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Afforestation of wind erosion hotspots using drought-tolerant species such as 

Haloxylon spp. remains a central strategy in mitigating desertification and 

stabilizing mobile dunes in Iran's arid regions. Despite these efforts, the long-

term sustainability of such ecosystems is becoming increasingly uncertain due 

to the combined pressures of climate variability and anthropogenic disturbances. 

This study evaluated the ecological resilience of planted desertland forests in 

Semnan Province by quantifying the relative contributions of climatic and 

human influences. A time series of Landsat 8 imagery from 2013 to 2022 was 

used to derive the Forest Canopy Density (FCD) model. Vegetation dynamics 

were statistically correlated with drought patterns, as measured by the 

Standardized Precipitation–Evapotranspiration Index (SPEI), using Pearson 

correlation analysis. The findings revealed that the FCD maintained a consistent 

range between 44.9% and 55.8%, indicating a moderate and stable vegetation 

cover characteristic of established Haloxylon stands in arid environments. The 

correlation analysis revealed a weak and statistically non-significant association 

(R = 0.21, p > 0.05, n = 10) between FCD and SPEI at a 9-month lag. This lack 

of significant climatic coupling highlights that precipitation variability alone 

explains a negligible portion of vegetation dynamics, strongly pointing to the 

dominance of non-climatic drivers such as anthropogenic disturbances and 

groundwater dependency. Furthermore, based on the Residual Trend Analysis 

(RESTREND), the Mann-Kendall trend test on residuals revealed no statistically 

significant anthropogenic degradation or restoration trends across the study area 

(Z-values ranging from -1.40 to +1.40). This indicates that human pressures 

likely remained constant rather than intensified during the 2013–2022 period, 

resulting in a fragile status quo. The compounded effects of prolonged droughts 

and unsustainable water resources management thus shape the sustainability of 

these afforested systems. The adoption of integrated, climate-informed, and 

human-responsive land management approaches is strongly recommended to 

safeguard these critical desert ecosystems. 
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1. Introduction 

Historical and cultural records indicate that communities across the Iranian Plateau have long 

adapted to arid environments through locally developed, sustainable practices, maintaining a 

delicate balance between limited resource use and environmental preservation (Jiang & Arnold, 

2023). However, over the past century, this balance has been profoundly disrupted by 

population growth, socio-economic transformation, and the intensification of climate change 

(Barati et al., 2023; Rosińska et al., 2024; Kompas et al., 2024), accelerating the process of 

desertification—one of the most visible manifestations of global environmental degradation 

(Ziadat et al., 2025). Desertification, a multifaceted phenomenon affecting arid, semi-arid, and 

dry sub-humid regions, leads to declining soil fertility, biodiversity loss, and far-reaching socio-

economic consequences (Jain et al., 2024). In response to this challenge, afforestation has been 

widely promoted as a key intervention to restore degraded landscapes and control 

desertification processes (Chen et al., 2023). 

Positioned within the global dry belt, Iran is particularly vulnerable to land degradation. 

Wind erosion, one of the most damaging forms of land degradation, impacts over 29.5 million 

hectares nationwide, with approximately 13.9 million hectares designated as wind erosion 

hotspots (WEHS), where farmlands, infrastructure, and settlements are at risk (Yin et al., 2024). 

To mitigate land degradation, Iran has implemented various desert afforestation programs, 

particularly focusing on native species such as Haloxylon spp. in critical wind-erosion 

hotspots.. Over the past five decades, this effort has resulted in more than 1.3 million hectares 

of shelterbelts, primarily established using Haloxylon spp. a native, drought-tolerant genus 

well-suited to harsh environmental conditions, including high salinity, water scarcity, and 

elevated temperatures (Guo et al., 2014). Today, artificially planted Haloxylon forests cover 

over one million hectares and represent a core component of the nation’s desert ecosystem 

management strategy (Stavi et al., 2022). 

Despite their initial effectiveness, the long-term ecological health of these planted lands is 

increasingly under pressure. Widespread signs of decline, such as canopy dieback, stand-level 

desiccation, and vegetation loss, are particularly evident in older plantations (Li et al., 2024). These 

forests face multiple and interacting stressors, including prolonged drought episodes (Alamdarloo 

et al., 2018), declining groundwater levels, pest outbreaks, and persistent anthropogenic pressures 

such as overgrazing, illegal logging, and land conversion. There is growing evidence that many of 

these afforested zones are approaching ecological thresholds beyond which recovery may become 

extremely difficult or even impossible (Eskandari et al., 2016). 

Accurate, scalable monitoring tools are urgently needed to assess the health and trajectory 

of these ecosystems (Wu et al., 2024). Although field-based methods provide precise data, their 

application across vast, remote desert areas is cost-prohibitive and logistically challenging. 

