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This study evaluates land use and land cover (LULC) changes in Fars Province, 

Iran, using machine learning algorithms, specifically comparing the performance 

of two non-parametric support vector machine (SVM) and random forest 

models. With rapid urbanization and agricultural expansion, accurate LULC 

classification is critical for environmental monitoring and land management.  

Applying the Google Earth Engine platform, multi-temporal Landsat 8 imagery 

was assessed. The findings demonstrated all classification methods presented 

high accuracy metrics and kappa coefficient values. The SVM algorithm 

attaining a mean overall accuracy of 91.42% for Landsat 8 imagery to show best 

performance among all evaluated methods. According to LULC change 

detection performed by the most accurate classification algorithm, the results 

indicated an increase in urban parks, gardens, and mountainous rangelands, 

while barren lands experienced a decline. The evaluation of LULC changes 

impacts on land surface temperature (LST) shows that enhanced vegetation 

cover played a key role in reducing LST. A remarkable decrease in both 

maximum and minimum LST values was observed, declining 37.31°C and 

22.47°C in 2019 to 34.45°C and 19.98°C in 2023, respectively. Furthermore, the 

findings highlight integrating high-resolution satellite imagery with the SVM 

algorithm leads to achieve a highly accurate and efficient approach for LULC 

mapping. Consequently, this method proves to be a valuable tool for decision-

making in natural resource management and urban planning in similar regions. 
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1. Introduction 

Changes in land use and land cover (LULC) are significant factors in environmental 

transformation, especially in areas undergoing swift urban growth or ecological pressure. 

Comprehending how landscapes change over time is crucial for assessing environmental 

deterioration, the pressure on water resources, and susceptibility to climate-related threats. 

Despite a wealth of research on LULC dynamics across different geographical areas, arid and 

semi-arid regions are still under-researched, even though they are highly susceptible to human 

impacts and climate variations (Daba & You, 2022; Silakhori et al., 2024). Such 

environments frequently experience rapid land degradation, depletion of groundwater, and 

loss of vegetation, rendering precise LULC monitoring essential for effective environmental 

management. 

Recent developments in remote sensing have greatly enhanced the ability to identify and 

measure LULC changes through satellite images taken over various time intervals. Cloud-

based platforms such as Google Earth Engine (GEE) provide effective access to extensive 

image archives and support large-scale spatial analysis through powerful computational 

resources. In these platforms, machine learning (ML) algorithms have gained significance 

because of their adaptability and high efficacy in complex landscape classification 

assignments. Algorithms like random forest (RF) and support vector machine (SVM) have 

shown enhanced precision in various environmental contexts and are currently extensively 

used for multi-temporal LULC mapping (Rahmanian et al., 2023; Affonso et al., 2023). 

Monitoring LULC changes is especially crucial for assessing their effects on land surface 

temperature (LST). Changes in vegetation cover, soil exposure, and urban areas can directly 

impact thermal characteristics at the surface, resulting in localized warming or cooling effects. 

Many studies indicate that urban growth, decreased vegetation cover, and changes in 

agricultural land lead to significant rises in LST (Alavipanah et al., 2017; Hua & Ping, 2018). 

Grasping the relationship between LULC changes and LST patterns is crucial for 

environmental planning, particularly in watersheds experiencing climate instability, frequent 

droughts, or rapid land conversion. 

The Shiraz watershed, situated in the Maharloo Lake basin, exemplifies a significant 

scenario where environmental stresses and human activities intersect. In recent decades, 

agricultural areas have been transformed into residential and commercial developments, 

speeding up landscape fragmentation. These modifications have affected local water 

processes, heightened surface runoff, and led to increasing surface temperatures in warm 

seasons. Moreover, the watershed faces risks of water shortage, salinization, and seasonal 

droughts, highlighting the importance of accurate evaluation of land cover alterations and 

their thermal effects. Although its ecological importance is recognized, there has been 

minimal research quantitatively assessing the merged LULC–LST interactions in this area 

utilizing modern ML-focused techniques. 

