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This study evaluates land use and land cover (LULC) changes in Fars Province,
Iran, using machine learning algorithms, specifically comparing the performance
of two non-parametric support vector machine (SVM) and random forest
models. With rapid urbanization and agricultural expansion, accurate LULC
classification is critical for environmental monitoring and land management.
Applying the Google Earth Engine platform, multi-temporal Landsat 8 imagery
was assessed. The findings demonstrated all classification methods presented
high accuracy metrics and kappa coefficient values. The SVM algorithm
attaining a mean overall accuracy of 91.42% for Landsat 8 imagery to show best
performance among all evaluated methods. According to LULC change
detection performed by the most accurate classification algorithm, the results
indicated an increase in urban parks, gardens, and mountainous rangelands,
while barren lands experienced a decline. The evaluation of LULC changes
impacts on land surface temperature (LST) shows that enhanced vegetation
cover played a key role in reducing LST. A remarkable decrease in both
maximum and minimum LST values was observed, declining 37.31°C and
22.47°C in 2019 to 34.45°C and 19.98°C in 2023, respectively. Furthermore, the
findings highlight integrating high-resolution satellite imagery with the SVM
algorithm leads to achieve a highly accurate and efficient approach for LULC
mapping. Consequently, this method proves to be a valuable tool for decision-
making in natural resource management and urban planning in similar regions.
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1. Introduction

Changes in land use and land cover (LULC) are significant factors in environmental
transformation, especially in areas undergoing swift urban growth or ecological pressure.
Comprehending how landscapes change over time is crucial for assessing environmental
deterioration, the pressure on water resources, and susceptibility to climate-related threats.
Despite a wealth of research on LULC dynamics across different geographical areas, arid and
semi-arid regions are still under-researched, even though they are highly susceptible to human
impacts and climate variations (Daba & You, 2022; Silakhori et al., 2024). Such
environments frequently experience rapid land degradation, depletion of groundwater, and
loss of vegetation, rendering precise LULC monitoring essential for effective environmental
management.

Recent developments in remote sensing have greatly enhanced the ability to identify and
measure LULC changes through satellite images taken over various time intervals. Cloud-
based platforms such as Google Earth Engine (GEE) provide effective access to extensive
image archives and support large-scale spatial analysis through powerful computational
resources. In these platforms, machine learning (ML) algorithms have gained significance
because of their adaptability and high efficacy in complex landscape classification
assignments. Algorithms like random forest (RF) and support vector machine (SVM) have
shown enhanced precision in various environmental contexts and are currently extensively
used for multi-temporal LULC mapping (Rahmanian et al., 2023; Affonso et al., 2023).

Monitoring LULC changes is especially crucial for assessing their effects on land surface
temperature (LST). Changes in vegetation cover, soil exposure, and urban areas can directly
impact thermal characteristics at the surface, resulting in localized warming or cooling effects.
Many studies indicate that urban growth, decreased vegetation cover, and changes in
agricultural land lead to significant rises in LST (Alavipanah et al., 2017; Hua & Ping, 2018).
Grasping the relationship between LULC changes and LST patterns is crucial for
environmental planning, particularly in watersheds experiencing climate instability, frequent
droughts, or rapid land conversion.

The Shiraz watershed, situated in the Maharloo Lake basin, exemplifies a significant
scenario where environmental stresses and human activities intersect. In recent decades,
agricultural areas have been transformed into residential and commercial developments,
speeding up landscape fragmentation. These modifications have affected local water
processes, heightened surface runoff, and led to increasing surface temperatures in warm
seasons. Moreover, the watershed faces risks of water shortage, salinization, and seasonal
droughts, highlighting the importance of accurate evaluation of land cover alterations and
their thermal effects. Although its ecological importance is recognized, there has been
minimal research quantitatively assessing the merged LULC—LST interactions in this area
utilizing modern ML-focused techniques.

Considering these challenges, it is evident that a systematic and precise method is required
to identify LULC changes and assess their thermal effects over time. Datasets obtained from
satellites, like Landsat images, provide valuable long-term records for this purpose, while
incorporating ML classifiers in GEE creates an effective system for producing accurate LULC
maps. Nonetheless, the effectiveness of various ML algorithms may differ based on landscape
features, class spectral separability, and the quality of samples. Thus, finding the best
classifier for this watershed is essential to guarantee accurate LULC mapping, which will in
turn impact the dependability of LST change evaluations.
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This research seeks to fill the noted gap by performing a multi-temporal examination of
LULC and its connection with LST in the Shiraz watershed for the years 2019 and 2023. The
key objectives of this study include: (1) Utilizing the best ML algorithm for generating
accurate LULC maps; (2) Analyzing the changes in LULC through the study period; (3)
Investigating the influence of LULC alterations on LST.

