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Abstract 
 
     In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear 
and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good 
performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological 
station. In this research, different architectures of artificial neural networks as well as various combinations of 
meteorological parameters including 3-year precipitation moving average, maximum temperatures, mean temperatures, 
relative humidity, mean wind speed, direction of prevalent wind and evaporation from 1966 to 2000, have been used as 
inputs of the models. According to the results taken from this research, dynamic structures of artificial neural networks 
including Recurrent Network (RN) and Time Lag Recurrent Network (TLRN) showed better performance for this 
application (due to higher accuracy of its out puts). Finally TLRN network with only one hidden layer and hyperbolic 
tangent transfer function was the most appropriate model structure to predict 3-year moving average precipitation of the 
next year. In facts, by prediction of the precipitation 12 months before its occurrence, it is possible to evaluate drought 
characteristics in advance. Results indicated that the combination of precipitation and maximum temperature are the most 
suitable inputs of the models to get the most outputs accuracy. In general, it was found that ANN is an efficient tool to 
model and predict drought events. 
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1. Introduction   
 
     Drought is a generally occurring phenomenon 
which its effects intensify gradually. In some 
cases drought continues for longer time and 
causes destructive damages to human 
communities. During recent years climate change 
impacts have been combined with drought effects 
and caused serious problems in different parts of 
the World. Characteristics of a drought event are 
not often easily known until it occurs. During 
1967 to 1992, about 50% of the 2.8 billion people  
who suffered from all natural disasters, have been 
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affected by relatively sever drought. From 3.5 
million people who were killed by disasters, about 
1.3 million were victims of the drought (Obasi, 
1994). About 50% of the World intensive 
populated regions containing the most agricultural 
lands are very vulnerable to the drought (USDA, 
1994). 
     Prediction of drought can play an important 
role on mitigation of its effects. In other word, 
fundamental to mitigating the detrimental effects 
of droughts is the ability to forecast drought 
conditions in advance by either a few months or 
seasons. Accurate drought forecasts would enable 
optimal operation of water use systems. Various 
tools and methods for drought forecasting have 
been suggested and tested in different regions over 
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the last decades. Application of statistical models 
has a long history in drought forecasting. It goes 
back to Gabriel and Neumann (1962) and 
Torranin (1976) who were the first to apply 
Markov and regressions models for drought 
forecasting respectively. Yevjevich (1967) was 
also one of the first people who investigated the 
properties of droughts using the geometric 
probability distribution, defining a drought of k 
years as k consecutive years when there were not 
adequate water resources. Incorporating concepts 
of time series analysis, Saldariaga and Yevjevich 
(1970) employed the run theory for predicting the 
drought occurrence. Sen (1977) continued this line 
of work for Evaluating run sums of annual flow 
series and predicting water resources. Rao and 
Padmanabhan (1984) used stochastic models to 
forecast and simulate a yearly and monthly 
Palmer’s drought index (PDI). Sen (1990) derived 
exact probability distribution functions of critical 
droughts in stationary second-order Markov 
chains for finite sample lengths and predicted the 
possible critical drought durations that may result 
from any hydrologic phenomenon. For 
characterizing the stochastic behavior of droughts, 
Lohani and Loganathan (1997) used the PDSI in a 
non-homogeneous Markov chain model and used 
an early warning system for drought management. 
Chung and Salas (2000) used low-order discrete 
autoregressive moving average (DARMA) models 
for estimating the occurrence probabilities of 
droughts. As it is seen, most of the methods used 
to predict drought in the past, are regression or 
auto-regression linear models which their ability 
is limited in dealing with natural phenomena with 
non-linear trend. 
     However, in recent decades artificial neural 
network models have shown great ability to deal 
with non-linear hydrology and water resources 
problems. Some advantages of ANN models are 
as follows: 

