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Afforestation of wind erosion hotspots using drought-tolerant species such as
Haloxylon spp. remains a central strategy in mitigating desertification and
stabilizing mobile dunes in Iran's arid regions. Despite these efforts, the long-
term sustainability of such ecosystems is becoming increasingly uncertain due
to the combined pressures of climate variability and anthropogenic disturbances.
This study evaluated the ecological resilience of planted desertland forests in
Semnan Province by quantifying the relative contributions of climatic and
human influences. A time series of Landsat 8 imagery from 2013 to 2022 was
used to derive the Forest Canopy Density (FCD) model. Vegetation dynamics
were statistically correlated with drought patterns, as measured by the
Standardized Precipitation—Evapotranspiration Index (SPEI), using Pearson
correlation analysis. The findings revealed that the FCD maintained a consistent
range between 44.9% and 55.8%, indicating a moderate and stable vegetation
cover characteristic of established Haloxylon stands in arid environments. The
correlation analysis revealed a weak and statistically non-significant association
(R=0.21, p > 0.05, n = 10) between FCD and SPEI at a 9-month lag. This lack
of significant climatic coupling highlights that precipitation variability alone
explains a negligible portion of vegetation dynamics, strongly pointing to the
dominance of non-climatic drivers such as anthropogenic disturbances and
groundwater dependency. Furthermore, based on the Residual Trend Analysis
(RESTREND), the Mann-Kendall trend test on residuals revealed no statistically
significant anthropogenic degradation or restoration trends across the study area
(Z-values ranging from -1.40 to +1.40). This indicates that human pressures
likely remained constant rather than intensified during the 2013-2022 period,
resulting in a fragile status quo. The compounded effects of prolonged droughts
and unsustainable water resources management thus shape the sustainability of
these afforested systems. The adoption of integrated, climate-informed, and
human-responsive land management approaches is strongly recommended to
safeguard these critical desert ecosystems.
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1. Introduction

Historical and cultural records indicate that communities across the Iranian Plateau have long
adapted to arid environments through locally developed, sustainable practices, maintaining a
delicate balance between limited resource use and environmental preservation (Jiang & Arnold,
2023). However, over the past century, this balance has been profoundly disrupted by
population growth, socio-economic transformation, and the intensification of climate change
(Barati et al., 2023; Rosinska et al., 2024; Kompas et al., 2024), accelerating the process of
desertification—one of the most visible manifestations of global environmental degradation
(Ziadat et al., 2025). Desertification, a multifaceted phenomenon affecting arid, semi-arid, and
dry sub-humid regions, leads to declining soil fertility, biodiversity loss, and far-reaching socio-
economic consequences (Jain et al., 2024). In response to this challenge, afforestation has been
widely promoted as a key intervention to restore degraded landscapes and control
desertification processes (Chen et al., 2023).

Positioned within the global dry belt, Iran is particularly vulnerable to land degradation.
Wind erosion, one of the most damaging forms of land degradation, impacts over 29.5 million
hectares nationwide, with approximately 13.9 million hectares designated as wind erosion
hotspots (WEHS), where farmlands, infrastructure, and settlements are at risk (Yin et al., 2024).
To mitigate land degradation, Iran has implemented various desert afforestation programs,
particularly focusing on native species such as Haloxylon spp. in critical wind-erosion
hotspots.. Over the past five decades, this effort has resulted in more than 1.3 million hectares
of shelterbelts, primarily established using Haloxylon spp. a native, drought-tolerant genus
well-suited to harsh environmental conditions, including high salinity, water scarcity, and
elevated temperatures (Guo et al., 2014). Today, artificially planted Haloxylon forests cover
over one million hectares and represent a core component of the nation’s desert ecosystem
management strategy (Stavi et al., 2022).

Despite their initial effectiveness, the long-term ecological health of these planted lands is
increasingly under pressure. Widespread signs of decline, such as canopy dieback, stand-level
desiccation, and vegetation loss, are particularly evident in older plantations (Li et al., 2024). These
forests face multiple and interacting stressors, including prolonged drought episodes (Alamdarloo
et al., 2018), declining groundwater levels, pest outbreaks, and persistent anthropogenic pressures
such as overgrazing, illegal logging, and land conversion. There is growing evidence that many of
these afforested zones are approaching ecological thresholds beyond which recovery may become
extremely difficult or even impossible (Eskandari et al., 2016).