The findings of this study aim to aid environmental planning, risk reduction, and resource
management efforts in the watershed by providing a clear insight into how land cover changes
affect temperature fluctuations in a delicate ecological setting.

2. Materials and methods

2.1. Study Area

This research was carried out in the urban watershed of Shiraz, which is part of the Maharloo
Lake basin, located in the central area of Shiraz city, Fars province, southern Iran. The total
area of the watershed spans 41,133 ha, with geographic coordinates ranging from 632643 to
662390 in the northern latitude and from 3262310 to 3301466 in the eastern longitude, UTM
zone 39 (Figure 1). According to meteorological station data, the region receives an average
annual precipitation of 343.2 mm. The mean annual temperature is approximately 18°C, while
the average relative humidity is recorded at 40% (IRIMO, 2019). The study area is
characterized by xeric and thermic soil moisture and temperature regime, respectively
(Enjavinezhad et al. 2025), with Aridisols and Entisols soil classifications (Keys to Soil
Taxonomy, 2022). The mean elevation of the area varies around 1,484 meters above sea level.
Furthermore, the land use pattern in this area is significantly influenced by climatic
conditions, topographic features, and human activities.
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2.2. LULC Classification Methodology

The overall workflow of this study is illustrated in Figure 2, outlining the step-by-step process
undertaken in the research. Various approaches exist for detecting LULC changes using
satellite imagery data (Zhu, 2017). One of the most straightforward yet effective methods
involve comparing RS data collected at multiple time points (Homer et al., 2020). Landsat 8
satellite images from July 2019 and July 2023 were utilized to generate LULC maps in the
study area. Additionally, the reference data for this research include satellite imagery, which
is available for the study years through GEE.

] Methodology }—{ Study Objectives ‘
£ 1

Preprocessing Stage LULC Classification
Landsat-8 satellite images m—) Reference Data
(2019 and 2023) Using SVM and RF Models
1 1
; X Reference Data
.LULC Classification — Image Classification
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Classified LULC Maps ’ Classified LULC Maps ‘
I
Post-Processing Stage ‘
¥
‘ Accuracy Assessment ‘
Change Detection Analysis _L. Overall Accuracy (OA)
(2019 vs. 2023) Kappa Coefficient (KC)
R 3

Evaluating the Impact of LULC Changes on Land
Surface Temperature (LST)

Fig. 2. Flowchart (Overview) of the research methodology

2.3. Preprocessing

The cloud-based computing platform Google Earth Engine (GEE) was utilized to create
image collections and process time series. All surface reflectance products from Landsat 8
within the study area were used as the primary input for classification, allowing for the
extraction of spectral-temporal metrics. After that, necessary filters and corrections, including
cloud cover removal, were then applied. For cloud cover removal, the technique proposed by
Simoni et al. (2015) was implemented within the GEE system. Pixels affected by cloud
conditions or missing data were excluded from all images using a cloud mask.

Field observations revealed that the study area consists of four LULC classes: barren land,
garden, urban park, and mountainous rangeland (Table 1). To improve classification accuracy,
in addition to the spectral bands, several spectral indices were utilized, including the NDVI,
normalized difference water index (NDWI), normalized difference built-up index (NDBI),
bare soil index (BSI), and soil-adjusted vegetation index (SAVI). These spectral indices were
combined with Landsat 8 data for each year to create a composite image, which was then
processed using a median filter to form a single image (Loukika et al., 2021). Subsequently,
reference data (n = 148) were randomly collected from high-resolution images in GEE and
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used for LULC classification. Of the reference data, 70% (n = 104) were utilized as training
samples for classifying the satellite images, while the remaining 30% (n = 44) were reserved
for validating the classification results. Finally, using supervised classification techniques, the
Landsat 8 images were classified to generate LULC maps for the year 2023.