1- Good ability to recognize the relationship 
between input and output data. 
2. Considerable resistance to noisy and unreliable 
data. 
3. Flexibility to cope with various ranges of data. 
4- Easy to use and get acceptable outputs by 
training of the model. 
     Most of the previous investigations have 
indicated that ANN is an efficient tool with 
superior abilities, and is widely used in different 
areas of water-related research. Silverman and 
Dracup (2000) used Artificial Neural Networks 

for Long-Range Precipitation Prediction in 
California, and confirmed the possibility of 
making long-range predictions using ANNs and 
large-scale climatological parameters. Crespo J.L. 
and E. Mora (1993) used a feed forward 
multilayer perception with linear output deal with 
the problem of drought analysis. They tried to 
predict number of droughts; average drought 
length and deficit level, and compared the results 
with the actual data. The results showed that very 
simple neural network models can give fine 
results. Kim and Valdes (2003) developed a 
conjunction model to forecast droughts based on 
dyadic wavelet transforms and neural networks. 
The model was applied to forecast droughts in the 

Conchos River Basin in Mexico, which is the 
most important tributary of the Lower Rio 
Grande/Bravo. The performance of the 

conjunction model was measured using various 
forecast skill criteria. The results indicate that the 
conjunction model significantly improves the 
ability of neural networks to forecast the indexed 
regional drought. Hwang and Carbone (2009) 
applied stochastic approaches for estimating 
uncertainty of the process of drought index 
predictions. In this study National Oceanic and 
Atmospheric Administration (NOAA) Climate 
Prediction Center (CPC) seasonal forecasts and 
resampling of nearest-neighbor residuals were 
incorporated to measure uncertainty in monthly 
forecasts of Palmer drought severity index (PDSI) 
and standardized precipitation index (SPI) in 
central South Carolina. Results indicate good 
forecast performance with up to 3-month lead 
time for PDSI and improvements for 1-month-
lead SPI forecasts. Moye et al, (1988) developed a 
pertinent probability distribution based on 
difference equations using the rudiments of run 
theory to predict drought. This distribution allows 
estimating the expected number of droughts of a 
pre-specified duration, and the average drought 
length over the desired time period. The 
applicability of this new mathematical approach is 
demonstrated using precipitation records for 
different climatic regions of Texas. Dastorani & 
Wright (2004) employed artificial neural networks 
to optimize the results of a hydrodynamic 
approach for river flow prediction. Using SPI as a 
drought index, Mishra and Desai (2005) employed 
stochastic models for forecasting droughts in the 
Kansabati River basin in India. Sarangi and 
Batacharia (2005) compared the application of 
regression methods and ANN models to predict 
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the rate of erosion and sediment, and mentioned 
the superiority of ANN models over the regression 
methods. Ramireza et al. (2005) used ANN model 
for daily rainfall forecasting. Mishra and Desai 
(2006) used ANN technique to predict drought in 
Kansabati catchment in India. In this research, 
they also used ARIMA and SAMIRA models and 
compared the results to those of ANN, then 
recommended more efficiency of ANN over other 
used methods. Morid et al (2006) carried out an 
investigation on drought prediction using ANN 
models. In fact, it was tried to predict two drought 
indexes including EDI and SPI with 12 months 
lead time (12 months ahead) In Tehran, Iran. 
Mishra et al (2007) completed the research project 
on drought forecasting using a hybrid stochastic 
and neural network model, and stated that the 
hybrid model which was a combination of 
statistical linear and non linear models is a 
suitable method to model and predict drought 
events. Dastorani et al. (2009) used neural 
network as well as neuro-fuzzy models to 
reconstruct flow data series, and compared the 
results of these new techniques to some 
traditionally used methods, and mentioned 
superiority of the new techniques (especially 
neuro-fuzzy system) over traditional methods.  
Present research describes the application of ANN 
to predict drought in hyper arid region of Yazd 
(with about 50 mm annual precipitation and more 
than 3500 mm potential evapotranspiration) in 
Iran. Different ANN architectures and also 
different combination of input variable including 
precipitation, evaporation, temperature, relative 
humidity, and wind speed and wind direction were 
used in this research. It must be added that 
precipitation data was used in different forms such 
as normalized rainfall data, SPI (Standardized 
Precipitation Index), seasonal and 3 year moving 
average of precipitation data. Monthly 
precipitation data of the next year (12 month 
before it occurs) was the output of the models in 
this research. The main purpose was to specify the 
best type and structure of the ANN and also the 
most appropriate input variables to have a reliable 
and accurate prediction of the drought.  
 