Accurate, scalable monitoring tools are urgently needed to assess the health and trajectory
of these ecosystems (Wu et al., 2024). Although field-based methods provide precise data, their
application across vast, remote desert areas is cost-prohibitive and logistically challenging.
Remote sensing (RS) has emerged as a critical tool for monitoring vast, inaccessible dryland
ecosystems, providing scalable indicators to assess vegetation health, productivity, and
responses to climate variability (Wu et al., 2024). Various RS-based indicators have been
employed to decipher the complex interactions between biotic and abiotic factors in these
fragile environments.

The Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) are among
the most widely used indices to monitor vegetation dynamics, greening trends, and biomass
production in drylands. For instance, Li et al. (2024) used NDVI and Net Primary Productivity
(NPP) to assess vegetation responses to climate change in China's drylands, highlighting that
while greening is observed in some areas, it does not always correspond to ecosystem stability
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due to water constraints. Similarly, Zhang et al. (2024) employed these indices to track
vegetation cover changes in North and South American drylands, correlating them with
precipitation anomalies and land use changes.

Beyond structural indices, RS is increasingly used to monitor functional traits and water
stress. Zhang et al. (2022) emphasized the importance of monitoring Evapotranspiration (ET)
and Vapor Pressure Deficit (VPD) using remote sensing to understand tree transpiration and
drought-stress responses. They noted that rising VPD and temperature are critical drivers of
forest decline in water-limited regions. Furthermore, Ye et al. (2024) demonstrated the utility
of integrating high-resolution satellite data (e.g., MODIS) with deep learning models to predict
agricultural water demand and soil moisture dynamics, which is crucial for managing water
resources in arid regions.

However, standard vegetation indices may be limited in sparsely vegetated desert
environments by soil background signals. Wu et al. (2024) highlighted the development of
indices specific to distinct dryland features, such as the Biological Soil Crust Index (BSCI) and
Crust Index (CI), to distinguish biological soil crusts from bare soil and vascular plants.
Additionally, Zeng et al. (2024) discussed the application of remote sensing to detect signals of
shrub encroachment and land degradation in the Mediterranean region, emphasizing the need
for fine-resolution imagery to capture subtle changes in ecosystem structure.

Despite the ecological importance and strategic value of these forested regions, there remains
a significant gap in the literature. To date, no comprehensive study has examined the long-term
sustainability of Iran’s desert plantations using multi-decadal satellite observations, nor has
there been an integrated attempt to quantify the respective roles of climate change and human
activity in forest degradation.

This study seeks to address the following key questions over the timeframe of 2013 to 2022:
(1) What are the spatial and temporal trends in forest canopy density and health? (2) Using the
Residual Trend Analysis (RESTREND) method, to what extent can observed changes be
attributed to climate variability versus anthropogenic drivers? (3) Where are the critical hotspots
of degradation and the zones exhibiting ecological resilience?

By integrating multi-temporal satellite archives with advanced remote sensing and machine
learning techniques, this research provides a robust foundation for evidence-based ecosystem
management, targeted conservation planning, and long-term resilience of Iran’s afforested
desert landscapes.

2. Materials and Methods
This study aimed to evaluate the sustainability of planted desert forests in Semnan Province and
to distinguish the relative impacts of climate variability and human activities. The analysis was
conducted using satellite imagery and meteorological datasets within a structured
methodological framework.

2.1. Study Area

The study was conducted in Semnan Province, located along the southern slopes of the Alborz
Mountain Range in north-central Iran. The province spans approximately 98,000 km?,
positioned between 34° and 37°N latitude and 51° and 58° E longitude. Semnan features
substantial climatic and topographic heterogeneity, extending from high-altitude mountainous
regions in the north to vast desert plains in the south. The region receives an average annual
precipitation of 132—-136 mm and has a mean annual temperature of approximately 19.9 °C,
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with a mean elevation of 1,067 m above sea level. This variation supports a range of climate
types from semi-arid to hyper-arid.

Desert ecosystems dominate approximately 40% of the province's total area, primarily in the
central and southern zones. To combat desertification, extensive afforestation efforts have been
implemented, resulting in approximately 1,457 hectares of planted forests, mainly composed of
Haloxylon spp.A drought-tolerant shrub species integral to Iran’s national anti-desertification
programs. These afforested zones, delineated in Figure 1, represent the primary focus of the
present study (Ravanbakhsh et al., 2023; Ataei & Hasheminasab, 2012).

