References
Allison, S.D., Martiny, J.B. (2008). Colloquium paper: Resistance, resilience, and redundancy in microbial communities.
Proceedings of the National Academy of Sciences of the United States of America, 105(Suppl 1), 11512–11519.
https://doi.org/10.1073/pnas.0801925105.
Atashpaz, B., Khormali, F., Malekzadeh, E., Soleymanzadeh, M. (2023). Evaluating the Effect of Different Sequences of Biological Crusts on Loess Derived Soil Biophysiological Properties in the Semi‑arid Regions of Northern Iran
. Journal of Soil Science and Plant Nutrition, 23, 6777–6787.
https://doi.org/10.1007/s42729-023-01535-6.
Bian, D.D., Liao, C.Y., Sun, C.Z., et al. (2011). Effect of soil biological crust on the distribution of soil microorganisms in the loess hilly region. Agricultural Research in the Arid Areas, 229, 109−114.
Bowker, M.A., Anenberg, J., Kebede, H.Y., Antoninka, A., Bailey, L. (2023). Biocrusts, Encyclopedia of Soils in the Environment (Second Edition) 1, 127-138.
Brankatschk, R., Fischer, T., Veste, M., Zeyer, J. (2013). Succession of N cycling processes in biological soil crusts on a Central European inland dune.
FEMS Microbiology Ecology, 83, 149–160.
https://doi.org/10.1111/j.1574-6941.2012.01459.x.
Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K.I., Salisch, M., Reisser, W., Weber, B. (2009). Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency.
Microbial Ecology, 57, 229-247.
https://doi.org/10.1007/s00248-008-9449-9.
Cui, Y., Lü, Y.Z., Li, B.G. (2004). Physico-chemical properties of soil microbiotic crusts on Erdos Plateau. Soils 36, 197−202.
De Armas, I.S., Bergeron, A., Bhardwaj, A., Patarroyo, M., Akay, M.H., Al Rameni, D., Nascimbene, A., Patel, M.K., Patel, J., Marcano, J. and Kar, B. (2022). Surgically implanted Impella device for patients on Impella CP support experiencing refractory hemolysis. American Society for Artificial
Internal Organs Journal, 68(12), 251-e255.
https://doi.org/10.1097/mat.0000000000001712.
Deng, S., Zhang, D., Wang, G., Zhou, X., Ye, C.H., Fu, T., Ke, T., Zhang, Y., Liu, Y., Chen, L. (2020). Biological soil crust succession in deserts through a 59-year-long case study in China: How induced biological soil crust strategy accelerates desertification reversal from decades to years, Soil Biology and Biochemistry, 141, 107665.
http://dx.doi.org/10.1016/j.soilbio.2019.107665.
Drahorad, S., Felix-Henningsen, P., Siemens, J., Marschner, B., Heinze, S. (2021). Patterns of enzyme activities and nutrient availability within biocrusts under increasing aridity in Negev desert.
Ecosphere, 13: e4051.
http://dx.doi.org/10.1002/ecs2.4051.
Feng, Z., Wang, G., Jiang, Y., Chen, C., Chen, D., Li, M., Morel, J.L., Yu, H., Chao, Y., Tang, Y., Qiu, R., Wang, S.H. (2024). Microbial survival strategies in biological soil crusts of polymetallic tailing wetlands.
Geoderma, 443, 116852.
https://doi.org/10.1016/j.geoderma.2024.116852.
Frechen, M., Kehl, M., Rolf, C., Sarvati, R., Skowronek, A. (2009). Loess chronology of the Caspian Lowland in Northern Iran.
Quaternary International, 128, 220-233.
https://doi.org/10.1016/j.quaint.2008.12.012.
García-Velázquez L, Gallardo A, Ochoa V, Gozalo B, Lázaro R, Maestre FT. (2022). Biocrusts increase the resistance to warming-induced increases in topsoil P pools.
Journal of ecology, 110(9):2074-2087.
https://doi.org/10.1111/1365-2745.13930.
Ghiloufi, W., J. Seo, J. Kim, M. Chaieb, and H. Kang. (2019). “Effects of Biological Soil Crusts on Enzyme Activities and Microbial Community in Soils of an Arid Ecosystem.
Microbial Ecology, 77: 201–16.
https://doi.org/10.1007/s00248-018-1219-8.
Grzyb, A., Agnieszka, W.M., Remigiusz, Ł., Jakub, C. (2022). Spatial and Temporal Variability of the Microbiological and Chemical Properties of Soils under Wheat and Oilseed Rape Cultivation.
Agronomy, 10, 2259.
https://doi.org/10.3390/agronomy12102259.
Jat, H.S., Datta, A., Choudhary, M., Sharma, P.C., Dixit, B., Jat, M.L. (2021). Soil enzymes activity: Effect of climate smart agriculture on rhizosphere and bulk soil under cereal based systems of north-west India,
European Journal of Soil Biology, 103: 103292.
https://doi.org/10.1016/j.ejsobi.2021.103292.
Lu, M., Zhou, X., Luo, Y., Yang, Y., Fang, C., Chen, J., Li, B. (2011). Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agriculture.
Ecosystems and Environment, 140, 234-244.
http://dx.doi.org/10.1016/j.agee.2010.12.010.
Mangalassery, S., Mooney, S.J., Sparkes, D.L., Fraser, W.T., Sjögersten, S. (2015). Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils.
European Journal of Soil Biology, 68:9–17.
https://doi.org/10.1016/j.ejsobi.2015.03.001.
