science data (http://glcf.umiacs.umd.edu).  
● The 3 arc sec. digital elevation model derived 
from SRTM data (~90 m) in geographic 
projection was acquired free from the USGS 
server (http://seamless.usgs.gov). 
     Morphometric feature analysis and extraction 
of morphometric parameters are implemented in 
the open source GRASS software, version 6.0 
(GRASS development Team, 2005, (GRASS 

Development Team, 2006)). SOM_PAK software 
Version 2.0 which is freely available from the 
Laboratory of Computer and Information Science 
(CIS) at the Helsinki University of Technology, 
Finland (Vesanto et al., 1996) is used for neural 
network analysis. ENVI Ver. 4.1 and Arc View 
Ver.3.2a are used for presentation. 
 
3.2.  Methods 
 
     Figure 2 shows the methodology used in this 
study. Starting with DEM data, four 
morphometric parameters are derived  by fitting a 
bivariate quadratic surface with a window size of 
5×5 (Wood, 1996a). In geomorphic studies of 
landscapes the first and second order derivatives 
of DEM (Table 1) are the basic components for 
morphometric analysis (Evans, 1972). The second 
derivatives of DEM are affected by 
geomorphological processes.  

 
Table 1. Different morphometric parameters (Evans, 1972; Wood, 1996a) 
Morphometric 

parameter 
Formula Description 

Slope arctan ( sqrt (d2
+ e2)) Magnitude of steepest gradient in both X and Y directions. 

Cross Sectional 
curvature 

n × g × (b × d2
+ a × e

2- c × d × e)/( d2
+ e

2) 
Measures the curvature perpendicular to the down slope direction. 
(Intersecting with the plan of slope normal and perpendicular to 

aspect direction). 
Maximum 
curvature 

n × g × (-a-b + sqrt((a-b)×(a-b) + c
2)) In any plan 

Minimum 
curvature 

n × g × (-a-b- sqrt((a-b)×(a-b) + c
2)) In any plan 

Profile 
curvature 

n × g×(a×d
2
+b ×e2

+ c × d×e)/(d2
+ e

2)(1+(d2
+ e

2) 1..5 
Vertical component in direction of aspect. (Intersecting with the 

plan of z axis and aspect direction). 

Plan curvature n × g × (b × d
2
+ a × e

2- c × d × e)/(d2
+ e

2) 1..5 
Horizontal component in direction of aspect (Intersecting with the 

X, Y plan). 
Longitudinal 

curvature 
n × g × (a × d

2
+ b × e

2
+  c × d × e)/(d2

+ e
2) 

Measures the curvature in the down slope direction. (Intersecting 
with the plan of slope normal and aspect direction). 

g: Grid resolution of DEM, n: Size of window, x, y : Local coordinates, a to f: Quadratic coefficients. 
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Fig. 2. Flowchart of the methodology 

 
     Cross-sectional curvature measures the 
curvature perpendicular to the down slope 
direction. This parameter is useful for detecting 
concave features such as channels and can be 
directly related to geomorphological form (Wood, 
1996a; Wood, 1996b). In regions with zero slopes 
(flat), the aspect is undefined and maximum and 
minimum curvatures are used as alternative 
parameters. These parameters measure minimum 
and maximum overall surface curvatures. Wood 
(Wood, 1996a) proposed an algorithm using these 
parameters to identify morphometric features such 
as ridge, channel, peak, pit, pass or planar. Rules 
for this parameterization are shown in table 2. For 
example, a sloping surface that is concave in the 
cross-sectional direction is a channel. A sloping 

surface that is convex in the cross-sectional 
parameter is a ridge. Sloping surfaces with zero 
cross-sectional curvature are planar. These four 
morphometric parameters together are used as 
input for the Self Organizing Map. This is a semi-
automatic method in which no specific classes are 
defined beforehand. Instead a set of novel 
landform elements emerge from the input. 
However the interpretation and labeling of the 
results is a manual task. The Self Organizing Map 
(SOM) is a realistic model of the biological brain 
function (Kohonen, 2001). Formally SOM 
consists of a regular two-dimensional grid of 
output map units (or cortex) connected via 
weights with n input vectors, e.g.  four 
morphometric parameters.  
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             Table 2. Morphometric  feature classification criteria (modified from Wood (Wood, 1996a)) 
Morphometric Feature Slope Cross-sectional curvature Maximum curvature Minimum curvature 

