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Abstract 
 
     This paper presents a robust approach using artificial neural networks in the form of a Self Organizing Map (SOM) as 
a semi-automatic method for analysis and identification of morphometric features in two completely different 
environments, the Man and Biosphere Reserve “Eastern Carpathians” (Central Europe) in a complex mountainous humid 
area and Yardangs in Lut Desert, Iran, a hyper arid region characterized by homogeneous repetition of wind-eroded 
landforms. The NASA Shuttle Radar Topography Mission (SRTM) has provided Digital Elevation Models (DEM) for 
over 80% of the land surface. Version 3.0 SRTM data provided by the CGIAR-CSI GeoPortal are the result of substantial 
editing effort on the SRTM DEM produced by NASA. Easy availability of SRTM 3 arc second data promoted great 
advances in morphometric studies and numerical description of terrain surface features as shown by many literature 
references. The goal of this study was to develop a new semi-automatic DEM-based method for geo-morphometric feature 
recognition and to explore the potential and limitation of SRTM 90 meter data in such studies. The 3 arc seconds data 
were re-projected to a 90 m UTM grid.  Bivariate quadratic surfaces with moving window size of 5×5 were fitted to this 
DEM. The first derivative, slope steepness and the second derivatives minimum curvature, maximum curvature and cross-
sectional curvature were calculated as geo-morphometric parameters and were used as input to the SOMs. Different 
learning parameter setting, e.g. initial radius, final radius, number of iterations, and the effect of the random initial weights 
on average quantization error were investigated. A SOM with a low average quantization error was used for further 
analysis. Feature space analysis, morphometric signatures, three-dimensional inspection and auxiliary data facilitated the 
assignment of semantic meaning to the output classes in terms of geo-morphometric features. Results are provided in a 
geographic information system as thematic maps of landform entities based on form and slope. Geo-morphometric 
features are scale-dependent and the resolution of the DEM limits the information, which can be derived. The results 
demonstrate that a SOM is an efficient scalable tool for analyzing geo-morphometric features as meaningful landforms 
under diverse environmental conditions. This method provides additional information for geomorphologic and landscape 
analysis even in inaccessible regions and uses the full potential of morphometric characteristics.  
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1. Introduction 
 
     The Shuttle Radar Topography Mission  
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(SRTM) was launched on 11 February 2000 and 3 
arc second data (approx. 90 m resolution) were 
publicly released in July 2004. In many 
application areas these data enable a more reliable 
analysis than before, especially across borders of 
countries or in inaccessible areas like Lut desert in 
Iran. 
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     A quantitative technique to analyze land 
surface features is known as (geo-) morphometry. 
In simple terms, geo-morphometry aims at 
extracting (land) surface parameters 
(morphometric, hydrological etc.) and objects 
(watersheds, stream networks, landforms etc.) 
using a set of numerical measures derived from 
DEMs such as slope steepness, profile curvature, 
plan convexity, cross-sectional curvature, 
minimum and maximum curvature (Fisher et al., 
2004; Pike, 2000; Wood, 1996a). In the past, 
manual methods have been widely used to classify 
landforms from DEM (Hammond, 1964). 
Geomorphic phenomena are scale-dependent 
(Evans, 2003). This scale-specific and scale-
dependent behavior of the landscape morphology 
can not be denied. Scale dependency in this 
context means that the characteristics of a point or 
an area on a surface vary when measured over 
different spatial extents or different spatial 
resolution (Tate and Wood, 2001; Walsh et al., 
1998; Wood, 1996b; Wood, 2002). 
     Yardangs a Turkman word used by the 
Swedish explorer Sven Hedin (1903) meaning 
‘steep bank’ occur also on Mars and possibly on 
Venus (Goudie, 2007). They are streamlined 
forms up to 150 km long and 75 m in height 
resulting from a number of formative processes, 
including wind abrasion, deflation, fluvial 
incision, desiccation cracking, slumping, 
weathering and mass movement (Goudie, 2007; 
McCauley et al., 1977; Ward and Greeley, 1984). 
A limited number of morphometric investigations 
have been done on yardangs. Goudie (2007) 
identified mega-yardangs in hyper-arid 
environments with rainfall total less than 50 mm 
including central Asia, the Lut desert in Iran, 
northern Saudi Arabia, Bahrain, the Libyan desert 
in Egypt, central Sahara, the Namib Desert, the 
high Andes and the Peruvian desert. Yardangs 
tend to occur in areas of sand transport rather than 
sand accumulation (e.g. Lut, Saudi Arabia, 
northern Namibia) and may have been shaped 
over millions of years (Goudie, 2007). Gutierrez-
Elorza et al (2002) studied the existence and 
generation of yardangs in the semiarid central 
sector of the Ebro Depression in Spain. They 
concluded that generation of yardangs in that area 
is related to the presence of playas, which 
constitute the source of abrading particles during 
dry periods. In another study Alavi Panah et al 
(2007) used Landsat Thematic Mapper (TM) data 
to characterize land cover and surface conditions 
of yardangs in Lut desert. They showed that the 