2. Materials and methods  
 
2.1. Study area and data 
 
     The study area was Yazd meteorological 
station located in Yazd city in Iran with 

geographical longitude of 54º, 17´ and latitude of 
31º, 54´ with a hyper arid climate condition 
according to the extended Demartonn climatic 
classification. Various combinations of climate 
factors including monthly precipitation, 
evaporation, wind speed, prevalent wind direction, 
relative humidity, maximum temperature and 
mean temperature for the period of April 1953 to 
December 2005 were used as inputs of the 
models. Different types of ANN were used and 
evaluated (to choose the most appropriate one) in 
this research including Multi Layer Perceptron 
(MLP), Generalized Feed Forward (GFF), 
Modular Neural Network (MNN), Principal 
Component Analysis (PCA), Recurrent Network 
(RN) and Time Lag Recurrent Network (TLRN). 
Neuro Solution software package was used to 
construct and run the ANN models of this 
research. 
     In the first stage, normalized monthly 
precipitation was used to calibrate the models in 
all ANN structures. Data of 1975 to 2001 was 
used for training purpose and the data of 2002 to 
2007 was used to test the model performance. In 
all models three transfer functions including 
linear, tangent hyperbolic and sigmoid were used 
and tested in hidden and output layers and then in 
each case the results were compared to the 
measured values to select the best structure for 
ANN models. For statistical comparison of the 
outputs to the measured values, coefficient of 
efficiency (R) and root mean square error (RMSE) 
were employed.  
 
2.2. Drought prediction process  
 
     Today, due to advances in data processing 
technology as well as simulation tools, relatively 
acceptable prediction processes have been 
developed. In a prediction process, in addition to 
the accuracy and reliability, the timing is also an 
important task. What is important in timing is the 
lead time which is time period between the end of 
the prediction process and the occurrence of the 
related event. It is clear that when lead time is 
longer, the accuracy of the prediction becomes 
lower. In this research, prediction lead time was 
12 months. In fact by using the information of the 
past and present, prediction is made 12 months 
later in the future. If P is the amount of 
precipitation of time t (present month), the amount 
pf precipitation in month 12 (Pt+ 12) can be 
dependent on different factors: 
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P(t+12)=ƒP(t), P(t-1), ….. P(t-n)                                  (1) 
 
P(t+12)=ƒ(TMax(t), TMax(t-1), ….. TMax(t-n)                 (2) 
 
P(t+12)=ƒ(Tav(t), Tav(t-1), ….. Tav(t-n)                        (3) 
 
P(t+12)=ƒRH(t), RH(t-1), ….. RH(t-n)                        (4) 
 
P(t+12)=ƒEP(t), EP(t-1), ….. EP (t-n)                          (5) 
 
P(t+12)=ƒWs(t), Ws(t-1), ….. Ws (t-n)                        (6) 
 
P(t+12)=ƒWd(t), Wd(t-1), ….. Wd(t-n)                       (7) 
  
Where: 
P is the monthly precipitation (in the form of 
measured values, SPI or normalized values), T is 
the monthly air temperature, RH is the monthly 
relative humidity, EP is the monthly pan 
evaporation, Ws is the monthly prevalent wind 
speed and Wd is the direction of monthly most 
intensive wind. As multiple variables are used as 
inputs, the real prediction process is as follows: 
P (t+12) =ƒ [P (t), P (t-1)… P (t-n) + ….. + Wd (t), Wd(t-1), 
….. WdP(t-n)                                                        (8) 
                                                                         
2.3. Artificial neural network  
 
     Artificial Neural networks operate on the 
principle of learning from a training set. There are 
a variety of neural network models and learning 
procedures. Two classes of neural networks that 
are usually used for prediction applications are 
feed-forward networks and recurrent networks. 
Both of these networks are often trained using 
backpropogation algorithm. When this algorithm 
is used for weight change, the state of the system 
is doing gradient descent; moving in the direction 
opposite to the largest local slope on the 
performance surface. In other words, the weights 
are being updated in the downward direction. 
     An advantage of backpropagation is that it is 
simple, but it has some problems:  
1. The search for the optimal weight values can 
get caught in local minima, i.e. the algorithm 
thinks it has arrived at the best possible set of 
weights even though there are other solutions that 
are better.  
2. Backpropagation is also slow to converge. In 
making the process simple, the search direction is 
noisy and sometimes the weights do not move in 
the direction of the minimum.  