Remote sensing (RS) has emerged as a critical tool for monitoring vast, inaccessible dryland 

ecosystems, providing scalable indicators to assess vegetation health, productivity, and 

responses to climate variability (Wu et al., 2024). Various RS-based indicators have been 

employed to decipher the complex interactions between biotic and abiotic factors in these 

fragile environments. 

The Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) are among 

the most widely used indices to monitor vegetation dynamics, greening trends, and biomass 

production in drylands. For instance, Li et al. (2024) used NDVI and Net Primary Productivity 

(NPP) to assess vegetation responses to climate change in China's drylands, highlighting that 

while greening is observed in some areas, it does not always correspond to ecosystem stability 



Assessment of the Climate Variability Effects on Planted Forests … / Abdolhoseini et al 423 

 

 

due to water constraints. Similarly, Zhang et al. (2024) employed these indices to track 

vegetation cover changes in North and South American drylands, correlating them with 

precipitation anomalies and land use changes. 

Beyond structural indices, RS is increasingly used to monitor functional traits and water 

stress. Zhang et al. (2022) emphasized the importance of monitoring Evapotranspiration (ET) 

and Vapor Pressure Deficit (VPD) using remote sensing to understand tree transpiration and 

drought-stress responses. They noted that rising VPD and temperature are critical drivers of 

forest decline in water-limited regions. Furthermore, Ye et al. (2024) demonstrated the utility 

of integrating high-resolution satellite data (e.g., MODIS) with deep learning models to predict 

agricultural water demand and soil moisture dynamics, which is crucial for managing water 

resources in arid regions. 

However, standard vegetation indices may be limited in sparsely vegetated desert 

environments by soil background signals. Wu et al. (2024) highlighted the development of 

indices specific to distinct dryland features, such as the Biological Soil Crust Index (BSCI) and 

Crust Index (CI), to distinguish biological soil crusts from bare soil and vascular plants. 

Additionally, Zeng et al. (2024) discussed the application of remote sensing to detect signals of 

shrub encroachment and land degradation in the Mediterranean region, emphasizing the need 

for fine-resolution imagery to capture subtle changes in ecosystem structure. 

Despite the ecological importance and strategic value of these forested regions, there remains 

a significant gap in the literature. To date, no comprehensive study has examined the long-term 

sustainability of Iran’s desert plantations using multi-decadal satellite observations, nor has 

there been an integrated attempt to quantify the respective roles of climate change and human 

activity in forest degradation. 

This study seeks to address the following key questions over the timeframe of 2013 to 2022: 

(1) What are the spatial and temporal trends in forest canopy density and health? (2) Using the 

Residual Trend Analysis (RESTREND) method, to what extent can observed changes be 

attributed to climate variability versus anthropogenic drivers? (3) Where are the critical hotspots 

of degradation and the zones exhibiting ecological resilience? 

By integrating multi-temporal satellite archives with advanced remote sensing and machine 

learning techniques, this research provides a robust foundation for evidence-based ecosystem 

management, targeted conservation planning, and long-term resilience of Iran’s afforested 

desert landscapes. 

 

2. Materials and Methods 

This study aimed to evaluate the sustainability of planted desert forests in Semnan Province and 

to distinguish the relative impacts of climate variability and human activities. The analysis was 

conducted using satellite imagery and meteorological datasets within a structured 

methodological framework. 

 

2.1. Study Area 

The study was conducted in Semnan Province, located along the southern slopes of the Alborz 

Mountain Range in north-central Iran. The province spans approximately 98,000 km², 

positioned between 34° and 37° N latitude and 51° and 58° E longitude. Semnan features 

substantial climatic and topographic heterogeneity, extending from high-altitude mountainous 

regions in the north to vast desert plains in the south. The region receives an average annual 

precipitation of 132–136 mm and has a mean annual temperature of approximately 19.9 °C, 
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with a mean elevation of 1,067 m above sea level. This variation supports a range of climate 

types from semi-arid to hyper-arid. 

Desert ecosystems dominate approximately 40% of the province's total area, primarily in the 

central and southern zones. To combat desertification, extensive afforestation efforts have been 

implemented, resulting in approximately 1,457 hectares of planted forests, mainly composed of 

Haloxylon spp.A drought-tolerant shrub species integral to Iran’s national anti-desertification 

programs. These afforested zones, delineated in Figure 1, represent the primary focus of the 

present study (Ravanbakhsh et al., 2023; Ataei & Hasheminasab, 2012). 

 

Fig. 1. Geographical location of the study area. (Top Left) Location of Semnan Province within Iran, 

overlaid on a Digital Elevation Model (DEM) showing topographical variations. (Right) Map of Semnan 

Province displaying the spatial distribution of the selected synoptic meteorological stations (blue stars) 

and the extent of Haloxylon spp. afforested zones (red polygons). (Bottom Left) A zoomed-in satellite 

view of an area. 