main land cover types of Lut desert could be 
differentiated by supervised maximum likelihood 
classification. However, their study was based on 
extensive time-consuming field work and Landsat 
data. Inbar and Risso (2001) studied different size 
yardangs of volcano terrains in the southern 
Andes, Argentina. They showed that micro and 
meso-yardangs are formed on ignimbrite flows 
but mega-yardangs are developed in basaltic lava 
flows as long parallel corridors. 
     Self Organizing Map (SOM) is an 
unsupervised and nonparametric artificial neural 
network algorithm that clusters high dimensional 
input vectors into a low dimensional (usually two 
dimensional) output map in such a way, that 
topology of the data is preserved. Preserving 
topology means that the SOM preserves the 
spatial relations between input neighboring points. 
This important property among others such as 
versatile, spatially organized internal 
representations, potential as a robust substitute for 
clustering and visualization analysis (Suganthan, 
2001), learning ability from complex, multi-
dimensional data and transformation to visual 
clusters (Kiang, 2001) make a SOM to a very 
efficient tool for many applications. Some 
examples are: speech recognition (Leinonen et al., 
1993), image data compression (Manikopoulos, 
1993), image or character recognition (Bimbo et 
al., 1993; Sabourin and Mitiche, 1993), robot 
control (Ritter et al., 1989; Takahashi et al., 2001; 
Walter and Schulten, 1993), medical diagnosis 
(Vercauteren et al., 1990), lithological 
discrimination using Landsat TM data (Mather et 
al., 1998), urban land use classification (Özkan 
and Sunar Erbek, 2005), ecological modeling (Lek 
and Guegan, 1999), Morphometric features 
analysis (Ehsani and Quiel, 2008), landscape 
elements analysis (Ehsani and Quiel, 2007; Ehsani 
and Quiel, 2009), hyperspectral image 
classification and anomaly detection (Penn, 
2002a; Penn, 2002b; Penn and Wolboldt, 2003) 
and classification of remote sensing data (Duda 
and Canty, 2002 ; Jianwen and Bagan, 2005).  
     The major aims of this study are to: 
● Provide a semi automatic method based on 
morphometric parameters derived from 90 m 
DEM to identify dominant morphometric features 
in humid and hyper-arid regions using SOM as an 
unsupervised neural network algorithm. 
● Evaluate the effect of SOM training parameters 
on the quantization error and the selection of 
optimal SOM for identification of morphometric 
features. 
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● Examine the effect of random weight 
initialization on the quantization error of optimal 
SOM. 
 
2. Materials and methods 
 
 2.1. Study area  
 
     The study areas are:  
1) An area centered at the common border of 
Poland, Slovakia and Ukraine and located 

between 48° 52' N and 49° 25' N latitude, 21° 59' 
E and 23° 1’ E longitude with a total area about 
4500 Km2. It covers the biosphere reserve 
“Eastern Carpathians” with the Bieszczady 
national park in Poland, Uzanski national park in 
Ukraine and Poloniny national park in Slovakia 
and exhibits large morphological variations (Fig 
1). The climate is moderately cool and humid with 
an annual mean temperature of 5.9° C and average 
annual precipitation between 1100-1200mm 
(Augustyn, 2004; Tobias Kuemmerle et al., 2006). 