Table 1. Land-use/land-cover classes, area, and balanced reference sample allocation used for
supervised classification

Land Use Class Area (ha) Number of Samples
Barren Land 1398.31 30
Garden 426.50 30
Urban Park 56.87 30
Mountainous Rangelands 512.27 30

2.4. Supervised machine learning classification algorithms
Two widely used and popular classification algorithms, SVM and RF, were applied for
supervised classification.

2.4.1. Support Vector Machine (SVM)

SVM is a supervised learning algorithm widely used for both classification and regression tasks.
Its primary objective is to identify an optimal hyperplane that effectively separates data points
belonging to different classes. By maximizing the margin between the data points and the
decision boundary, SVM enhances classification accuracy. Due to its strong capability in
handling nonlinear problems and its flexibility through the use of various kernel functions such
as linear, polynomial, and radial basis function (RBF) kernels SVM has become a popular
choice for complex pattern recognition and data analysis applications (Talukdar et al., 2020).

2.4.2. Random Forest (RF)

RF is a supervised ML technique used for classification and regression tasks. This algorithm
consists of a collection of DT that are independently constructed (Breiman, 2001). Each tree
is built by randomly selecting a subset of data and features. The final results are obtained by
averaging or voting the outcomes from all the trees. Due to its ability to reduce variability and
enhance accuracy, particularly in complex problems with high-dimensional data, this
algorithm is highly effective (Maleki et al., 2020).

2.5. Assessment of predictive accuracy
Evaluating the accuracy of RS data is one of the most crucial and final steps in determining
the informational value of the output data for the end user (Rwanga and Ndambuki, 2017).
The use of various statistical methods for assessing the accuracy of LULC classification can
aid in understanding the reliability of the results and determining whether the research
objectives have been met (Wang et al., 2019). The accuracy of LULC is evaluated by
comparing the classified map, produced by different classifiers, with reference data for
validation (Daba & You, 2022). In this study, the accuracy of the LULC maps generated in
GEE was validated using Google Earth imagery as the data source.

The change detection after classification was conducted using a comparison method based
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on post-classification. LULC maps for 2019 and 2023 were independently classified and then
compared pixel-by-pixel to detect transitions among land-use classes and measure their
spatial and areal variations.

The effect of LULC changes on land surface temperature (LST) was assessed by obtaining
LST values linked to each LULC category for the two years. Mean LST values were
computed for each category and analyzed between 2019 and 2023 to evaluate how various
land-use changes affected surface temperature differences.

Land surface temperature (LST) was obtained from the thermal infrared data (Band 10) of
Landsat 8. Digital numbers were transformed into spectral radiance, subsequently converted
to at-sensor brightness temperature, and then subjected to land surface emissivity correction
through an NDVI-based emissivity methodology. This standard method guaranteed physically
consistent estimation of LST.

3. Results

3.1. LULC Classification Maps

Figure 3 illustrates the LULC classification maps derived from Landsat 8 images using the
SVM and RF models. As observed, the SVM classifier mistakenly classified barren land as
urban parksin both 2019 and 2023. This observation is described qualitatively and does not
serve as a numerical assessment of class-level precision.
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Fig. 3. LULC classification maps derived from Landsat 8 data using the SVM and RF models for the
years 2019 and 2023
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The RF classifier misclassified some barren lands and gardens as gardens and urban parks
(Figure 3). It also incorrectly identified certain barren areas as urban zones and a few gardens
as mountainous rangelands.

A comparison between the classified images and the actual land use conditions during the
studied years reveals that the SVM classifier, utilizing Landsat 8 satellite imagery, achieved
superior accuracy and exhibited a stronger correspondence with real-world land use patterns.
Conversely, the RF classifier demonstrated a higher rate of misclassification, erroneously
assigning certain pixels to incorrect land use categories.

3.2. Accuracy Evaluation

After classifying LULC using the selected classifiers, the overall accuracy and kappa
coefficient were computed to validate the classified LULC maps within GEE. A comparative
assessment of the SVM and RF classifiers, based on overall accuracy and kappa coefficient, is
summarized in Table 2.