5200°E SE00°E 600E SEVOE

Legend
*  Selected Stations
o6 Planted Forests
C3 Semnan Province

Mojen  shabroud . P
= ‘ Sabzevar
Damghan

00N

z|  Legend
1: i : 549392

oW : -56,3556

Hoseynian

Kashmar
*

Gonabad |

-
Ferdows
Boshruyeh
*

Tabas

Khur va Biabanak

HweN

Fig. 1. Geographical location of the study area. (Top Left) Location of Semnan Province within Iran,
overlaid on a Digital Elevation Model (DEM) showing topographical variations. (Right) Map of Semnan
Province displaying the spatial distribution of the selected synoptic meteorological stations (blue stars)
and the extent of Haloxylon spp. afforested zones (red polygons). (Bottom Left) A zoomed-in satellite
view of an area.

2.2. Data used

2.2.1. Meteorological data

To evaluate climate variability and compute drought indices, long-term precipitation and
temperature records were obtained from selected synoptic stations located within and around
Semnan Province, including Semnan, Damghan, Shahrood, and Garmsar, as well as from
adjacent provinces. These data were acquired from the Iran Meteorological Organization and
span a 30-year statistical period from 1992 to 2022, providing sufficient temporal depth for
robust climate analysis. The geographical locations of the stations are shown in Table 1.
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Table 1. Synoptic meteorological stations are used for climate analysis in the study area.

Station Name Latitude | Longitude Province
Biarjomand 36.05 55.83
Semnan 35.58 53.55
Damghan 36.15 54.32
Mehdishahr 35.70 53.33 Semnan
Majan 36.47 54.65
Garmsar 35.20 52.27
Hoseininan 35.22 54.57
Shahroud 36.42 55.03
Khour v Biabanak 33.78 55.08 Isfahan
Kashan 33.98 51.45
Sabzevar 36.20 57.72
Kashmar 35.20 58.47 Khorasan Razavi
Gonabad 34.35 58.68
Tabas 33.60 56.92
Boshrouyeh 34.02 58.17 Khorasan Jonoubi
Ferdos 33.90 57.45

2.2.2. Satellite data

To assess vegetation canopy conditions and dynamics, Landsat 8 imagery acquired by the
Operational Land Imager (OLI) sensor was utilized. These satellite images have spatial
resolutions of 15m (panchromatic) and 30 m (multispectral), with a swath width of
approximately 185 km. For this study, 30 m resolution multispectral images were downloaded
at 16-day intervals from the United States Geological Survey (USGS) EarthExplorer platform.
Remote sensing data were processed to extract four key indices (the Advanced Vegetation
Index (AVI), Shade Index (SI), Bare Soil Index (BSI), and Thermal Index (T1)) for the period
from 2013 to 2022. These indices provided critical indicators of land degradation trends,
allowing for the identification of transitions from afforested zones to shrubland conditions. The
study period was defined based on the availability of high-quality satellite imagery and
corresponding ground-based meteorological records. While the long-term climatic trends were
analyzed over 30 years (1992-2022) to establish baselines, the specific assessment of
vegetation dynamics and its response to climate drivers focused on the 2013-2022 timeframe,
corresponding to the operational period of the Landsat 8 OLI sensor.

3. Research Methodology

3.1. Preprocessing of satellite images

All Landsat 8 OLI image processing and analysis were implemented within the Google Earth
Engine (GEE) cloud computing platform. We used the Surface Reflectance (Collection 2, Level
2) dataset, atmospherically corrected using the Land Surface Reflectance Code (LaSRC)
algorithm to ensure consistency across temporal datasets. Additionally, a cloud masking
procedure was applied using the Quality Assessment (QA) band to remove cloud and shadow
contamination. For spatial harmonization, all images were reprojected to the WGS84 UTM
coordinate reference system.
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3.2. Calculation of Forest Canopy Density (FCD) Index

To quantitatively evaluate vegetation structure and canopy health, the FCD model was applied
using four biophysical indices: AVI, BSI, Tl, and SI. These indices collectively reflect
vegetation vigor, soil exposure, surface temperature, and canopy shade distribution.

3.3. Advanced Vegetation Index (AVI)

AVI enhances vegetation-structure detection by capturing subtle differences in canopy density.
It is computed using the near-infrared (NIR) and red bands. In this study, the index was
calculated using the following equation (Rikimaru et al., 2002; Pécas et al., 2013):

AVI=[(Bs+1)(256-B4)(Bs - B4)]" (1)

Where B values represent the top-of-atmosphere (TOA) reflectance (scaled 0-1). This index
was computed following the methodology described by Rikimaru et al. (2002). Where B5 and
B4 represent the Digital Number (DN) values of the Near-Infrared (NIR) and Red bands of
Landsat 8, respectively, the term (256-B4) is used to account for the soil background response,
making the index more sensitive to vegetation biomass than traditional indices like NDVI.