 
 

 
Fig. 1. a) location of the study area and b) Relief shaded topography from SRTM data of the study area at the border of 

Poland, Slovakia and Ukraine in “Eastern Carpathians” 

 
2) Lut Desert (Dasht-e Lut, or Dasht-i Lut) is a 
low area of about 400 × 800 km2 consisting of 
several large basins separated by low ridges 
(Krinsley, 1970; Walker, 1986). These basins 
stretch southward from the Khorasan province 
into the Kerman province between 29° 30' N and 
30° 49' N, 57° 47' E and 59° 53' E. The study area 
is located on the western side of Lut desert with 
strong diagonal lines result from wind erosion and 
episodic floods actions on the Neogene silts 
known as yardang (Fig. 2). The Lut desert 
according to meteorological data is characterized 
by a hyper-arid climate with an annual rainfall of 
less than 10 mm. The average mean daily 
temperature ranges from 11° in January to 40° in 
July. The eastern part of Lut desert is 
characterized by a great massif of dunes while the 
western part contains Mega-Yardangs, some of 
the world’s largest desert forms separated by large 
wind-swept corridors (Krinsley, 1970; Walker, 
1986). This paper concentrates on the 
Mega_Yardangs. Altitude according to the radar 

data ranges 100 to 404 meter above sea level (Fig. 
3). 
 
2.2.  Data 
 
     The data sets in this study consist of: 
● The version 3.0 SRTM data are distributed in a 
geographic (Lat/Long) projection, with the 
WGS84 horizontal datum and the EGM96 vertical 
datum. In this study, SRTM, C band,  data were 
re-projected to UTM grid, Datum WGS84.  
● Landsat ETM+ data, path 186, row 26 dated 
2000-09-30 (Central Europe) and path 159 row 39 
dated 2001-08-03 (Lut desert, Iran). 
● 60 cm resolution QuickBird satellite image 
(panchromatic band) collected on Oct 15, 2005. 
● Climate data, such as monthly and yearly 
average temperature, degree days and annual 
rainfall. The climate data are obtained via models 
based on analysis of long weather station time 
series and DEM. 
● Auxiliary data such as topographic maps (scale 
1:100 000) and field observation data.  
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Fig. 2. (a) Location of study area in the south east of Iran, (b) Geological map of the study area and (c) Red-Green-blue 

(RGB) color composite of bands 7, 5 and 2 of Landsat 7 data 

 

 
 
Fig. 3. Elevation ranges for Lut Desert, Iran  produced from SRTM DEM with 90 m resolution, UTM projection and WGS84 datum 



 A.H. Ehsani et al. / DESERT 14 (2009) 71-82  

 
75

2.3.   Methods 
 

     For a semi-automated method, it is necessary 
to implement algorithms, which identify 
landforms from quantitative, numerical attributes 
of topography. In geomorphic studies of 
landscapes, the first and second order derivatives 
of DEM are the basic components for 
morphometric analysis (Evans, 1972). The second 
order derivatives of DEM are affected by 
geomorphological processes (Evans, 1972; Wood, 
1996b).  
     To calculate the morphometric features, a local 
window is passed over the DEM and the change in 
gradient of a central point in relation to its 
neighbors is derived using a bivariate quadratic 
function: 

Z = ax2 
+ by2 

+ cxy + dx + ey + f 
Where: x, y, Z are local coordinates and a to f are 
quadratic coefficients (Evans, 1972). 
Then, 
● Slope = arctan ( sqrt (d 2+ e 2))      
● Cross-section curvature = n × g × (b × d 2

+ a × e
2- 

c × d × e)/(d 2+ e2)    
● Maximum curvature = n × g × (-a-b + sqrt ((a-b) 
2 + c2))   
● Minimum curvature = n × g × (-a-b- sqrt ((a-b) 2

+ 

c2))      
Where: g is the grid resolution of the DEM, and n 
is the size of the moving window. 