Considering these challenges, it is evident that a systematic and precise method is required 

to identify LULC changes and assess their thermal effects over time. Datasets obtained from 

satellites, like Landsat images, provide valuable long-term records for this purpose, while 

incorporating ML classifiers in GEE creates an effective system for producing accurate LULC 

maps. Nonetheless, the effectiveness of various ML algorithms may differ based on landscape 

features, class spectral separability, and the quality of samples. Thus, finding the best 

classifier for this watershed is essential to guarantee accurate LULC mapping, which will in 

turn impact the dependability of LST change evaluations. 
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This research seeks to fill the noted gap by performing a multi-temporal examination of 

LULC and its connection with LST in the Shiraz watershed for the years 2019 and 2023. The 

key objectives of this study include: (1) Utilizing the best ML algorithm for generating 

accurate LULC maps; (2) Analyzing the changes in LULC through the study period; (3) 

Investigating the influence of LULC alterations on LST. 

The findings of this study aim to aid environmental planning, risk reduction, and resource 

management efforts in the watershed by providing a clear insight into how land cover changes 

affect temperature fluctuations in a delicate ecological setting. 

 

2. Materials and methods 

2.1. Study Area 

This research was carried out in the urban watershed of Shiraz, which is part of the Maharloo 

Lake basin, located in the central area of Shiraz city, Fars province, southern Iran. The total 

area of the watershed spans 41,133 ha, with geographic coordinates ranging from 632643 to 

662390 in the northern latitude and from 3262310 to 3301466 in the eastern longitude, UTM 

zone 39 (Figure 1). According to meteorological station data, the region receives an average 

annual precipitation of 343.2 mm. The mean annual temperature is approximately 18°C, while 

the average relative humidity is recorded at 40% (IRIMO, 2019). The study area is 

characterized by xeric and thermic soil moisture and temperature regime, respectively 

(Enjavinezhad et al. 2025), with Aridisols and Entisols soil classifications (Keys to Soil 

Taxonomy, 2022). The mean elevation of the area varies around 1,484 meters above sea level. 

Furthermore, the land use pattern in this area is significantly influenced by climatic 

conditions, topographic features, and human activities. 

 

Fig. 1. Location map of Fars province in Iran (a), Location map of the study area (b) 
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2.2. LULC Classification Methodology 

The overall workflow of this study is illustrated in Figure 2, outlining the step-by-step process 

undertaken in the research. Various approaches exist for detecting LULC changes using 

satellite imagery data (Zhu, 2017). One of the most straightforward yet effective methods 

involve comparing RS data collected at multiple time points (Homer et al., 2020). Landsat 8 

satellite images from July 2019 and July 2023 were utilized to generate LULC maps in the 

study area. Additionally, the reference data for this research include satellite imagery, which 

is available for the study years through GEE. 

 

Fig. 2. Flowchart (Overview) of the research methodology 

 

2.3. Preprocessing 

The cloud-based computing platform Google Earth Engine (GEE) was utilized to create 

image collections and process time series. All surface reflectance products from Landsat 8 

within the study area were used as the primary input for classification, allowing for the 

extraction of spectral-temporal metrics. After that, necessary filters and corrections, including 

cloud cover removal, were then applied. For cloud cover removal, the technique proposed by 

Simoni et al. (2015) was implemented within the GEE system. Pixels affected by cloud 

conditions or missing data were excluded from all images using a cloud mask. 

Field observations revealed that the study area consists of four LULC classes: barren land, 

garden, urban park, and mountainous rangeland (Table 1). To improve classification accuracy, 

in addition to the spectral bands, several spectral indices were utilized, including the NDVI, 

normalized difference water index (NDWI), normalized difference built-up index (NDBI), 

bare soil index (BSI), and soil-adjusted vegetation index (SAVI). These spectral indices were 

combined with Landsat 8 data for each year to create a composite image, which was then 

processed using a median filter to form a single image (Loukika et al., 2021). Subsequently, 

reference data (n = 148) were randomly collected from high-resolution images in GEE and 
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used for LULC classification. Of the reference data, 70% (n = 104) were utilized as training 

samples for classifying the satellite images, while the remaining 30% (n = 44) were reserved 

for validating the classification results. Finally, using supervised classification techniques, the 

Landsat 8 images were classified to generate LULC maps for the year 2023. 