3.4. Bare Soil Index (BSI)

BSI is designed to enhance detection accuracy in sparsely vegetated areas where traditional
vegetation indices tend to underperform. It is calculated based on spectral reflectance differences
between bare soil and vegetation using near-infrared, blue, and red bands (Chen et al., 2004):

BSI=((B4+B2)-Ba)/((B++B2)+B3) @)

This index effectively identifies bare surfaces and supports the separation of soil and
vegetation signals in dryland ecosystems.

3.5. Thermal Index (TI)

TI1 provides insight into surface thermal behavior and potential stress on vegetation. Derived
from the thermal infrared band, this index measures fluctuations in emitted radiance and surface
temperature. The computation follows a multi-step approach using calibration constants
specific to the Landsat sensor (Pakkhesal et al., 2013):

k1=666.09 watts/(m?, ster,om) (3)
ko=1282.71 (kelvin) (4)
Lmin=0.1238 watts/(m”2.ster.om) 5)
Lmax=1.500 watts/(m?.ster.am) (6)
L=Lmin*[(Lmax-Lmin)/(255%Q)] @)

In these equations, Q represents the digital number (DN) value from Band 6, L denotes the
spectral radiance, k; and k_ are sensor-specific calibration constants, and T refers to the surface
temperature in Kelvin.

3.6. Shadow Index (SI)
Sl reflects canopy structure by measuring relative shadow intensity across visible bands (Bera
et al., 2020). It is instrumental in detecting vegetation arrangement, crown density, and spatial
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variation in forest architecture. Sl is often used in combination with AVI and BSI for robust
forest monitoring and is calculated as:

S|:{(DN max'BIUe)(DN max'Green)(DN maX-Red)}(lB) (8)

3.7. Principal Component Analysis (PCA) and Vegetation Density (VD)

To integrate the biophysical indices and quantify the vegetation density, Principal Component
Analysis (PCA) was employed. PCA is a multivariate statistical technique widely used in
environmental studies in arid regions to reduce data dimensionality and handle correlated
variables (Kamali et al., 2020). In this study, PCA was applied to the feature space formed by
the AVI and BSI. Since vegetation vigor and bare soil exposure typically exhibit a strong
negative correlation, the First Principal Component (PC1) captures the majority of the variance
and represents the Vegetation Density (VD). Similarly, PCA was performed on the Sl and Tl
layers to derive the Scaled Shadow Index (SSI). The resulting PC scores were standardized to
a scale of 0 to 100 using the min-max normalization method.

3.8. Integration of Indices and FCD Calculation

The FCD model provides an efficient approach for generating forest canopy density maps from
satellite imagery, expressed as percentage canopy cover. Originally developed by Rikimaru
(1996) based on the Landsat Data Processing Guide for Forest Canopy Density Mapping and
Monitoring, the model has been widely adopted globally since 2002 due to its robustness and
simplicity (Sahana et al., 2015). It estimates canopy cover directly from Landsat-derived indices,
eliminating the need for ground-based training samples for various forest density classes.

Unlike traditional qualitative assessments, the FCD model enables quantitative analysis of
forest growth by computing canopy density at the pixel level. The resulting maps offer greater
alignment with ground reality and exhibit higher accuracy than those derived from conventional
band combinations. This method supports spatially explicit evaluations of forest conditions and
provides valuable insight into degradation patterns, recovery potential, and the urgency of
restoration interventions (Rikimaru et al., 2002).

[ Landsat 8 satellite image }

a "

[ (Advanced Vegetation Index) } [ (Bare Soil Index) J [ (Shadow I[ndex) J [ (Thermal Index) J

o aa—
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L 4
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Fig. 2. The processing steps for satellite imagery (Landsat 8 OLI), calculation of Forest Canopy Density
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(FCD) indices (AVI, BSI, SI, TI).

FCD values are computed by integrating the SI and VD, both normalized on a 0-100 scale.
The combined model yields the final FCD map, with density values expressed as percentages.
The FCD calculation is performed using the following equation:

FCD =(V((VDxSSI)+1))-1 (9)

In this expression, VD refers to the VD index, and SSI represents the self-shading index
derived from SI. These components were integrated to produce annual FCD maps (0-100%)
for each year within the study period, enabling temporal assessment of forest canopy dynamics.