 

     Wood (1996a) considered slope steepness, 
cross-sectional curvature, maximum and 
minimum curvature as a unique set to identify 
morphometric features. Morphometric features are 
identified using rules and definitions. Wood 
(1996a) defined a set of criteria to classify digital 
elevations models into morphometric classes. In 
regions with zero slopes (flat), the aspect is 
undefined and maximum and minimum curvatures 
are used as alternative parameters. At locations 
with positive values for slope, channels have 
negative cross-sectional curvature, ridges have 
positive cross-sectional curvature and sloping 
planes have zero cross-sectional curvature. These 
morphometric data sets were used as input for 
SOM algorithm.   
     Self Organizing Map (SOM) is an 
unsupervised artificial neural network for 
clustering and visualization of information, 
preserving the topological relationship in the input 
(Kohonen, 2001). It converts the nonlinear 
statistical relationships of high dimensional input 
data to low dimensional (usually two dimensional) 
output grid (Kohonen, 2001). The SOM 
characteristics like learning ability, abstraction 
with topology preservation and visualization can 
be utilized in complex tasks such as morphometric 
analysis and landform classification (Ehsani and 
Quiel, 2007). An example of a Self-Organizing 
map network is shown in figure 4.  

 
Fig. 4. Kohonen’s Self Organizing Map structure 

 
     The input layer consists of xk units, is fully 
connected to all output map units. The output map 
known as mapping cortex (MC) or Kohonen layer 
is made up from n×m output units (Schaale and 

Furrer, 1995). Each output map unit is assigned 
randomly a model weight vector in the high-
dimensional data space. The primary aim of the 
model is to let the weight vectors learn what is 
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presented by the input vectors. The learning 
procedures move the randomly initialized weight 
vectors into positions, which describe best what is 
presented to them. For each object in the training 
data set, the distance between the model weight 
vectors and the input vector is computed. Then the 
competition starts and the winner neuron with 
smallest distance is selected. The weights of the 
winner neuron and its neighborhood are updated 
using learning rules. This procedure is cycled up 
to a predefined number of iterations for learning. 
     The derived morphometric parameters were 
used as input to SOM. Before learning, weights of 
the map units were initialized randomly. The 
learning was performed in two phases, rough 
learning and fine tuning. During rough learning, 
initial neighborhood radius and learning rate are 
large. During fine tuning, the learning rate and 
neighborhood distance decrease very slowly, 
while maintaining the topological order learned in 
the previous phase. After learning, the map units 
are evenly distributed across the input space so 
that neighboring neurons can recognize the best 
matching vectors for each trained map unit 
(Richardson and Risien, 2003; Sueli and Lima, 
2006). 

     The quality of the results is measured with an 
average quantization error. Quantization error is 
the Euclidian distance between an input data 
vector and the best matching unit (Kohonen, 
2001). These measures are useful in choosing 
suitable learning parameters such as initial radius, 
final radius of neighborhood and number of 
learning iterations. The optimal map is expected 
to yield the lowest average quantization error, 
because it is fitted best to the input data 
(Kohonen, 2001). 42 SOM each with different 
settings of learning parameters but the same 
randomly initialized weights were tested and the 
optimal map with the lowest average quantization 
error was selected for morphometric feature 
identification (Fig. 5). One important 
methodological question is how the random 
weights selection influences the average 
quantization error, and to what degree the result is 
dependant on these weights. The answer to this 
question is crucial for the consistency of the 
method to produce the same results. Thirty SOMs 
were tested with the same learning configuration 
of optimal SOM but different random weight 
initializations. 

 
Fig. 5. Changes of the average quantization error versus number of iterations for optimal self organizing map 

 
     Using feature space analysis, spectral signature 
analysis, three-dimensional inspection, auxiliary 
data, Landsat ETM+ data and 60 cm panchromatic 
band of high resolution satellite imagery from 
QuickBird, dependency of optimal map units to 
morphometric features i.e. yardangs were defined. 
The changes of yardangs and morphometric 
features in elevation, slope, cross sectional 
curvature, maximum and minimum curvatures 
were studied along a 13230 m transect sample. 
Mean and standard deviation of morphometric 

features for each input parameters were 
calculated. Morphometric signatures of features 
were plotted using mean values of input 
parameters.  