Peak 0 # +va +va 
Ridge +va +va × × 
Plane +va 0 × × 

Channel +va -va × × 
             Va : derivatives value,  # : undefined values,  ×: not part of selection criteria. 

 
     SOM is a competitive network with topology 
preserving characteristics (Bação et al., 2005; 
Kohonen, 1989; Vesanto and Alhoniemi, 2000). 
Vectors that are close in input feature space will 
be mapped to units that are close in the output 
map. Learning of SOM is iteratively and can be 
conducted with a subset or all data vectors. Prior 
to learning, the weights of map units are 
initialized with random values. The initial weight 
values are the starting point of learning. Every 
random initialization of the input weights defines 
a new location for searching the global minimum 
error. During the learning process, these values 
are moving toward the global minimum error. In 
the learning phase each input vector is presented 
to the network and Euclidean distances between 
that and all nodes in the network are computed. 
The node with the shortest Euclidean distance 
commonly known as Best Matching Unit (BMU) 
is selected as a winner. This winner neuron 
becomes the centre of an update neighborhood 
area within which nodes and their neighborhood 
weights according to Kohonen rule will be 
updated simultaneously. As a result, weights of 
the output map (known as code book) are adjusted 
(or learned) so that they can describe the nature of 
the input data. The patterns in the input space are 
therefore clustered. 
     Neural network learning becomes more 
efficient with preprocessing of input data. 
Therefore all data were normalized with logistic 
transformation to the range of 0 to1. After some 
trial the number of classes or map units was set to 
10. Before learning, weights of the map units were 
randomly initialized. The learning was performed 
in two phases, rough learning and fine tuning with 
different learning parameters and iterations. The 
quality of the results is measured as average 
quantization error. Average quantization error is 
the Euclidian distance between data vectors and 
best matching unit (BMU) in the map. The 
optimal SOM with low average quantization error 
is selected and used for learning and clustering of 
input data. 
 

     Landform elements in the output map were 
identified by plotting the mean of classes in two-
dimensional feature spaces (scatter plot) of 
morphometric parameters. Two feature spaces 
with maximum curvature (x-axis) and minimum 
curvature (y-axis) respectively cross sectional 
curvature (x-axis) and slope (y-axis) were used. In 
these feature spaces, major morphometric classes 
related to ridge, channel, planar and crest line 
were identified. The second plot shows the 
distribution of morphometric features in slope 
categories. Using feature space analysis, 
morphometric signatures, three-dimensional 
inspection and auxiliary data, dependency of 
optimal map units to morphometric features 
(landforms elements) were defined. All 10 
landform elements are masked and separated as 10 
new images. An occurrence filter with 9×9 
window was applied to these 10 new images and 
used for texture analysis. Occurrence-based 
texture filter uses the number of occurrences of 
each gray level within the processing window for 
the texture calculations. Texture refers to the 
spatial variation of image tone as a function of 
scale. To be defined as a distinct textural area, the 
gray levels within the area must be more 
homogeneous as a unit than areas having a 
different texture. These new ten images were used 
in SOM as inputs. Applying the SOM in this step, 
produced a general landform map where each 
uniform textured region is identified with texture 
class it belongs to. 
 