Table 1.  Land-use/land-cover classes, area, and balanced reference sample allocation used for 

supervised classification 

 

Land Use Class Area (ha) Number of Samples 

Barren Land 1398.31 30 

Garden 426.50 30 

Urban Park 56.87 30 

Mountainous Rangelands 512.27 30 

 

2.4. Supervised machine learning classification algorithms 
Two widely used and popular classification algorithms, SVM and RF, were applied for 

supervised classification. 

2.4.1. Support Vector Machine (SVM) 

SVM is a supervised learning algorithm widely used for both classification and regression tasks. 

Its primary objective is to identify an optimal hyperplane that effectively separates data points 

belonging to different classes. By maximizing the margin between the data points and the 

decision boundary, SVM enhances classification accuracy. Due to its strong capability in 

handling nonlinear problems and its flexibility through the use of various kernel functions such 

as linear, polynomial, and radial basis function (RBF) kernels SVM has become a popular 

choice for complex pattern recognition and data analysis applications (Talukdar et al., 2020). 

2.4.2. Random Forest (RF) 

RF is a supervised ML technique used for classification and regression tasks. This algorithm 

consists of a collection of DT that are independently constructed (Breiman, 2001). Each tree 

is built by randomly selecting a subset of data and features. The final results are obtained by 

averaging or voting the outcomes from all the trees. Due to its ability to reduce variability and 

enhance accuracy, particularly in complex problems with high-dimensional data, this 

algorithm is highly effective (Maleki et al., 2020). 

 

2.5. Assessment of predictive accuracy 
Evaluating the accuracy of RS data is one of the most crucial and final steps in determining 

the informational value of the output data for the end user (Rwanga and Ndambuki, 2017). 

The use of various statistical methods for assessing the accuracy of LULC classification can 

aid in understanding the reliability of the results and determining whether the research 

objectives have been met (Wang et al., 2019). The accuracy of LULC is evaluated by 

comparing the classified map, produced by different classifiers, with reference data for 

validation (Daba & You, 2022). In this study, the accuracy of the LULC maps generated in 

GEE was validated using Google Earth imagery as the data source. 

The change detection after classification was conducted using a comparison method based 
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on post-classification. LULC maps for 2019 and 2023 were independently classified and then 

compared pixel-by-pixel to detect transitions among land-use classes and measure their 

spatial and areal variations. 

The effect of LULC changes on land surface temperature (LST) was assessed by obtaining 

LST values linked to each LULC category for the two years. Mean LST values were 

computed for each category and analyzed between 2019 and 2023 to evaluate how various 

land-use changes affected surface temperature differences. 

Land surface temperature (LST) was obtained from the thermal infrared data (Band 10) of 

Landsat 8. Digital numbers were transformed into spectral radiance, subsequently converted 

to at-sensor brightness temperature, and then subjected to land surface emissivity correction 

through an NDVI-based emissivity methodology. This standard method guaranteed physically 

consistent estimation of LST. 

 

3. Results 
3.1. LULC Classification Maps 
Figure 3 illustrates the LULC classification maps derived from Landsat 8 images using the 

SVM and RF models. As observed, the SVM classifier mistakenly classified barren land as 

urban parksin both 2019 and 2023. This observation is described qualitatively and does not 

serve as a numerical assessment of class-level precision. 

 

Fig. 3. LULC classification maps derived from Landsat 8 data using the SVM and RF models for the 

years 2019 and 2023 
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The RF classifier misclassified some barren lands and gardens as gardens and urban parks 

(Figure 3). It also incorrectly identified certain barren areas as urban zones and a few gardens 

as mountainous rangelands. 