3. The learning rates must be set heuristically as 
there is no efficient rule.  
     Back propagation algorithm, developed by 
Rumelhart et al. (1986) is the most prevalent of 
the supervised learning models of ANN. This 
algorithm uses the steepest gradient descent 
method to correct the weight of the 
interconnectivity neuron. Back propagation 
algorithm easily solves the interaction of the 
processing of processing elements by adding 
hidden layers. In the learning process of this 
algorithm, the interconnection weights are 
adjusted using error convergence technique to 
obtain a desired output for a given input. In 
general, the error at the output layer in the back 
propagation algorithm model propagates 
backward to the input layer through the hidden 
layer in the network to obtain the final desired 
output. The gradient descent method is utilized to 
calculate the weight of the network and adjusts the 
weight of interconnections to minimize the output 
error. The error function at the output neuron is 
defined as: 
 

( )2
2
1∑ −=

k
kk ATE                                               (9) 

     In which Tk and Ak represent the actual and 
predicted values of output neuron, k. 
     The final weight vector of the successfully 
trained network, which represents its knowledge 
about the problem, is used to apply to a new set of 
data to evaluate the performance of the model. In 
this research, for all applied models 
backpropogation algorithm with momentum term 
has been used.  
 
2.4. Network design                         
 
     Prediction networks usually take the historical 
measured data, and after some processing stages 
future condition is simulated. In this research after 
evaluation and testing of different ANN 
structures, TLRN and RN networks were selected 
due to their higher performance, and then between 
these two, TLRN network showed slightly higher 
abilities. Therefore TLRN was the final selected 
ANN type for drought prediction in this study. 
These two networks are briefly introduced in the 
below. 
- Recurrent Networks (RN) 
     This type of network can be divided into fully 
and partially recurrent. Having a memory element 
distinguishes this network from MLP (Fig. 1).      
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Although recurrent networks are generally more 
powerful, they are more difficult to train and their 
properties are not as well understood. To construct 
the best architecture of the network for this study, 
many structures were tested and the results were 
considered. The number of hidden layers, number 
of processing elements in hidden layers, type of 
transfer and output functions and type of learning 
rule and its parameters have been considered and 

evaluated. After using different types of transfer 
and output functions for hidden and output layers, 
it was realized that a tangent hyperbolic function 
was the most suitable one for the hidden layer. 
However, for output layer the sigmoid function is 
a more compatible function. Between the dynamic 
processing elements of Gamma, Laguarre and 
Time delay, the Laguarre and Time delay gave 
better results.  

 

Z
 

Fig. 1. Typical Recurrent Network with unit memory in hidden layer 
 
-Time Lag Recurrent Networks (TLRN) 
This type of network contains locally recurrent 
layers with a single adaptable weight (figure 2). 
As opposed to the recurrent networks stability in 
Time Lag Recurrent networks is guaranteed. It 
usually suits temporal problems with short 
temporal dependency however it does not seem 
appropriate for more difficult temporal problems.    

For this type of neural network it was found that 
the tangent hyperbolic function was the best one 
for hidden layer. However, for output layer the 
sigmoid function suited better for all tests. 
Between the dynamic processing elements of 
Gamma, Laguarre and Time delay, the Gamma 
was found to be the most compatible.  

 
 

Z
 

 
 

Fig. 2.  Typical Time Lag Recurrent Network with unit memory in hidden layer 
   
     The most appropriate transfer function for both 
hidden and output layers was the hyperbolic 
tangent function, which was selected after a try 
and error process. Input data of the models are 
used in different formats as follows:  
1- Measured values without any normalization or 
scale change.  

2- Data used as standardized precipitation index 
(SPI) calculated by the following equation:  

σ
PPoSPI −

=                                                      (10) 

Where: Po is the measured data values. P is the 
mean of monthly measured data and δ is the 
standard deviation of monthly measured data. It 
needs to be mentioned that SPI is a common index 
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used to specify and evaluate meteorological 
drought. In addition to the specification of drought 
period, severity of the drought is also determined 
using this index.     
1- Normalized data using equation (11) 

MinMax

MinO
n PP

PPP
−
−

=                                                  (11) 

Where:  Pn is the normalized value. Po is the 
measured value. Pmin and Pmax are the minimum 
and maximum values of measured values 
respectively.  
2- Seasonal data (data separated seasonally and 
used for the model). 