 
3. Results 
 
3.1. Optimal self organizing map 
 
     To investigate the effect of learning parameter 
settings, the initial radius for learning was set to 3, 
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2 and 1 pixel respectively with eight different 
final radius starting from 3, decreasing to 0.01. 
The map with an initial radius of three and the 
same value for final radius produced the highest 
average quantization error. The map with initial 
radius of 3, final neighborhood radius of 0.01 and 
1000 iterations shows the best performance with 
lowest average quantization error of 0.1780 and 
0.1040 for Eastern Carpathians and Lut desert 
respectively.  
     To investigate the effect of random starting 
weights on the average quantization error, initial 
weight vectors were selected randomly ten times, 
run with 10, 50 and 1000 iterations and the 
average quantization error was calculated for each 
map. The results indicate that, at least in this 
study, if many iterations (at least 1000) are used, 
the output classes and the global minimum error 
of the network are not sensitive to random 
initialization of the input weight vectors. This 

implies that the output of the network is consistent 
and independent of the starting weights.  
 
3.2. Identification of morphometric features 
 
     The output map units from SOM are just 
clusters. Studying the spatial relationship between 
different map units along with morphometric 
parameters using feature space analysis allowed 
us to interpret and label them as morphometric 
features. By analyzing the topographic 
information for each class, we can interpret the 
results in terms of landform elements. In two-
dimensional feature space plots of mean values of 
maximum curvature (x-axis) and minimum 
curvature (y-axis) for map units, the major 
morphometric features  (channel, planar, ridge, 
corridor, yardangs) of both regions are identified 
(Fig. 6). 

 

Fig. 6. Distribution of morphometric features in two dimensional feature spaces a) Eastern Carpathians and b) Lut desert

 
     In both areas, channels (or corridors) showed 
negative minimum curvature and zero or near zero 
maximum curvature. Conversely, ridges (or 
yardangs) revealed positive maximum curvature 
and zero or near zero minimum curvature. Values 
of both maximum and minimum curvature were 
positive for crest line class. Classes with plane 
features were located between ridge (Yardang) 
and channels (corridors) and had small values for 
minimum and maximum curvature. Typically in 
the Eastern Carpathians the values for curvatures 
and slope are much higher than in the Lut desert. 
E.g. curvatures reach mean class values of 18 in 
the Carpathians, but only 7 in Lut desert.  
     The signature graph in the figure 7 reveals that 
classes 3, 8 and 9 are identified as planar 

belonging to different slope classes on the ground. 
Nearly straight contour lines and long distances 
between contours confirm this fact for class 3 and 
decreasing distance between contour lines for 
classes 8 and 9. Figures 8 and 9 show the resultant 
classification maps. The overall pattern of 
landforms in different slope positions is easily 
identified by this method. In Eastern Carpathians 
for example, channels are divided into two classes 
according to slope condition (class 10 with very 
steep slope and class 5 with moderate slope). 
Furthermore, the SOM capability of identifying 
crest lines on mountain ranges is another merit 
(Fig. 8). However, pattern of the morphometric 
features varies considerably with scales. Thus, a 
specific feature can be identified as one single 
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morphometric object at a small scale but as series 
of forming elements at another, larger scale. 
Classes 5 and 10 have the lowest values for 
maximum, minimum and cross sectional 

curvatures and represent channels. Class 1 with 
the highest mean value of minimum and 
maximum curvatures is labeled as crest line.   

 
Fig. 7. Morphometric signatures of the SOM output classes. Ellipses show the examples of morphometric feature’s 

characteristics. Class's legend refers to Fig. 8 
 
 
 

 
 

Fig. 8. Morphometric features map using SOM with DEM-90 in Eastern Carpathians with dropped drainage network over zoom 
sample 

     The analysis of the results and satellite images 
also showed the effectiveness of the method to 

identify the overall pattern of landforms in the 
hyper-arid regions (Fig. 9). In the Lut desert, it is 
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clear that the pattern of mega_yardangs and their 
corridors running from NNW-SSE is parallel to 
the prevailing wind known as “wind of 120 days”. 
Five classes (1, 2, 3, 4 and 6) of planar features 
with low elevation and slope are found 
extensively in the north and east of the study area. 
The wide sloping planar features (class 10) are 
detected mainly in the transition zone between 
yardangs and corridors where the edge of feature 
may are abraded and flattened by wind or other 

processes. Class 5 or yardangs were very well 
identified in parallel ranks running northwest to 
southeast with average slope between 3 to 4 
degrees. This base of the convex ridge slope forms 
a steep angle with the floor riddled with rills and 
ravines from periodic floodwaters. Three classes 
were identified for corridors (valleys) between 
yardangs with mean slopes between 0 to 4 
degrees. In some places, crescent dunes wander 
along these corridors.  