4. Results 
 
     The four morphometric parameters slope, 
cross-sectional curvature, minimum and 
maximum curvature derived from the DEM are 
shown in Figure 3. Plain areas with low slope 
values like arable lands in Slovakia (southwest) or 
Solinskie reservoir in Poland (north) have zero 
value for minimum, maximum and cross-sectional 
curvatures. But in mountainous locations with 
steep slopes morphometric parameters differ, 
depending on morphometric features. 
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Fig. 3. Morphometric parameters derived from DEM, a slope, b cross- sectional curvature, c minimum curvature, 

d maximum curvature 

 
     Correlation coefficient as statistical measure 
indicates the strength and direction of a linear 
relationship between different morphometric 
parameters (Fig. 4). As it clearly can be observed 
from Fig.4, slope as first derivative of the DEM 
has a very low linear correlation with all second 
derivatives. The highest positive correlation is 
between longitudinal and profile curvature 
(0.998).  Cross sectional curvature shows similar 
positive correlation with both maximum and 
minimum curvature. Longitudinal, profile and 
cross sectional curvature have all the same linear 
correlation with minimum curvature (0.68). 
Moreover, the same situation can be seen for 
maximum curvature (0.63). However the 
correlation between maximum and cross sectional 
curvature is a bit higher (0.71). Between the 
second derivatives of DEM, the lowest correlation 
is between cross sectional curvature and 
longitudinal and profile curvature (0.25). 

     Learning of the SOM was performed with a 
subset of the data points with four morphometric 
parameters as input and a two-dimensional output 
of ten neurons. At the beginning of the learning, 
neurons in the self organizing map are distributed 
randomly. But after learning the map units are 
distributed across the input space so that 
neighboring neurons can recognize the best 
matching input for each learned map unit. After 
learning, the minimum average quantization error 
was 0.423. 
     The next crucial step is analysis, interpretation 
and labeling of these map units as morphometric 
features. It was performed by morphometric 
signature analysis and displaying mean values of 
best matching units (clusters) in two-dimensional 
morphometric feature space. Morphometric 
signatures for the morphometric parameters of 
SOM clusters resulting from the DEM are 
illustrated in figure 5.  
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Fig. 4. Correlation coefficient between Morphometric parameters derived from DEM 

 

 
Fig. 5. Morphometric signatures of SOM output classes from DEM. Ellipsoids are examples of dominant 

morphometric features 

 
 
     This representation not only highlights that 
slopes vary for different classes but also reveal 
that minimum, maximum and cross sectional 
curvatures have similar trends. Cluster 10 with 
highest mean value of minimum and maximum 
curvature is labeled as crest line. The steepest and 
most gentle slopes are observed for class 5 and 7 
with means of 15.25 and 3.77 degrees 
respectively. 
     Feature space analysis was used to understand 
the relation between classes in two-dimensional 
space of morphometric parameters. This method 

in conjunction with perspective presentation of the 
cluster map was used to label classes with 
corresponding morphometric features. From the 
six possible combinations of feature space plots, 
one with slope (y-axis) and cross sectional 
curvature (x-axis) is shown in figure 6. Six major 
morphometric features ridge, channel, planar, 
valley bottom, transition zone (between valley 
bottom and planar) and crest line and four 
subclasses, based on slope condition, were 
defined.  
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Fig. 6. Distribution of the major (grey box) and sub classes (dashed lines) of morphometric features from DEM in 

two dimensional feature spaces.  Sub classes are based on slope categories 

 
 
     Classes with positive cross-sectional curvature 
and high values for minimum and maximum 
curvature are identified as ridges. In contrary low 
values for minimum and maximum curvature and 
negative value for cross-sectional curvature 
characterize channels. Classes with properties 
between these two categories are planar features 
with different slope categories. Sloping surfaces 
with positive cross-sectional curvature are convex 

ridges. Plan forms are characterized by zero or 
near zero curvature values. Crest lines have 
positive values for both maximum and minimum 
curvatures. Table 3 summarizes the categorized 
map units and corresponding morphometric 
features as landform elements. These results are in 
good agreement with Wood’s studies (Wood, 
1996a). 