3.9. Analysis of climatic fluctuations using SPEI
To evaluate drought severity and temporal climate variability, the Standardized Precipitation
Evapotranspiration Index (SPEI) was computed. SPEI is a multi-scalar drought index based on
the climatic water balance (precipitation minus potential evapotranspiration). In this study,
Potential Evapotranspiration (PET) was estimated using the Thornthwaite method based on
monthly mean temperature and latitude data. The SPEI values were calculated at a 12-month
timescale to capture long-term drought patterns, following the standard methodology described
by Vicente-Serrano et al. (2010). The resulting SPEI time series was computed for each
synoptic station and spatially interpolated within a GIS environment to assess drought dynamics
across the study area.

The value of W is defined as: W =V (-2 InP) where P=1-F(x) <0.5. If P>0.5, it is replaced by
1-P1-P1-P, and the resulting SPEI value is multiplied by -1 to ensure symmetry.

In this study, monthly temperature and precipitation data from 1992 to 2022 were used for
all synoptic stations. SPEI values were computed in MATLAB across four temporal scales: 3,
6, 9, and 12 months. The SPEI sign reflects water balance trends, with increasingly negative
values indicating more severe drought conditions.

3.10. Correlation analysis
To evaluate the relationship between vegetation dynamics and climatic variability, the Pearson
correlation coefficient was computed between FCD and SPEI values for the period 2013-2022.
The statistical significance of the correlation coefficients was tested at the 95% confidence
level, allowing for the identification of spatial and temporal trends in vegetation response to
drought conditions.

The Pearson correlation coefficient Ryy is defined as:

ny — Zi:l(ii—y)(yi_y) - (10)
J2?=1(xi—x>2J2?=1<yi—y>2

In this equation, x and y represent the paired sample values of the dependent and independent
variables (in this case, FCD and SPEI, respectively), x"and y denote their means, and n is the
total number of observations.

While correlation analysis reveals the strength and direction of association between two
variables, it does not imply causation. A positive correlation indicates that increases in one
variable tend to be associated with increases in the other, whereas a negative correlation implies
an inverse relationship. The correlation coefficient ranges from -1 to +1, with values closer to
-1 or +1 indicating stronger linear associations.
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3.11. Quantification of Climatic and Anthropogenic Impacts

To explicitly quantify and separate the contributions of climate variability and anthropogenic
activities to forest canopy changes, the Residual Trend Analysis (RESTREND) method was
employed (Evans & Geerken, 2004; Wessels et al., 2007). First, a simple linear regression
model was established for each pixel to predict the expected Forest Canopy Density (FCDpyeq)

based on the climatic drought index (SPET) as the independent variable:
FCDpred = a X SPEI + b (11)

Where a and b These are the regression coefficients. The predicted FCD (FCDpyeq)
represents the vegetation condition expected solely under climatic influence. Next, the residuals
(FCD,..s) were calculated by subtracting the predicted FCD from the observed FCD (FCD,;):

FCDyes = FCDyps — FCDpreq (12)

The temporal trends of the calculated residuals (FCD,.s) were then analyzed to isolate
anthropogenic impacts. A statistically significant negative trend in residuals implies vegetation
degradation driven by human activities (e.g., overgrazing), whereas a positive trend suggests
human-induced improvement (e.g., restoration efforts). A non-significant trend (or trend of
zero) indicates that vegetation dynamics are primarily controlled by climatic variability.

4. Results

The results derived from satellite image processing and climate data analysis are presented in
this section. First, the spatial distribution of planted forest canopy density was assessed using
biophysical indicators. Second, climatic variability was analyzed across the study region.
Finally, the relationship between vegetation dynamics and climate fluctuations was examined
to understand ecosystem responses.

4.1. Assessment of planted forest density
The indices AVI, BSI, Sl, and T1 were processed to estimate canopy density. VD was calculated
by combining AV1 and BSI, while Sl and T1 were integrated to compute the SSI. Together, VD
and SSI were used to estimate FCD values, expressed as pixel-level canopy cover percentages.
High AVI values consistently corresponded to higher FCD, whereas low AVI values coupled
with high BSI values indicated bare land. Conversely, low BSI values signified vegetated
surfaces. SI values were low for shrub-dominated or open areas, highlighting canopy gaps and
damage associated with reduced cover. Tl increased with decreasing vegetation, reaching
higher values in barren landscapes.

VD, defined as the proportion of soil surface shaded by canopy, was derived using principal
component analysis (PCA) to address the negative correlation between AVI and BSI. Figure 4
illustrates the mean AVI distribution for the 10-year study period.