 

2.2. Data used 

2.2.1. Meteorological data 

To evaluate climate variability and compute drought indices, long-term precipitation and 

temperature records were obtained from selected synoptic stations located within and around 

Semnan Province, including Semnan, Damghan, Shahrood, and Garmsar, as well as from 

adjacent provinces. These data were acquired from the Iran Meteorological Organization and 

span a 30-year statistical period from 1992 to 2022, providing sufficient temporal depth for 

robust climate analysis. The geographical locations of the stations are shown in Table 1. 
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Table 1. Synoptic meteorological stations are used for climate analysis in the study area. 

Province Longitude Latitude Station Name 

Semnan 

55.83 36.05 Biarjomand 

53.55 35.58 Semnan 

54.32 36.15 Damghan 

53.33 35.70 Mehdishahr 

54.65 36.47 Majan 

52.27 35.20 Garmsar 

54.57 35.22 Hoseininan 

55.03 36.42 Shahroud 

Isfahan 
55.08 33.78 Khour v Biabanak 

51.45 33.98 Kashan 

Khorasan Razavi 

57.72 36.20 Sabzevar 

58.47 35.20 Kashmar 

58.68 34.35 Gonabad 

Khorasan Jonoubi 

56.92 33.60 Tabas 

58.17 34.02 Boshrouyeh 

57.45 33.90 Ferdos 

 

2.2.2. Satellite data 

To assess vegetation canopy conditions and dynamics, Landsat 8 imagery acquired by the 

Operational Land Imager (OLI) sensor was utilized. These satellite images have spatial 

resolutions of 15 m (panchromatic) and 30 m (multispectral), with a swath width of 

approximately 185 km. For this study, 30 m resolution multispectral images were downloaded 

at 16-day intervals from the United States Geological Survey (USGS) EarthExplorer platform. 

Remote sensing data were processed to extract four key indices (the Advanced Vegetation 

Index (AVI), Shade Index (SI), Bare Soil Index (BSI), and Thermal Index (TI)) for the period 

from 2013 to 2022. These indices provided critical indicators of land degradation trends, 

allowing for the identification of transitions from afforested zones to shrubland conditions. The 

study period was defined based on the availability of high-quality satellite imagery and 

corresponding ground-based meteorological records. While the long-term climatic trends were 

analyzed over 30 years (1992–2022) to establish baselines, the specific assessment of 

vegetation dynamics and its response to climate drivers focused on the 2013–2022 timeframe, 

corresponding to the operational period of the Landsat 8 OLI sensor. 

 

3. Research Methodology 

3.1. Preprocessing of satellite images 

All Landsat 8 OLI image processing and analysis were implemented within the Google Earth 

Engine (GEE) cloud computing platform. We used the Surface Reflectance (Collection 2, Level 

2) dataset, atmospherically corrected using the Land Surface Reflectance Code (LaSRC) 

algorithm to ensure consistency across temporal datasets. Additionally, a cloud masking 

procedure was applied using the Quality Assessment (QA) band to remove cloud and shadow 

contamination. For spatial harmonization, all images were reprojected to the WGS84 UTM 

coordinate reference system. 
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3.2. Calculation of Forest Canopy Density (FCD) Index 

To quantitatively evaluate vegetation structure and canopy health, the FCD model was applied 

using four biophysical indices: AVI, BSI, TI, and SI. These indices collectively reflect 

vegetation vigor, soil exposure, surface temperature, and canopy shade distribution. 

 

3.3. Advanced Vegetation Index (AVI) 

AVI enhances vegetation-structure detection by capturing subtle differences in canopy density. 

It is computed using the near-infrared (NIR) and red bands. In this study, the index was 

calculated using the following equation (Rikimaru et al., 2002; Pôças et al., 2013): 

AVI=[(B5+1)(256-B4)(B5 - B4)]
1⁄3  (1) 

Where B values represent the top-of-atmosphere (TOA) reflectance (scaled 0–1). This index 

was computed following the methodology described by Rikimaru et al. (2002). Where B5 and 

B4 represent the Digital Number (DN) values of the Near-Infrared (NIR) and Red bands of 

Landsat 8, respectively, the term (256-B4) is used to account for the soil background response, 

making the index more sensitive to vegetation biomass than traditional indices like NDVI. 

 

3.4. Bare Soil Index (BSI) 
BSI is designed to enhance detection accuracy in sparsely vegetated areas where traditional 

vegetation indices tend to underperform. It is calculated based on spectral reflectance differences 

between bare soil and vegetation using near-infrared, blue, and red bands (Chen et al., 2004): 

BSI=((B4+B2)-B3)/((B4+B2)+B3) (2) 

This index effectively identifies bare surfaces and supports the separation of soil and 

vegetation signals in dryland ecosystems. 