A comparison between the classified images and the actual land use conditions during the 

studied years reveals that the SVM classifier, utilizing Landsat 8 satellite imagery, achieved 

superior accuracy and exhibited a stronger correspondence with real-world land use patterns. 

Conversely, the RF classifier demonstrated a higher rate of misclassification, erroneously 

assigning certain pixels to incorrect land use categories. 

 

3.2. Accuracy Evaluation 

After classifying LULC using the selected classifiers, the overall accuracy and kappa 

coefficient were computed to validate the classified LULC maps within GEE. A comparative 

assessment of the SVM and RF classifiers, based on overall accuracy and kappa coefficient, is 

summarized in Table 2. 

Table 2. Kappa coefficient and overall accuracy for SVM and RF models based on Landsat 8 data 

Study Year 
SVM Model 

 
RF Model 

Overall accuracy Kappa coefficient Overall accuracy Kappa coefficient 

2019 90.80 0.87  89.50 0.86 

2023 92.04 0.90  91.20 0.88 

 

Our validation results revealed that the SVM classifier exhibited the highest performance, 

achieving overall accuracies of 90.8% and 92.04% with kappa coefficients of 0.87 and 0.90 

for the years 2019 and 2023, respectively. Similarly, the RF classifier demonstrated overall 

accuracies of 89.50% and 91.20%, along with kappa coefficients of 0.86 and 0.88 during the 

same period. These findings indicate that the SVM provides superior accuracy in generating 

LULC maps using Landsat satellite imagery. 

 

3.3. Land use and land cover changes 
The data reveal a 12.49% increase in garden areas, a 13.57% increase in urban parks, and a 4.37% 

increase in mountainous rangelands, whereas barren lands have declined by 33.84%. Analyzing 

satellite imagery from this period validates these findings, indicating that, over the four years, 

certain barren lands have been converted into gardens, industrial zones, and residential areas. 

Furthermore, the relative increase in annual precipitation, the decrease in temperatures, and the 

cessation of prolonged drought conditions in recent years have led to an increase in water 

resources in the mountainous rangelands, resulting in a slight expansion of their total area. 

The classification results of land-use/land-cover (LULC) obtained from Landsat imagery 

show clear spatial variations throughout the study area from 2019 to 2023 (Figure 4). The 

maps show an increase in vegetated land-cover types, such as gardens, urban parks, and 

mountainous rangelands, along with a decrease in barren land regions. These variations are 

spatially diverse and differ across various regions of the watershed, indicating site-specific 

land-use patterns. The recorded LULC changes indicate a significant alteration in surface 

traits, as vegetated classes comprised a greater share of the landscape in 2023 than in 2019. 

The spatial rearrangement of land-cover types emphasizes alterations in land management and 

land-use practices in the study area throughout the examined timeframe. 
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Fig 4. LULC change trend from 2019 to 2023 using the SVM classifier with Landsat 8 imagery 

 

3.5. NDVI Spatial Patterns and Temporal Variations 

The NDVI distribution maps for 2019 and 2023 (Figure 5) illustrate distinct variations in 

vegetation greenness across the two years. Regions defined by gardens, city parks, farmland, 

and hilly rangelands consistently show elevated NDVI values, while barren land regions 

reveal reduced values. Table 3 presents a summary of quantitative NDVI statistics. The 

highest NDVI value rose from 0.58 in 2019 to 0.69 in 2023, signifying improved vegetation 

greenness in certain regions of the study area. 

The lowest NDVI value rose from -0.14 to -0.06 in that timeframe. These changes are 

especially noticeable in regions where the land cover shifted from bare ground to vegetated 

types. In general, the NDVI findings indicate a notable enhancement in vegetation health 

throughout the study region from 2019 to 2023, with spatial trends closely aligned to the 

distribution of various LULC classes. 