3- year moving average for precipitation data.  
     It must be added that study area (Yazd) located 
in a hyper arid climate condition; therefore 
monthly as well as yearly precipitation data are 
very variable. This high variability of data 
decreases the accuracy of the predictions. To 
eliminate this problem, 3-year moving average of 
precipitation data was introduced to the model, 
and caused improvement of the result accuracy. In 
addition to different formats of data, different 
combinations of input variable were also used to 
take the most accurate results. Table 1 shows the 
type and code of variables used in this research.  

 
                          Table 1. Type and code of the variable used to predict drought.  

Variable No. Variable Code 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

- Measured monthly precipitation 
- Standardized pre index 
- Normalized precipitation 
- Normalized Seasonal precipitation 
- Normalized 3-year moving average of precipitation 
- Maximum temperature 
- Mean temperature 
- Mean wind speed 
- Direction of intensive wind 
- Pan evaporation 
- Relative humidity 

P 
SPI 
Pn 
Pns 

Pn3-yr-ma 
Tmax 
Tmean 

Ws 
Wd 
ER 
RH 

                
     The number of processing elements in input 
layer of the ANN was equal to the number of 
input variables. Only one hidden layer was the 
most appropriate number of hidden layer for all 
ANN structures. The number of processing 
elements in hidden layer is usually set by try and 
error (Cybenko, 1989). Different studies have 
proposed different rules to set the number of 
processing elements for this layer. For example, 
2n+1, 2n and n have been suggested as the 
number of processing elements in hidden layer 
where n is the number of input variables 
(Lippmann 1987, Wong 1991 and Tang and 
Fshwick 1993). In the present study, 2n was the 
most appropriate number of processing elements 
(neurons) for hidden layer. For example, for a test 
where 2 input patterns are used the suitable 
number of processing elements is 4. 
     To compare the outputs of the simulations to 
the measured values and evaluate the applicability 
of the ANN types and architectures as well as type 
of input variables and combinations, RMSE and 
R2 were calculated using following equations. 
 

( ) ( )[ ]
2

1

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=

p

i
sem PP

P
RMSE                       (12) 

( )

( )∑

∑

=

=

−

−
−= n

i
m

n

i
esm

PP

PP
R

1

11
                                    (13) 

 
     In which RMSE is the Root Mean Square Error 
and R2 is the Coefficient of efficiency, Pm is the 
measured value, Pes is the predicted (estimated) 
value and P¯ is the measured values mean. 
 
3. Results and discussion 
 
     As Table 2 shows although both RN and 
TLRN in some cases presented quite acceptable 
results but the accuracy of the prediction made by 
TLRN is higher. As table shows the most accurate 
predictions have been produced when 3-year 
moving average precipitation and temperature 
(max and mean) data have been used as inputs to 
TLRN artificial neural network architecture. Other 
forms of precipitation data including SPI 
normalized and seasonal did not make 
considerable improvement on results accuracy.  
     It must be mentioned that Table 2 shows only a 
part of simulations which their outputs have been 
relatively acceptable (as samples for different 
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input variables and ANN structures). As 
mentioned earlier, input data have been used in 
different forms including measured values 
(without scale change), SPI, seasonal and 
normalized values. Therefore, the values range of 
RMSE in Table 2 is various depending on the 
form of data used as inputs. Using 3-year moving 
average precipitation as well as maximum 
temperature as inputs of the models considerably 
improved the results. Apparently these variables 

have the most important role on prediction of the 
future precipitation. The combination of 3-year 
moving average precipitation and maximum 
temperature presented the best results with R of 
0.95 and RMSE of about 0.05. In this simulation 
TDNN was the most suitable dynamic element of 
the TLRN network. The most appropriate 
convergence was obtained after 22000 iteration, 
and the prediction was for the year ahead (12 
months lead time).  