4.2. Advanced vegetation index (AVI)

Figure 4 shows the spatial distribution of vegetation health and density across the study area.
Patches with high AVI values, representing denser and healthier vegetation, were concentrated
within afforested zones and served as relatively stable plantation cores. In contrast, extensive
areas exhibited low AV values, reflecting sparse, stressed, or degraded vegetation.
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Fig. 3. Spatial distribution of the mean Advanced Vegetation Index (AVI) across the afforested zones
of Semnan Province, derived from Landsat 8 OLI imagery (averaged over 2013-2022). High values
(blue/green) indicate denser and healthier vegetation clusters, while low values (yellow/orange)
correspond to sparse canopies or stressed vegetation areas. The black polygons delineate the boundaries

of the planted forests.
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Fig. 4. Spatial distribution of the mean Bare Soil Index (BSI) for the period 2013-2022. High BSI values
(blue/purple) represent exposed soil surfaces with minimal vegetation cover, indicating areas highly
susceptible to wind erosion. Low values (yellow/orange) correspond to vegetated areas where soil
exposure is minimized by canopy cover.
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The spatial distribution of vegetation health and canopy density is shown, with high AVI
values indicating dense, stable plantation patches. BSI and T1 maps (Figures 5 and 6) present
inverse vegetation patterns: high BSI values (yellow/orange) coincide with low AVI areas,
indicating bare or sparsely vegetated land, while high TI values (blue/purple) correspond to
vegetation loss and elevated surface temperatures caused by exposed soil. This negative
relationship between vegetation cover and surface temperature is a key indicator of
desertification.

High BSI values (yellow to brown) correspond to exposed or sparsely vegetated land,
overlapping with areas of low AVI, and indicating extensive bare surfaces within afforested zones.

Legend

& Afforested zones

Fig. 5. Spatial distribution of the mean Thermal Index (TI) derived from the thermal infrared
band of Landsat 8 (2013-2022). High values (yellow/orange) indicate higher surface
temperatures associated with bare soil and sparse vegetation, while low values (purple/blue)
correspond to denser vegetation areas with lower thermal emission due to evapotranspiration
cooling effects.

Areas with high TI values coincide with zones of low vegetation cover, reflecting elevated
surface temperatures due to increased solar absorption by exposed soils. The inverse
relationship between T1 and vegetation cover highlights thermal signatures of land degradation
and desertification.

After generating the TI map, the Sl and the advanced S| were produced. The calculation of
the advanced Sl is the only step in the implementation of the FCD model where the use of
simple statistical thresholds, such as the mean, median, or mode, is not recommended. Instead,
values are normalized to a 0—100 scale to standardize shadow intensity. In the conventional SI,
pixel values may range from O to an unrestricted upper limit, whereas in the advanced SI, all
values are constrained to 0-100, improving interpretability and comparability. Figure 7
illustrates the SI map, where lighter areas indicate greater canopy shadow and correspondingly
higher index values.
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Legend
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9 1S

Fig. 6. Spatial distribution of the mean Shadow Index (SI) (2013-2022). High Sl values (lighter/white
tones) indicate areas with greater canopy shadow intensity, reflecting a more complex and multi-layered
forest structure. Low values (darker/black tones) represent open or flat terrain with minimal vertical
vegetation structure.
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Fig. 7. Spatial distribution of the Scaled Shadow Index (SSI), obtained by integrating the Shadow Index
(SI) and Thermal Index (TI) using Principal Component Analysis (PCA). This index enhances the
differentiation of vegetation canopy from other dark surface features. High SSI values indicate areas
with dense forest canopy, characterized by high shadow intensity and relatively lower surface
temperatures, whereas low SSI values correspond to open areas with minimal vegetation shading.
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Lighter areas indicate higher Sl values, reflecting greater canopy shading and denser
vegetation. PCA integration was then applied to the combined SI and TI layers to derive the
SSI map (Figure 8). This integration enhances canopy detection by capturing both shading and
surface temperature effects.

Similarly, AVI and BSI were integrated using PCA to generate VD. Given the negative
correlation between AVI and BSI, the first principal component (PC1) was selected as the basis
for VD. The transformation standardized vegetation density across the landscape, assigning
values near 0 to bare-land pixels and values near 100 to areas with the densest vegetation.
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Fig. 8. Spatial distribution of Vegetation Density (VD) derived from the Principal Component Analysis
(PCA) of AVI and BSI indices. High VD values correspond to areas with dense vegetation cover and
minimal soil exposure, while low VD values indicate sparse vegetation or bare soil.