 

 
 
Fig. 9. Morphometric features map using SOM with DEM-90 in Lut desert with 3D zoom sample and field image. Mega yardangs 

and corridors between them are represented by red and cyan color 

 
     Morphometric signatures for slope, cross- 
sectional curvature, maximum and minimum 
curvatures of SOM resultant classes, remarkably 
yardangs and corridors are illustrated in figure 10. 
This representation not only highlights that slopes 
vary for different classes but also reveals that 
yardangs and corridors could be easily detected 
from different morphometric signatures. The 
yardangs are associated with high values for 
maximum curvature and corridors show high 
negative values for minimum curvature. The 

steepest slopes are observed in class 10 with a 
mean of 5 degrees corresponding to sloping planar 
features. 
     Result of this method revealed that from the 
total 6481 km2 coverage of the study area, about 
2035 km2 (31%) are classified as yardang while 
corridors, described by 3 classes (7, 8 and 9), in 
total cover 2732 km2 (42%). Class 6 characterizes 
planar area with slope 0-1°, which is smallest 
detected area with only 18 km2. 
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Fig. 10. a) Morphometric signatures of yardangs and corridors. (b) The 60-centimeter QuickBirde image showing the 

mega yardangs and corridors.. Yardangs oriented to the prevailing wind direction, 330° and corridors in some places are 
covered by sand sheets. Class's legend refers to Fig.9 

 
4. Conclusions 
 
     The SRTM mission provided the most 
complete high-resolution digital topographic 
database of the Earth. Unfortunately, only 3 arc 
seconds data are available for most scientific 
research. The morphometric analysis and feature 
space analysis of first and second order 
derivatives of DEM such as slope, cross-sectional 
curvature, maximum curvature and minimum 
curvature led to the interpretation of SOM outputs 
as appropriate landform classes. 
     Eastern Carpathians are characterized by 
elongated ridges and valleys. These ridges are 
dissected resulting in small patches of landform 
elements like ridge with very steep slope, 
channels with moderate slopes and plains with 

gentle slope. These local landform elements are 
large enough to be recognized in morphometric 
parameters calculated with a 5×5 window, 
corresponding to 450 m on the ground. With much 
larger window sizes, these local features disappear 
and are replaced by feature which describing 
regional patterns. Therefore, size, shape and 
pattern of identified geo-morphometric objects 
depend on the underlying DEM resolution and the 
selected window size. 
     Mega-Yardangs, an aeolian landform due to 
intensive formative processes cover a large area in 
the hyper-arid Lut desert. They form elongated 
basins and ridges with a width ranging from a few 
meters to hundreds of meters. These features can 
clearly be recognized and classified when their 
width is significantly larger than the DEM 
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resolution but become unrecognizable if their 
width is less than the grid resolution. 
Morphometric signatures, three-dimensional 
inspection, auxiliary data such as 30 m resolution 
Landsat ETM+ and 60 cm resolution QuickBird 
data facilitated the evaluation of the output SOM 
in terms of geomorphometric features. The 
optimal self organizing map with suitable learning 
parameters should be selected for feature 
identification. Examination of the effect of 
random weight initialization on optimal SOM 
revealed that with a high number of iterations (in 
this study 1000 steps) the network becomes stable 
and the weight vectors move to the same global 
minimum error. This is an important finding, 
confirming that this procedure is repeatable and 
produces consistent results. 
     Overall, this study demonstrated that SOM 
provide a valuable method to extract information 
on morphological features in a wide range of 
landscapes that can be used in geosciences, 
environmental and geo-ecosystem modeling. This 
procedure is promising and offers new 
possibilities to study both types of terrain features, 
general landforms and landform elements. 
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