Table 3. The variations in NDVI values over the study years 

Year                               NDVImin                     NDVImax 

2019                                               -0.14                                  0.58 

2023                                               -0.06                                  0.69 

 

As non-evaporative surfaces expand and vegetation cover declines, surface temperatures 

tend to increase (Shahfahad, Kumari et al., 2020). To understand the influence of LULC 

changes on LST in our study, we created LST and NDVI distribution maps using Landsat 8 

satellite imagery on the GEE. This enabled a thorough examination of their connection (Figure 

5).  Spatial links were noted between NDVI fluctuations and LST trends in the research region. 

This research interprets the connection between LST and NDVI through relative spatial patterns 

instead of a definitive causal or quantitative relationship. Spatial associations were observed 

between variations in NDVI and differences in LST across different land-use/land-cover 

classes. Considering the moderate spatial resolution of Landsat images and the natural 

uncertainty linked to land-cover classification, the observed LST–NDVI relationship ought to 
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be viewed as a comparative and descriptive examination of surface thermal patterns, instead of 

a conclusive interpretation of the factors influencing temperature. 

 

Fig. 5. NDVI distribution maps for 2019 and 2023 

 

3.6. Land Surface Temperature (LST) Distribution and Changes 

Figure 6 displays the spatial distribution of land surface temperature (LST) for the years 2019 

and 2023. Areas with barren land and constructed surfaces mainly exhibit higher LST values, 

whereas vegetated regions and water bodies are linked to lower temperatures. 

Geographically, the northern, southern, and eastern sections of the study region display 

comparatively elevated LST values, while the central zones, defined by farmland, gardens, 

and hilly rangelands, reveal lower surface temperatures. This spatial difference remains 

consistent throughout both study years. 

 

Fig. 6. LST map for the years 2019 and 2023 
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The quantitative LST statistics shown in Table 4 reveal a decline in both maximum and 

minimum LST values throughout the study period. The highest LST fell from 37.31 °C in 

2019 to 34.45 °C in 2023, and the lowest LST dropped from 22.47 °C to 19.98 °C. These 

findings indicate significant alterations in surface thermal conditions linked to LULC changes 

over the study period. These results suggest that multiple factors, including the type of 

vegetation, plant density, and human activities, can influence LST. Modifications in land 

cover and other surface characteristics, such as land use changes, vegetation growth, and 

urbanization, can lead to notable shifts in surface temperatures. When analyzing land cover 

changes and their effects on surface energy, special attention must be paid to these influencing 

factors. 

The results of recent research conducted by Damayanti et al. (2023) showed an increase in 

vegetation cover leads to a decrease in LST, whereas the drying of lakes results in its increase. 

Similarly, they concluded that changes in soil surface temperature are closely related to land 

cover modifications, with a noticeable rise in soil temperatures in areas where land use 

changes occurred. In general, it can be concluded that land use changes from barren land to 

agricultural areas, gardens, urban parks and mountainous rangelands positively influence the 

spatial distribution of LST. The expansion of vegetative cover and enhanced 

evapotranspiration in these areas contribute to lower LST, thereby potentially improving 

environmental conditions and mitigating the impacts of climate change. Continuous and 

detailed monitoring of such changes using RS data can provide critical insights for effective 

natural resource management and environmental planning. 

Table 4. LST change values over the study year 

Year LSTmin (ºC) LSTmax (ºC) 

2019 22.47 37.31 

2023 19.98 34.45 

 

As observed, barren lands and urban parks exhibit the highest LST values (Figure 6), 

whereas water bodies and vegetated regions demonstrate lower temperatures. The spatial 

analysis of LST over the study period indicates that changes in LULC have directly 

influenced surface temperature. Specifically, areas where barren lands have been converted 

into gardens, urban parks, and mountainous rangelands (increasing NDVI) have experienced a 

reduction in LST. Furthermore, the maps reveal that the northern, southern and eastern parts 

of the study area, predominantly consisting of barren lands and urban zones, exhibits the 

highest LST values. In contrast, the central region, characterized by agricultural fields, 

expanded gardens, and mountainous rangelands, demonstrates lower surface temperatures. 