 

3.5. Thermal Index (TI) 

TI provides insight into surface thermal behavior and potential stress on vegetation. Derived 

from the thermal infrared band, this index measures fluctuations in emitted radiance and surface 

temperature. The computation follows a multi-step approach using calibration constants 

specific to the Landsat sensor (Pakkhesal et al., 2013): 

k1=666.09 watts/(m2,ster,αm)  (3) 

k2=1282.71 (kelvin)   (4) 

Lmin=0.1238 watts/(m^2.ster.αm) (5) 

Lmax=1.500 watts/(m2.ster.αm) (6) 

L=Lmin+[(Lmax-Lmin)/(255×Q)] (7) 

In these equations, Q represents the digital number (DN) value from Band 6, L denotes the 

spectral radiance, k₁ and k₂ are sensor-specific calibration constants, and T refers to the surface 

temperature in Kelvin. 

 

 

3.6. Shadow Index (SI) 

SI reflects canopy structure by measuring relative shadow intensity across visible bands (Bera 

et al., 2020). It is instrumental in detecting vegetation arrangement, crown density, and spatial 
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variation in forest architecture. SI is often used in combination with AVI and BSI for robust 

forest monitoring and is calculated as: 

SI={(DN max-Blue)(DN max-Green)(DN max-Red)}(1/3)   (8) 

 

3.7. Principal Component Analysis (PCA) and Vegetation Density (VD) 

To integrate the biophysical indices and quantify the vegetation density, Principal Component 

Analysis (PCA) was employed. PCA is a multivariate statistical technique widely used in 

environmental studies in arid regions to reduce data dimensionality and handle correlated 

variables (Kamali et al., 2020). In this study, PCA was applied to the feature space formed by 

the AVI and BSI. Since vegetation vigor and bare soil exposure typically exhibit a strong 

negative correlation, the First Principal Component (PC1) captures the majority of the variance 

and represents the Vegetation Density (VD). Similarly, PCA was performed on the SI and TI 

layers to derive the Scaled Shadow Index (SSI). The resulting PC scores were standardized to 

a scale of 0 to 100 using the min-max normalization method. 

 

3.8. Integration of Indices and FCD Calculation 

The FCD model provides an efficient approach for generating forest canopy density maps from 

satellite imagery, expressed as percentage canopy cover. Originally developed by Rikimaru 

(1996) based on the Landsat Data Processing Guide for Forest Canopy Density Mapping and 

Monitoring, the model has been widely adopted globally since 2002 due to its robustness and 

simplicity (Sahana et al., 2015). It estimates canopy cover directly from Landsat-derived indices, 

eliminating the need for ground-based training samples for various forest density classes. 

Unlike traditional qualitative assessments, the FCD model enables quantitative analysis of 

forest growth by computing canopy density at the pixel level. The resulting maps offer greater 

alignment with ground reality and exhibit higher accuracy than those derived from conventional 

band combinations. This method supports spatially explicit evaluations of forest conditions and 

provides valuable insight into degradation patterns, recovery potential, and the urgency of 

restoration interventions (Rikimaru et al., 2002). 

 

Fig. 2. The processing steps for satellite imagery (Landsat 8 OLI), calculation of Forest Canopy Density 
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(FCD) indices (AVI, BSI, SI, TI). 

FCD values are computed by integrating the SI and VD, both normalized on a 0–100 scale. 

The combined model yields the final FCD map, with density values expressed as percentages. 

The FCD calculation is performed using the following equation: 

FCD =(√((VD×SSI)+1))-1  (9) 

In this expression, VD refers to the VD index, and SSI represents the self-shading index 

derived from SI. These components were integrated to produce annual FCD maps (0–100%) 

for each year within the study period, enabling temporal assessment of forest canopy dynamics. 

 

3.9. Analysis of climatic fluctuations using SPEI 

To evaluate drought severity and temporal climate variability, the Standardized Precipitation 

Evapotranspiration Index (SPEI) was computed. SPEI is a multi-scalar drought index based on 

the climatic water balance (precipitation minus potential evapotranspiration). In this study, 

Potential Evapotranspiration (PET) was estimated using the Thornthwaite method based on 

monthly mean temperature and latitude data. The SPEI values were calculated at a 12-month 

timescale to capture long-term drought patterns, following the standard methodology described 

by Vicente-Serrano et al. (2010). The resulting SPEI time series was computed for each 

synoptic station and spatially interpolated within a GIS environment to assess drought dynamics 

across the study area.  