     
          Table 2. Quality of the results produced by RN and TLRN networks using different input combinations  

No Input combination Model R RMSE Average value of prediction 
1 1-8-9-11 RN 0.44 8.77 4.22 
2 1-6 TLRN 0.64 5.4 4.6 
3 2 RN 0.55 0.67 0.143 
4 2 TLRN 0.60 0.60 0.371 
5 3-11 RN 0.67 0.07 0.055 
6 3-6-10 TLRN 0.67 0.08 0.070 
7 4-6-8-9-11 RN 0.78 0.01 0.069 
8 4-6-8-9-11 TLRN 0.56 0.08 0.059 
9 5-7-8-9-11 TLRN 0.84 0.07 0.122 
10 5-6-8-10 TLRN 0.85 0.08 0.118 
11 5-11 TLRN 0.86 0.08 0.13 
12 5-7-8-11 TLRN 0.88 0.08 0.124 
13 5-6-10-11 TLRN 0.88 0.07 0.127 
14 5-8-9-11 TLRN 0.88 0.07 0.096 
15 5-6-8-11 TLRN 0.88 0.08 0.123 
16 5-6-8-10-11 TLRN 0.89 0.07 0.121 
17 5-8-10-11 TLRN 0.89 0.07 0.118 
18 5-7-8-10-11 TLRN 0.89 0.07 0.123 
19 5-7-8-9 TLRN 0.90 0.07 0.125 
20 5-6-11 TLRN 0.90 0.07 0.106 
21 5-10 TLRN 0.90 0.06 0.118 
22 5-6-10 TLRN 0.92 0.06 0.119 
23 5-8 TLRN 0.92 0.06 0.122 
24 5-7-11 TLRN 0.93 0.06 0.111 
25 5-7 TLRN 0.95 0.07 0.125 
26 5-6 TLRN 0.95 0.05 0.135 

 
     Figures 3 to 8 show the outputs of a part of 
different simulations against the measured values. 

In these figures, “input combination no.” refers to 
the left column of Table 2. 
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Fig. 3. Input combination no. 1 and Recurrent Network 
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Fig. 5. Input combination no. 11 and Time Lag Recurrent Network 
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Fig. 6. Input combination no. 23 and Time Lag Recurrent Network 
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Fig. 7. Input combination no. 25 and Time Lag Recurrent Network 
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Fig. 8. Input combination no. 26 and Time Lag Recurrent Network 
 
     As figures show, the accuracy of predictions 
has been improved step by step by changing the 
type and number of input variables. The final 
obtained results of this study is encouraging, as 
precise prediction of a phenomenon like drought 
is quite a difficult task due to its complexity and 
variability. Comparing the results of this research 
to those carried out by Morid, et al (2007) and 
also Mishra and Desai (2006) indicates that 
although the study area of the present research has 
been located in a hyper arid climate condition 
where rainfall amount and distribution is 
extremely variable but the obtained predictions 
are quite acceptable. In Morid et, al. (2007) the 
best prediction had the R2 value of 0.79 (R= 0.89) 
for the lead time of 6 months, in an area where 
mean annual precipitation varies from 700 mm to 
120 mm (in different stations). About the results 
of Mishra and Desai (2006) the highest R for the 
predictions with 6 months lead time has been 
0.631 (for one month lead time it is 0.925). Study 
area of Mishra and Desai (2006) is Kansabati 
catchment in India with mean annual precipitation 
of about 1268 mm.  However, in the present study 
where mean annual precipitation is about 64 mm 
and for prediction lead time of 12 months the 
highest R for the predictions is about 0.95 which 
shows the higher quality of predictions in 
comparison to both mentioned studies.  It is quite 
clear that normally as lead time increases the 
accuracy of predictions decreases, and also in 
humid climate conditions the variability of 
precipitation decreases and therefore the accuracy 
of predictions increase.          
 
4. Conclusions 
 
     This paper presented the application of 
artificial neural network on drought prediction in 
the hyper arid climate of Yazd in central Iran. 
Study was completed in two phases: In first phase 

the most appropriate architecture of ANN was 
selected for drought modeling and prediction 12 
months before it occurs. In the second phase it 
was tried to choose the most important and 
affective input variables for this specific 
application. TLRN with only one hidden layer 
containing four processing element with 
hyperbolic tangent transfer function and TDNN 
dynamic element and momentum learning rule 
was the suitable ANN architecture for this 
purpose. Between the input variable combinations 
of 3-year month's precipitation moving average 
and monthly maximum temperature presented the 
most appropriate prediction results. It must be 
mentioned that drought is a highly variable, 
randomic and complicated phenomena, which is 
quite difficult to predict especially with enough 
lead time and acceptable accuracy. Comparing the 
finding of this research to Mishra (2006) and 
Morid et.al (2007) indicated that accuracy of 
predictions in this research is higher than those 
presented in both mentioned studies.         
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