Research was done by Liping et al. (2018) showed the conversion of barren lands into 

agricultural areas typically results in a reduction of LST, as newly established vegetation can 

absorb a substantial amount of solar radiation and enhance the evapotranspiration process, 

which in turn contributes to temperature reduction. This effect is particularly pronounced in 

regions where irrigation systems are utilized. For example, a study conducted in China 

revealed that the transition from barren land to agricultural use led to a decrease in the 

average LST by up to 2°C in the studied area (Zhu et al., 2017). 

Gardens are typically established in semi-arid and barren regions due to their low water 

requirements and adaptability to dry conditions. These green spaces, including parks, gardens, 
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gardens, and other vegetated areas, can play a significant role in reducing LST, particularly 

during the warmer months. For instance, a study conducted in the Mediterranean region 

revealed that olive gardens reduced LST by an average of 3°C compared to the surrounding 

barren lands (Alganci et al., 2018). 

 

4. Discussion 

The results indicated that SVM offers a superior representation of spectrally intricate urban 

and constructed regions. This is due to SVM's capability to handle high-dimensional input 

spaces featuring non-linear class boundaries (Foody & Mathur, 2004). In contrast, the RF 

model better characterizes continuous vegetation covers like croplands and forests. This 

advantage stems from the ensemble characteristics of the RF algorithm, providing enhanced 

resilience against noise and fluctuations in data (Maleki et al., 2020; Mousavi et al., 2023). 

Visual evaluation of the classification maps showed that SVM generated outputs that were 

more spatially cohesive with reduced random classification noise, especially in fragmented 

landscapes and transitional zones. The ongoing study emphasizes the importance of 

implementing a multi-faceted assessment framework that simultaneously integrates statistical, 

spatial, and semantic precision. This method offers a better understanding of how and why 

SVM classifiers can statistically excel over other techniques in specific situations, particularly 

in dynamic or spectrally diverse settings. The noted disparities in pixel classifications in the 

LULC maps can be attributed to differences in spectral responses, variations in model 

parameter tuning, and discrepancies in algorithm effectiveness. Past research has emphasized 

that LULC classification via satellite imagery is affected by various factors, such as the 

satellite type, weather conditions, classification methods, and unique features of the study 

location. Thus, alterations in the study area, dataset volume, and atmospheric, lighting, or 

geometric factors may influence the classification results and precision (McCarty et al., 2020; 

Nasiri et al., 2022; Yuh et al., 2023). Incorporating these contextual elements in the 

Discussion enhances the comprehension of the noted differences and underlines the 

interpretation of the classification findings showcased in this research. 

Bouslihim et al. (2022) examine into the effectiveness of two ML algorithms, RF and 

SVM, for LULC classification using Landsat 9 and Sentinel-2 imagery. Their findings 

indicated that combining Sentinel-2 data with the SVM classifier yielded the most precise 

classification. Similarly, Abdi (2020) explored the accuracy of non-parametric classification 

algorithms in south-central Sweden. A comparison of four algorithms SVM, RF, extreme 

gradient boosting (XGBoost), and deep learning (DL) showed that the SVM classifier 

achieved the highest overall accuracy. 

Using the classified results, changes over time in vegetation cover were examined. The 

findings show that the overall vegetative cover in the research region rose from 31267.42 ha 

in 2019 to 34483.64 ha in 2023 (Figure 4). These modifications are also apparent in the NDVI 

distribution map (Figure 5). The results indicate a notable correlation among land-use/land-

cover (LULC) alterations, vegetation changes, and trends in land surface temperature (LST) 

within the research region. In particular, the increase in green land-cover types like gardens, 

city parks, and hilly rangelands correlates with elevated NDVI values and reduced surface 

temperatures. 