The value of W is defined as: W =√ (-2 lnP) where P=1-F(x) ≤0.5. If P>0.5, it is replaced by 

1-P1-P1-P, and the resulting SPEI value is multiplied by -1 to ensure symmetry. 

In this study, monthly temperature and precipitation data from 1992 to 2022 were used for 

all synoptic stations. SPEI values were computed in MATLAB across four temporal scales: 3, 

6, 9, and 12 months. The SPEI sign reflects water balance trends, with increasingly negative 

values indicating more severe drought conditions. 

 

3.10. Correlation analysis 

To evaluate the relationship between vegetation dynamics and climatic variability, the Pearson 

correlation coefficient was computed between FCD and SPEI values for the period 2013–2022. 

The statistical significance of the correlation coefficients was tested at the 95% confidence 

level, allowing for the identification of spatial and temporal trends in vegetation response to 

drought conditions. 

The Pearson correlation coefficient Rxy is defined as:  

𝑅𝑥𝑦 =
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)
𝑛
𝑖=1

√∑ (𝑥𝑖−𝑥)
2𝑛

𝑖=1 √∑ (𝑦𝑖−𝑦)
2𝑛

𝑖=1

   (10) 

In this equation, x and y represent the paired sample values of the dependent and independent 

variables (in this case, FCD and SPEI, respectively), x̄ and ȳ denote their means, and n is the 

total number of observations. 

While correlation analysis reveals the strength and direction of association between two 

variables, it does not imply causation. A positive correlation indicates that increases in one 

variable tend to be associated with increases in the other, whereas a negative correlation implies 

an inverse relationship. The correlation coefficient ranges from -1 to +1, with values closer to 

-1 or +1 indicating stronger linear associations. 
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3.11. Quantification of Climatic and Anthropogenic Impacts 

To explicitly quantify and separate the contributions of climate variability and anthropogenic 

activities to forest canopy changes, the Residual Trend Analysis (RESTREND) method was 

employed (Evans & Geerken, 2004; Wessels et al., 2007). First, a simple linear regression 

model was established for each pixel to predict the expected Forest Canopy Density (𝐹𝐶𝐷𝑝𝑟𝑒𝑑) 

based on the climatic drought index (𝑆𝑃𝐸𝐼) as the independent variable: 

𝐹𝐶𝐷𝑝𝑟𝑒𝑑 = 𝑎 × 𝑆𝑃𝐸𝐼 + 𝑏  (11) 

Where 𝑎 and 𝑏 These are the regression coefficients. The predicted FCD (𝐹𝐶𝐷𝑝𝑟𝑒𝑑) 

represents the vegetation condition expected solely under climatic influence. Next, the residuals 

(𝐹𝐶𝐷𝑟𝑒𝑠) were calculated by subtracting the predicted FCD from the observed FCD (𝐹𝐶𝐷𝑜𝑏𝑠): 

𝐹𝐶𝐷𝑟𝑒𝑠 = 𝐹𝐶𝐷𝑜𝑏𝑠 − 𝐹𝐶𝐷𝑝𝑟𝑒𝑑       (12) 

The temporal trends of the calculated residuals (𝐹𝐶𝐷𝑟𝑒𝑠) were then analyzed to isolate 

anthropogenic impacts. A statistically significant negative trend in residuals implies vegetation 

degradation driven by human activities (e.g., overgrazing), whereas a positive trend suggests 

human-induced improvement (e.g., restoration efforts). A non-significant trend (or trend of 

zero) indicates that vegetation dynamics are primarily controlled by climatic variability. 

 

4. Results 

The results derived from satellite image processing and climate data analysis are presented in 

this section. First, the spatial distribution of planted forest canopy density was assessed using 

biophysical indicators. Second, climatic variability was analyzed across the study region. 

Finally, the relationship between vegetation dynamics and climate fluctuations was examined 

to understand ecosystem responses. 

 

4.1. Assessment of planted forest density 

The indices AVI, BSI, SI, and TI were processed to estimate canopy density. VD was calculated 

by combining AVI and BSI, while SI and TI were integrated to compute the SSI. Together, VD 

and SSI were used to estimate FCD values, expressed as pixel-level canopy cover percentages. 

High AVI values consistently corresponded to higher FCD, whereas low AVI values coupled 

with high BSI values indicated bare land. Conversely, low BSI values signified vegetated 

surfaces. SI values were low for shrub-dominated or open areas, highlighting canopy gaps and 

damage associated with reduced cover. TI increased with decreasing vegetation, reaching 

higher values in barren landscapes. 

VD, defined as the proportion of soil surface shaded by canopy, was derived using principal 

component analysis (PCA) to address the negative correlation between AVI and BSI. Figure 4 

illustrates the mean AVI distribution for the 10-year study period. 