Marinari, S., Moscatelli, M.C., Marabottinia, R., Moretti, P., Vingianib, S. (2020). Enzyme activities as affected by mineral properties in buried volcanic soils of southern Italy. Geoderma 362, 114123.
http://dx.doi.org/10.1016/j.geoderma.2019.114123.
Meng, J., Bu, C.F., Zhao, Y.J. (2010). Effects of BSC on soil enzymeactivities and nutrients content in wind-water erosion crisscross region, Northern Shaanxi Province, China. Journal of Natural Resources, 25, 1864–1874.
Moscatelli, M.C., Secondi, L., Marabottini, R., Papp, R., Stazi, S.R., Mania, E., Marinari, S. (2018). Assessment of soil microbial functional diversity: land use and soil properties affect CLPP-MicroResp and enzymes responses.
Pedobiologia, 66, 36-42.
https://doi.org/10.1016/j.pedobi.2018.01.001.
Rahimzadeh, N., Gribenski, N., Tsukamoto, S., Kehl, M., Pint, A., Kiani, F., Frechen, M. (2019). Timing and development of sand dunes in the Golestan Province, Northern Iran—implications for the Late-Pleistocene history of the Caspian Sea.
Aeolian Research, 41, 100538.
http://dx.doi.org/10.1016/j.aeolia.2019.07.004.
Reeve, S., Palmer, B., Cobb, P., Pietrasiak, N., Lipson, D.A. (2023). Facilitating restoration of degraded biological soil crusts using mixed culture inoculation,
Journal of Arid Environments, 208, 104876.
https://doi.org/10.1016/j.jaridenv.2022.104876.
Rohman, A., Dijkstra, B.W., Puspaningsih, N.N.T. (2019). β-Xylosidases: Structural diversity, catalytic mechanism, and inhibition by monosaccharides.
International Journal of Molecular Sciences, 20, 5524.
https://doi.org/10.3390/ijms20225524.
Sarapatka, B. (2003). Phosphatase activities (ACP, ALP) in agroecosystem soils. Doctoral thesis Swedish University of Agricultural Sciences, Uppsala, 1-113.
Sethi, S.K.; Samad, L.K.; Adhikary, S.P. (2012). Cyanobacteria and micro-algae in biological crusts on soil and sub-aerial habitats of eastern and northeastern region of India. Phycos, 42: 1–9.
Soil Survey Staff. (2010). Keys to Soil Taxonomy. 11th Edition, USDA-Natural Resources Conservation Service, Washington DC.
Soleimanzadeh, M., Khormali, F., Sohrabi, M., Ghorbani Nasrabadi, N., Kehl, M. (2019). Evaluating biological attributes of soil quality in loessial soils under lichen biological soil crusts in northern Golestan province.
Agricultural Engineering Journal, 42(3) 1-17.
https://doi.org/10.22055/agen.2019.26696.1445.
van Dyk, J.S., Pletschke, B.I. (2011). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy.
Biotechnology Advances, 30, 1458–80.
https://doi.org/10.1016/j.biotechadv.2012.03.002.
Wang, R., Zhu, Q.K., Bu, N., et al. (2010). Study on physicochemical properties of BSCs in the hilly-gully regions of the Loess Plateau. Arid Zone Research, 27, 401−408.
Wang, D., Fonte, S.J., Parikh, S.J., Six, J., Scow, K.M. (2017). Biochar additions can enhance soil structure and the physical stabilization of C in aggregates.
Geoderma, 303, 110-117.
http://dx.doi.org/10.1016/j.geoderma.2017.05.027.
Weber, B., Budel, B., Benlap, J. (2016). Biological soil crust: An organizing principal in dry lands. Ecological studies, 226, 2196 – 971x.
Yang Y, Chen Y, Li Z, Zhang Y, Lu L. (2023). Microbial community and soil enzyme activities driving microbial metabolic efficiency patterns in riparian soils of the Three Gorges Reservoir.
Frontiers in Microbiology, 21; 14:1108025.
https://doi.org/10.3389/fmicb.2023.1108025.
Zelikova, T.J., Housman, D.C., Grote, E.E., Neher, D.A., Belnap, J. (2012). Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes.
Plant and Soil, 355, 265–282.
https://doi.10.1007/s11104-011-1097-z.
Zhang, Y., Yang, W.K., Wang, X.Q., Zhang, D.Y. (2005). Influence of cryptogamic soil crusts on accumulation of soil organic matter in Gurbantunggut Desert, northern Xinjiang China.
Acta Ecologica Sinica, 25, 3420-3425.
Zhang, W., Zhang, G.S., Liu, G.X., Dong, Z.B., Chen, T., Zhang, M.X., Dyson, P.J., An, L.Z. (2012). Bacterial diversity and distribution in the southeast edge of the Tengger Desert and their correlation with soil enzyme activities.
Journal of Environmental Sciences, 24, 2004–2011.
https://doi.org/10.1016/s1001-0742(11)61037-1.
Zhao, H.L., Guo, Y.R., Zhou, R.L., Drake, S. (2010). Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land, China.
Catena, 82, 70-76.
http://dx.doi.org/10.1016/j.catena.2010.05.002.
Zhao, H.L., Guo, Y.R., Zhou, R.L., Drake, S. (2011). The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China.
Geoderma, 160, 367–372.
http://dx.doi.org/10.1016/j.geoderma.2010.10.005.