 
                       Table3. Map units in relation to morphometric features (landform elements) 

Morphometric features (landform elements) 
Class Slope Class    Map units (Class No) 

Moderate slope 6 
Channel 

Very steep slope 1 

Planar Steep slope 2 

 Very steep slope 3 

 Gentle slope to flat 7 
Very steep slope 5 

Steep slope 4 Ridge 
Moderate slope 9 

Crest Line Steep slope 10 
Transition zone Moderate slope 8 

 
 
     Texture contents are enhanced by separating 
the morphometric map into 10 individual feature 
maps, one for each class.. Applying an occurrence 
filter with a 9×9 window over these maps resulted 

in 10 new inputs for the SOM. The same SOM 
parameters are used for learning. Applying this 
method produced the general landform map of the 
study area (Fig. 7).  



 Ehsani & Malekian / DESERT 16 (2011) 111-122  

 
119 

 
Fig. 7. Morphometric features (left) and general landform maps (right) produced by SOM. Zoom samples are 

overlaid with contour line -50 meter interval 

 
     Comparison of zoom samples in figure 7 
shows that the SOM is able to identify detailed 
landform elements as well as general landforms. 
In the detailed landform elements map, 

morphometric classes are categorized based on 
slope classes while occurrence-based texture 
filters resulted in a general landforms map. 
Dominant landforms in the study area are part of 
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Carpathians mountains stretching from south east 
to north west and flat landforms in the north east 
in Ukraine and south west in Slovakia. Elements 
of mountain landform mainly consist of ridge, 
channel and crest line with moderate to very step 
slope. A visual comparison of contour lines (zoom 
samples in fig. 7) with the landform elements 
reveals that our results are in good agreement with 
the situation on the ground. For example class 
channel with very step slopes should have 
concave, dense contour lines. The zoom sample in 
upper left part of the figure 7 confirms this fact. 
The same situation can be seen for ridge elements 
with short distances between convex contour 
lines. Zoom samples in the lower part of figure 7 
show planar landforms with gentle to flat slope, 
nearly straight contour lines and long distances 
between contours. This situation corresponds to 
the real condition on the ground and confirms the 
obtained results. 
  
5. Conclusion 
 
     Studying the shape and form of the land is a 
major consideration for geomorphologists. 
Landforms are the result of geologic and 
geomorphologic processes on the land surface. 
The availability of SRTM data with nearly global 
coverage provide a good foundation for 
developing non-parametric, semi automatic 
methods for landform identification 
     In this study, we developed a semi-automatic 
procedure using Self Organizing Map (SOM) as 
an unsupervised artificial neural network for 
mapping of both landform elements and general 
landform features. The advantage is that it 
provides an objective and automated technique for 
landform mapping. Since the procedure was 
unsupervised, interpreting and labeling of classes 
is an important subsequent step. Morphometric 
signatures and feature space analyses were used to 
assign map units into meaningful landform 
classes.  
     Morphometric analysis of first and second 
order derivatives of DEM data such as slope, 
cross-sectional curvature, maximum curvature and 
minimum curvature led to the description of 
continuous features as ridges, channels , plane, 
crest lines and transition zone (between valley 
bottom and plane). These morphometric terms 
coincide with actual geomorphologic entities. 
Maximum and minimum curvatures are critical to 
recognize crest lines in mountains, ridges and 

channels. Slope allows distinguishing among 
landform elements in sub levels.  
     Applying occurrence filter with 9×9 window to 
10 individual landform element maps and using 
the resulting texture maps as input to a SOM 
allowed the mapping of 4 major landforms 
including mountains with steep slopes, plane areas 
with gentle slopes, dissected ridges and lower 
valleys with moderate to very steep slopes and 
main valleys with gentle to moderate slopes.  
     The results show that Self Organizing Map is a 
very promising and efficient tool for 
geomorphological studies. There was a very good 
agreement between identified landforms and 
contour lines. This new procedure is encouraging 
and offers new possibilities to study both types of 
terrain features, general landforms and landform 
elements. 
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