 

4.2. Advanced vegetation index (AVI) 

Figure 4 shows the spatial distribution of vegetation health and density across the study area. 

Patches with high AVI values, representing denser and healthier vegetation, were concentrated 

within afforested zones and served as relatively stable plantation cores. In contrast, extensive 

areas exhibited low AVI values, reflecting sparse, stressed, or degraded vegetation. 
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Fig. 3. Spatial distribution of the mean Advanced Vegetation Index (AVI) across the afforested zones 

of Semnan Province, derived from Landsat 8 OLI imagery (averaged over 2013–2022). High values 

(blue/green) indicate denser and healthier vegetation clusters, while low values (yellow/orange) 

correspond to sparse canopies or stressed vegetation areas. The black polygons delineate the boundaries 

of the planted forests. 

 

Fig. 4. Spatial distribution of the mean Bare Soil Index (BSI) for the period 2013–2022. High BSI values 

(blue/purple) represent exposed soil surfaces with minimal vegetation cover, indicating areas highly 

susceptible to wind erosion. Low values (yellow/orange) correspond to vegetated areas where soil 

exposure is minimized by canopy cover. 
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The spatial distribution of vegetation health and canopy density is shown, with high AVI 

values indicating dense, stable plantation patches. BSI and TI maps (Figures 5 and 6) present 

inverse vegetation patterns: high BSI values (yellow/orange) coincide with low AVI areas, 

indicating bare or sparsely vegetated land, while high TI values (blue/purple) correspond to 

vegetation loss and elevated surface temperatures caused by exposed soil. This negative 

relationship between vegetation cover and surface temperature is a key indicator of 

desertification. 

High BSI values (yellow to brown) correspond to exposed or sparsely vegetated land, 

overlapping with areas of low AVI, and indicating extensive bare surfaces within afforested zones. 

 

Fig. 5. Spatial distribution of the mean Thermal Index (TI) derived from the thermal infrared 

band of Landsat 8 (2013–2022). High values (yellow/orange) indicate higher surface 

temperatures associated with bare soil and sparse vegetation, while low values (purple/blue) 

correspond to denser vegetation areas with lower thermal emission due to evapotranspiration 

cooling effects. 

 

Areas with high TI values coincide with zones of low vegetation cover, reflecting elevated 

surface temperatures due to increased solar absorption by exposed soils. The inverse 

relationship between TI and vegetation cover highlights thermal signatures of land degradation 

and desertification. 

After generating the TI map, the SI and the advanced SI were produced. The calculation of 

the advanced SI is the only step in the implementation of the FCD model where the use of 

simple statistical thresholds, such as the mean, median, or mode, is not recommended. Instead, 

values are normalized to a 0–100 scale to standardize shadow intensity. In the conventional SI, 

pixel values may range from 0 to an unrestricted upper limit, whereas in the advanced SI, all 

values are constrained to 0-100, improving interpretability and comparability. Figure 7 

illustrates the SI map, where lighter areas indicate greater canopy shadow and correspondingly 

higher index values. 
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Fig. 6. Spatial distribution of the mean Shadow Index (SI) (2013–2022). High SI values (lighter/white 

tones) indicate areas with greater canopy shadow intensity, reflecting a more complex and multi-layered 

forest structure. Low values (darker/black tones) represent open or flat terrain with minimal vertical 

vegetation structure. 

 

Fig. 7. Spatial distribution of the Scaled Shadow Index (SSI), obtained by integrating the Shadow Index 

(SI) and Thermal Index (TI) using Principal Component Analysis (PCA). This index enhances the 

differentiation of vegetation canopy from other dark surface features. High SSI values indicate areas 

with dense forest canopy, characterized by high shadow intensity and relatively lower surface 

temperatures, whereas low SSI values correspond to open areas with minimal vegetation shading. 
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Lighter areas indicate higher SI values, reflecting greater canopy shading and denser 

vegetation. PCA integration was then applied to the combined SI and TI layers to derive the 

SSI map (Figure 8). This integration enhances canopy detection by capturing both shading and 

surface temperature effects. 

Similarly, AVI and BSI were integrated using PCA to generate VD. Given the negative 

correlation between AVI and BSI, the first principal component (PC1) was selected as the basis 

for VD. The transformation standardized vegetation density across the landscape, assigning 

values near 0 to bare-land pixels and values near 100 to areas with the densest vegetation. 

 

Fig. 8. Spatial distribution of Vegetation Density (VD) derived from the Principal Component Analysis 

(PCA) of AVI and BSI indices. High VD values correspond to areas with dense vegetation cover and 

minimal soil exposure, while low VD values indicate sparse vegetation or bare soil. 