The final FCD map (Figure 9) quantified the vegetation structure of the planted forests. The
analysis revealed that the canopy density within the afforested zones ranged from 44.97% to
55.78%. This indicates that the Haloxylon spp. plantations have maintained a moderate and
relatively uniform canopy structure across the study area. Unlike natural forests, which may exhibit
extreme density variations, these man-made stands show a consistent cover typical of established
desert plantations, with no areas falling into the sparse (<10%) or closed (>60%) density classes.

4.3. SPEI results

The temporal analysis of the Standardized Precipitation-Evapotranspiration Index (SPEI)
revealed significant fluctuations in moisture availability over the study period (2013-2022). As
illustrated in Figure 10, the region experienced severe and prolonged drought conditions,
particularly towards the end of the decade. The most severe drought year was 2022, where the
SPEI reached its lowest values across all time scales, with an annual average of -2.28 for SPEI-
9 and -2.22 for SPEI-12, indicating extreme hydrological stress. Conversely, a brief wet period
was observed in 2019 and 2020, with SPEI values peaking at approximately +1.46 (SPEI-3).
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Fig. 9. Final Forest Canopy Density (FCD) map of the planted forests in Semnan Province, averaged
over the 2013-2022 period. The map classifies canopy density into percentages. High values represent
high-density forest patches (>60%), while low values (yellow/orange) indicate low-density or degraded
stands (<30%). This map serves as the primary indicator of vegetation status for further analysis
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Fig. 10. Temporal variation of the Standardized Precipitation-Evapotranspiration Index (SPEI) at
different time scales: (a) 3-month, (b) 6-month, (c) 9-month, and (d) 12-month, for the period 2013-
2022. Positive values (above zero) indicate wet periods, while negative values (below zero) denote
drought conditions. The prolonged drought event from 2013 to 2018 is evident across all time scales.
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4.4. Relationship between climate and forest health: correlation analysis

The correlation analysis (Table 2) indicated that forest canopy density was not significantly
influenced by precipitation variability over the 10 years. Although the highest correlation
coefficient was observed at the 9-month lag (R = 0.21), it was not statistically significant (p =
0.56, n =10). This weak coupling suggests that vegetation in the study area is largely decoupled
from short-term atmospheric precipitation.

Table 2. Pearson correlation coefficients (R) between FCD and SPEI at various time scales.

Timescale SPEI-3 SPEI-6 SPEI-9 SPEI-12
Correlation (R) 0.03 0.08 0.21* 0.17
p-value 0.935 0.826 0.561 0.638
Sample Size (n) 10 10 10 10

Lagged Climate Response. The strongest significant correlation was observed at a 9-month
timescale (R = 0.21). This indicates that the response of desert plantations to precipitation
variability is delayed rather than immediate. In particular, Haloxylon spp. requires extended
periods of soil moisture accumulation, typically during autumn and winter, to manifest positive
growth responses in the subsequent spring and summer. Thus, the 9-month lag most accurately
captures the cumulative effect of precipitation on vegetation dynamics.

Spatial Heterogeneity. The spatial correlation map (Figure 11) shows that the relationship
between climate and forest health is not uniform across space. Strong positive correlations are
concentrated in the central and eastern plantation zones, where climate exerts dominant control
and human disturbances appear limited. Conversely, weak or negative correlations emerge in
other areas, suggesting that non-climatic pressures (such as groundwater depletion,
overgrazing, and poor management) have offset the benefits of favorable rainfall, resulting in
continued canopy decline.

4.5. Attribution of vegetation changes to climate and human factors

To isolate the role of anthropogenic drivers, the residuals (difference between observed and
climate-predicted FCD) were analyzed for temporal trends using the Mann-Kendall test (Figure
12). The resulting Z-statistics ranged from -1.40 to +1.40 across the study area. Since these
values fall within the range of non-significant trends (-1.96 < Z < +1.96 at 95% confidence
level), no statistically significant anthropogenic degradation or improvement trends were
detected. This suggests that while human activities (degradation or restoration) are present, they
have not caused a statistically abrupt shift in the ecosystem state during this specific 10-year
period, implying a relative stability in human pressures.