The noted rise in NDVI signifies enhancements in plant density and surface greenness, 

especially in regions where unproductive land has been transformed into cultivated or semi-

natural vegetation. This pattern aligns with earlier research carried out in semi-arid and 
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Mediterranean settings, where vegetated regions typically show greater NDVI values than 

bare ground because of denser canopy cover and better moisture availability (Alganci et al., 

2018). The alignment between the current results and prior studies strengthens the 

dependability of the noted vegetation trends. The spatial arrangement of LST highlights the 

cooling effect of vegetation cover. Results indicate that barren zones with minimal vegetation 

show elevated LST values, whereas areas with vegetation and irrigation reveal reduced 

surface temperatures. This disparity can be attributed to variations in surface energy balance, 

as vegetation lowers surface heating via shading and evapotranspiration mechanisms. Similar 

associations between LULC and LST have been frequently documented, especially in 

research focusing on changes in land cover from barren or empty zones to agricultural or 

verdant areas (Zhu et al., 2017; Liping et al., 2018). The noted reduction in both maximum 

and minimum LST values during the study period indicates that recent land-cover alterations 

have played a role in regulating surface thermal conditions. This effect is particularly 

significant in semi-arid urban watersheds, where surface warming is frequently exacerbated 

by large barren zones and developed regions. Earlier research has indicated that the growth 

and increase of gardens and urban green areas can greatly lower surface temperatures, 

especially in warm seasons (Alganci et al., 2018), which aligns closely with the spatial 

patterns found in this research. The results indicate that changes in LULC from uninhabited or 

barren regions to vegetated land types positively influence vegetation indices and surface 

temperature patterns. The alignment of this study's findings with earlier research underscores 

the significance of vegetation-focused land management approaches for enhancing 

environmental quality and reducing surface heat. Ongoing observation of LULC, NDVI, and 

LST through remote sensing data offers essential insights for sustainable land-use planning 

and climate adaptation approaches in semi-arid areas. 

 

5. Conclusion 

In this study, the ability of various classifiers on the GEE platform to produce accurate LULC 

maps was evaluated with the aim of identifying the best-performing classifier. The results 

indicated that the SVM classifier, when applied to Landsat 8 imagery in the study area, which 

includes various land use types such as barren lands, gardens, urban parks, and mountainous 

rangelands, outperformed other classifiers. The analysis of land cover changes during the 

study period revealed that the total vegetative cover increased from 31267.42 ha in 2019 to 

34483.64 ha in 2023. This increase in vegetative cover led to a rise in NDVI and a decrease in 

LST. Additionally, cloud-based platforms such as GEE and Landsat 8 satellite data have 

significantly contributed to the enhancement of LULC mapping and monitoring. Overall, the 

accuracy assessment revealed minor variations in overall accuracy and kappa coefficient 

values among the different classifiers. Given that an overall accuracy above 70% is deemed 

acceptable, and a kappa coefficient between 0.40 and 0.85 signifies good agreement (with 

0.86 - 1 indicating excellent agreement, according to Congalton, 1991), both the SVM and RF 

models proved effectiveness and practicality for generating LULC maps from Landsat 8 data. 

However, the SVM algorithm truly emerged as the most suitable classifier for LULC mapping 

in this context. Consequently, LULC classification using high-resolution spatial imagery and 

the SVM algorithm on the GEE platform proves to be an accurate and efficient method for 

assessing land use and cover changes over different periods. Therefore, this approach can 

serve as a valuable tool in natural resource and urban planning, including land use planning 

and water and soil management. However, it is important to consider that while satellite data 
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offers numerous advantages in environmental studies, some limitations exist. As, this method 

encounters challenges in areas affected by clouds and fog, necessitating the use of radar data. 

Future research should explore the use of other classification algorithms, such as deep 

learning techniques, to improve classification accuracy and investigate the integration of 

satellite data with additional datasets, such as RS, field data, and modeling outputs, to 

enhance the quality and precision of land use and cover maps. 
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