 

The final FCD map (Figure 9) quantified the vegetation structure of the planted forests. The 

analysis revealed that the canopy density within the afforested zones ranged from 44.97% to 

55.78%. This indicates that the Haloxylon spp. plantations have maintained a moderate and 

relatively uniform canopy structure across the study area. Unlike natural forests, which may exhibit 

extreme density variations, these man-made stands show a consistent cover typical of established 

desert plantations, with no areas falling into the sparse (<10%) or closed (>60%) density classes. 

 

4.3. SPEI results 

The temporal analysis of the Standardized Precipitation-Evapotranspiration Index (SPEI) 

revealed significant fluctuations in moisture availability over the study period (2013–2022). As 

illustrated in Figure 10, the region experienced severe and prolonged drought conditions, 

particularly towards the end of the decade. The most severe drought year was 2022, where the 

SPEI reached its lowest values across all time scales, with an annual average of -2.28 for SPEI-

9 and -2.22 for SPEI-12, indicating extreme hydrological stress. Conversely, a brief wet period 

was observed in 2019 and 2020, with SPEI values peaking at approximately +1.46 (SPEI-3). 



434  DESERT, 30-2, 2025 

 

 

 

Fig. 9. Final Forest Canopy Density (FCD) map of the planted forests in Semnan Province, averaged 

over the 2013–2022 period. The map classifies canopy density into percentages. High values represent 

high-density forest patches (>60%), while low values (yellow/orange) indicate low-density or degraded 

stands (<30%). This map serves as the primary indicator of vegetation status for further analysis 

 

 

 

Fig. 10. Temporal variation of the Standardized Precipitation-Evapotranspiration Index (SPEI) at 

different time scales: (a) 3-month, (b) 6-month, (c) 9-month, and (d) 12-month, for the period 2013–

2022. Positive values (above zero) indicate wet periods, while negative values (below zero) denote 

drought conditions. The prolonged drought event from 2013 to 2018 is evident across all time scales. 
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4.4. Relationship between climate and forest health: correlation analysis 

The correlation analysis (Table 2) indicated that forest canopy density was not significantly 

influenced by precipitation variability over the 10 years. Although the highest correlation 

coefficient was observed at the 9-month lag (R = 0.21), it was not statistically significant (p = 

0.56, n = 10). This weak coupling suggests that vegetation in the study area is largely decoupled 

from short-term atmospheric precipitation. 

Table 2. Pearson correlation coefficients (R) between FCD and SPEI at various time scales. 

Timescale SPEI-3 SPEI-6 SPEI-9 SPEI-12 

Correlation (𝑅) 0.03 0.08 0.21* 0.17 

𝑝-value 0.935 0.826 0.561 0.638 

Sample Size (𝑛) 10 10 10 10 

 

Lagged Climate Response. The strongest significant correlation was observed at a 9-month 

timescale (R = 0.21). This indicates that the response of desert plantations to precipitation 

variability is delayed rather than immediate. In particular, Haloxylon spp. requires extended 

periods of soil moisture accumulation, typically during autumn and winter, to manifest positive 

growth responses in the subsequent spring and summer. Thus, the 9-month lag most accurately 

captures the cumulative effect of precipitation on vegetation dynamics. 

Spatial Heterogeneity. The spatial correlation map (Figure 11) shows that the relationship 

between climate and forest health is not uniform across space. Strong positive correlations are 

concentrated in the central and eastern plantation zones, where climate exerts dominant control 

and human disturbances appear limited. Conversely, weak or negative correlations emerge in 

other areas, suggesting that non-climatic pressures (such as groundwater depletion, 

overgrazing, and poor management) have offset the benefits of favorable rainfall, resulting in 

continued canopy decline. 

 

4.5. Attribution of vegetation changes to climate and human factors 

To isolate the role of anthropogenic drivers, the residuals (difference between observed and 

climate-predicted FCD) were analyzed for temporal trends using the Mann-Kendall test (Figure 

12). The resulting Z-statistics ranged from -1.40 to +1.40 across the study area. Since these 

values fall within the range of non-significant trends (-1.96 < Z < +1.96 at 95% confidence 

level), no statistically significant anthropogenic degradation or improvement trends were 

detected. This suggests that while human activities (degradation or restoration) are present, they 

have not caused a statistically abrupt shift in the ecosystem state during this specific 10-year 

period, implying a relative stability in human pressures. 

 

5. Discussion 

This study assessed the sustainability of desert plantations in Semnan Province and 

disentangled the relative contributions of climate variability and human activities. The 

discussion is organized to address the three key research questions posed in the introduction. 
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Fig. 1. Spatial distribution of the Pearson correlation coefficients (R) between Forest Canopy Density 

(FCD) and the 9-month Standardized Precipitation-Evapotranspiration Index (SPEI-9) across the study 

area (2013–2022). Green pixels indicate positive correlations where vegetation dynamics follow 

climatic trends, while purple pixels show weak or negative correlations, suggesting the decoupling of 

vegetation from climate due to non-climatic factors (e.g., groundwater or human impact). 