5. Discussion

This study assessed the sustainability of desert plantations in Semnan Province and
disentangled the relative contributions of climate variability and human activities. The
discussion is organized to address the three key research questions posed in the introduction.
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Fig. 1. Spatial distribution of the Pearson correlation coefficients (R) between Forest Canopy Density
(FCD) and the 9-month Standardized Precipitation-Evapotranspiration Index (SPEI-9) across the study
area (2013-2022). Green pixels indicate positive correlations where vegetation dynamics follow
climatic trends, while purple pixels show weak or negative correlations, suggesting the decoupling of
vegetation from climate due to non-climatic factors (e.g., groundwater or human impact).
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Fig. 12. Spatial distribution of the trends in anthropogenic impacts on forest canopy density (2013—
2022), derived from the Residual Trend Analysis (RESTREND). This map illustrates the Mann-Kendall
Z-statistics calculated for the time series of residuals (the difference between observed FCD and climate-

predicted FCD).
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5.1. Spatial and Temporal Trends in Forest Canopy

A key outcome is the heterogeneous spatial distribution of FCD. Although afforestation is
widely recognized as an effective strategy for combating desertification (Chen et al., 2019), our
results show that its success is highly contingent upon local ecological conditions. The observed
FCD range (45-56%) suggests that despite the harsh environmental conditions, the plantations
have successfully established a moderate canopy cover, avoiding severe degradation (low
density < 10%) or collapse. This consistency in canopy density contrasts with some reports
from other arid regions where large-scale plantations faced massive dieback (Chai et al., 2019),
indicating a relatively high resilience of the planted species in Semnan Province.

5.2. Attribution of Changes: Climate vs. Human Drivers

Regarding the role of climate, our analysis showed no statistically significant correlation
between SPEI and FCD (R = 0.21, p > 0.05, N = 10). While an R-value of 0.21 suggests a slight
positive tendency at a 9-month lag, the lack of statistical significance indicates that precipitation
variability is not the primary driver of vegetation dynamics in this system. This finding supports
the hypothesis of ecological decoupling, where deep-rooted species, such as Haloxylon spp.
rely more on groundwater stability than on transient rainfall events. Consequently, the observed
canopy dynamics are likely governed by non-climatic factors (Alamdarloo et al., 2018;
Jiang et al., 2022).

5.3. Hotspots of Degradation and Resilience

The spatial analysis utilizing RESTREND provided further insight into the anthropogenic
footprint. Contrary to expectations of rapid degradation, the Mann-Kendall trend test on
residuals revealed no statistically significant trends (Z-values ranging from -1.40 to +1.40)
across the entire study area. This absence of significant trends indicates a state of relative
stability, suggesting that anthropogenic pressures—such as grazing intensity and groundwater
extraction—have remained constant rather than intensifying during the 2013-2022 period.

This observation aligns with findings from Kundu et al. (2017) in India and Zhang et al.
(2016) in Inner Mongolia, where anthropogenic drivers were identified as major determinants
of desertification processes. In the present study area, although no distinct "degradation
hotspots” (characterized by significant negative trends) were statistically identified, the overall
low canopy density suggests that the ecosystem is maintained in a fragile state due to chronic
human pressures, preventing significant recovery even during favorable climatic episodes
(Behrangmanesh et al., 2019).

It is important to acknowledge certain limitations of this study. First, while the FCD model
provides a robust proxy for canopy density, the lack of extensive historical ground-truth data
limited our ability to perform a pixel-by-pixel validation for older dates. Second, although the
Residual Trend Analysis (RESTREND) allowed us to isolate human impacts, we did not
directly quantify specific human activities (e.g., pumping rates or grazing intensity) due to data
scarcity. Future research should integrate socio-economic data and groundwater modeling to
further refine the attribution of these anthropogenic drivers.

6. Conclusion

This study evaluated the sustainability of planted aridland forests in Semnan Province by
distinguishing the relative roles of climate variability and human activities. The findings reveal
that these forests have maintained a moderate canopy density despite environmental stressors.
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The analysis demonstrated a non-significant correlation between canopy density and climatic
drought indices (P > 0.05), highlighting the decoupling of vegetation from precipitation and the
dominance of anthropogenic stressors. Furthermore, the Residual Trend Analysis indicated no
significant trend in human impacts, suggesting a status quo of chronic pressure rather than rapid
recent degradation.

Therefore, to ensure long-term sustainability, management strategies must move beyond
general conservation goals to specific, actionable measures. Prioritized interventions should
include: (1) enforcing strict groundwater quotas and shutting down illegal wells within a 5-km
buffer of afforested zones to restore the water table; (2) implementing rotational grazing
schemes that strictly exclude livestock during critical regeneration periods (spring and early
summer); and (3) adopting drought-adaptive silvicultural practices, such as thinning of
senescent stands to reduce water competition. Without these targeted interventions, adaptation
to climate variability alone will be insufficient to secure the persistence of these critical national
assets.
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