 

Fig. 12. Spatial distribution of the trends in anthropogenic impacts on forest canopy density (2013–

2022), derived from the Residual Trend Analysis (RESTREND). This map illustrates the Mann-Kendall 

Z-statistics calculated for the time series of residuals (the difference between observed FCD and climate-

predicted FCD). 
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5.1. Spatial and Temporal Trends in Forest Canopy 

A key outcome is the heterogeneous spatial distribution of FCD. Although afforestation is 

widely recognized as an effective strategy for combating desertification (Chen et al., 2019), our 

results show that its success is highly contingent upon local ecological conditions. The observed 

FCD range (45–56%) suggests that despite the harsh environmental conditions, the plantations 

have successfully established a moderate canopy cover, avoiding severe degradation (low 

density < 10%) or collapse. This consistency in canopy density contrasts with some reports 

from other arid regions where large-scale plantations faced massive dieback (Chai et al., 2019), 

indicating a relatively high resilience of the planted species in Semnan Province.  

 

5.2. Attribution of Changes: Climate vs. Human Drivers 

Regarding the role of climate, our analysis showed no statistically significant correlation 

between SPEI and FCD (R = 0.21, p > 0.05, N = 10). While an R-value of 0.21 suggests a slight 

positive tendency at a 9-month lag, the lack of statistical significance indicates that precipitation 

variability is not the primary driver of vegetation dynamics in this system. This finding supports 

the hypothesis of ecological decoupling, where deep-rooted species, such as Haloxylon spp. 

rely more on groundwater stability than on transient rainfall events. Consequently, the observed 

canopy dynamics are likely governed by non-climatic factors (Alamdarloo et al., 2018;  

Jiang et al., 2022).  

 

5.3. Hotspots of Degradation and Resilience 

The spatial analysis utilizing RESTREND provided further insight into the anthropogenic 

footprint. Contrary to expectations of rapid degradation, the Mann-Kendall trend test on 

residuals revealed no statistically significant trends (Z-values ranging from -1.40 to +1.40) 

across the entire study area. This absence of significant trends indicates a state of relative 

stability, suggesting that anthropogenic pressures—such as grazing intensity and groundwater 

extraction—have remained constant rather than intensifying during the 2013–2022 period.  

This observation aligns with findings from Kundu et al. (2017) in India and Zhang et al. 

(2016) in Inner Mongolia, where anthropogenic drivers were identified as major determinants 

of desertification processes. In the present study area, although no distinct "degradation 

hotspots" (characterized by significant negative trends) were statistically identified, the overall 

low canopy density suggests that the ecosystem is maintained in a fragile state due to chronic 

human pressures, preventing significant recovery even during favorable climatic episodes 

(Behrangmanesh et al., 2019). 

It is important to acknowledge certain limitations of this study. First, while the FCD model 

provides a robust proxy for canopy density, the lack of extensive historical ground-truth data 

limited our ability to perform a pixel-by-pixel validation for older dates. Second, although the 

Residual Trend Analysis (RESTREND) allowed us to isolate human impacts, we did not 

directly quantify specific human activities (e.g., pumping rates or grazing intensity) due to data 

scarcity. Future research should integrate socio-economic data and groundwater modeling to 

further refine the attribution of these anthropogenic drivers. 

 

6. Conclusion 

This study evaluated the sustainability of planted aridland forests in Semnan Province by 

distinguishing the relative roles of climate variability and human activities. The findings reveal 

that these forests have maintained a moderate canopy density despite environmental stressors. 
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The analysis demonstrated a non-significant correlation between canopy density and climatic 

drought indices (P > 0.05), highlighting the decoupling of vegetation from precipitation and the 

dominance of anthropogenic stressors. Furthermore, the Residual Trend Analysis indicated no 

significant trend in human impacts, suggesting a status quo of chronic pressure rather than rapid 

recent degradation. 

Therefore, to ensure long-term sustainability, management strategies must move beyond 

general conservation goals to specific, actionable measures. Prioritized interventions should 

include: (1) enforcing strict groundwater quotas and shutting down illegal wells within a 5-km 

buffer of afforested zones to restore the water table; (2) implementing rotational grazing 

schemes that strictly exclude livestock during critical regeneration periods (spring and early 

summer); and (3) adopting drought-adaptive silvicultural practices, such as thinning of 

senescent stands to reduce water competition. Without these targeted interventions, adaptation 

to climate variability alone will be insufficient to secure the persistence of these critical national 

assets. 
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