Table 2. Kappa coefficient and overall accuracy for SVM and RF models based on Landsat 8 data

SVM Model RF Model
Study Year — —
Overall accuracy Kappa coefficient Overall accuracy Kappa coefficient
2019 90.80 0.87 89.50 0.86
2023 92.04 0.90 91.20 0.88

Our validation results revealed that the SVM classifier exhibited the highest performance,
achieving overall accuracies of 90.8% and 92.04% with kappa coefficients of 0.87 and 0.90
for the years 2019 and 2023, respectively. Similarly, the RF classifier demonstrated overall
accuracies of 89.50% and 91.20%, along with kappa coefficients of 0.86 and 0.88 during the
same period. These findings indicate that the SVM provides superior accuracy in generating
LULC maps using Landsat satellite imagery.

3.3. Land use and land cover changes

The data reveal a 12.49% increase in garden areas, a 13.57% increase in urban parks, and a 4.37%
increase in mountainous rangelands, whereas barren lands have declined by 33.84%. Analyzing
satellite imagery from this period validates these findings, indicating that, over the four years,
certain barren lands have been converted into gardens, industrial zones, and residential areas.
Furthermore, the relative increase in annual precipitation, the decrease in temperatures, and the
cessation of prolonged drought conditions in recent years have led to an increase in water
resources in the mountainous rangelands, resulting in a slight expansion of their total area.

The classification results of land-use/land-cover (LULC) obtained from Landsat imagery
show clear spatial variations throughout the study area from 2019 to 2023 (Figure 4). The
maps show an increase in vegetated land-cover types, such as gardens, urban parks, and
mountainous rangelands, along with a decrease in barren land regions. These variations are
spatially diverse and differ across various regions of the watershed, indicating site-specific
land-use patterns. The recorded LULC changes indicate a significant alteration in surface
traits, as vegetated classes comprised a greater share of the landscape in 2023 than in 2019.
The spatial rearrangement of land-cover types emphasizes alterations in land management and
land-use practices in the study area throughout the examined timeframe.
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Fig 4. LULC change trend from 2019 to 2023 using the SVM classifier with Landsat 8 imagery

3.5. NDVI Spatial Patterns and Temporal Variations

The NDVI distribution maps for 2019 and 2023 (Figure 5) illustrate distinct variations in
vegetation greenness across the two years. Regions defined by gardens, city parks, farmland,
and hilly rangelands consistently show elevated NDVI values, while barren land regions
reveal reduced values. Table 3 presents a summary of quantitative NDVI statistics. The
highest NDVI value rose from 0.58 in 2019 to 0.69 in 2023, signifying improved vegetation
greenness in certain regions of the study area.

The lowest NDVI value rose from -0.14 to -0.06 in that timeframe. These changes are
especially noticeable in regions where the land cover shifted from bare ground to vegetated
types. In general, the NDVI findings indicate a notable enhancement in vegetation health
throughout the study region from 2019 to 2023, with spatial trends closely aligned to the
distribution of various LULC classes.

Table 3. The variations in NDV|1 values over the study years

Year NDVImin NDVImax
2019 -0.14 0.58
2023 -0.06 0.69

As non-evaporative surfaces expand and vegetation cover declines, surface temperatures
tend to increase (Shahfahad, Kumari et al., 2020). To understand the influence of LULC
changes on LST in our study, we created LST and NDVI distribution maps using Landsat 8
satellite imagery on the GEE. This enabled a thorough examination of their connection (Figure
5). Spatial links were noted between NDVI fluctuations and LST trends in the research region.
This research interprets the connection between LST and NDVI through relative spatial patterns
instead of a definitive causal or quantitative relationship. Spatial associations were observed
between variations in NDVI and differences in LST across different land-use/land-cover
classes. Considering the moderate spatial resolution of Landsat images and the natural
uncertainty linked to land-cover classification, the observed LST-NDVI relationship ought to
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be viewed as a comparative and descriptive examination of surface thermal patterns, instead of
a conclusive interpretation of the factors influencing temperature.
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3.6. Land Surface Temperature (LST) Distribution and Changes
Figure 6 displays the spatial distribution of land surface temperature (LST) for the years 2019
and 2023. Areas with barren land and constructed surfaces mainly exhibit higher LST values,
whereas vegetated regions and water bodies are linked to lower temperatures.

Geographically, the northern, southern, and eastern sections of the study region display
comparatively elevated LST values, while the central zones, defined by farmland, gardens,
and hilly rangelands, reveal lower surface temperatures. This spatial difference remains

consistent throughout both study years.
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The quantitative LST statistics shown in Table 4 reveal a decline in both maximum and
minimum LST values throughout the study period. The highest LST fell from 37.31 °C in
2019 to 34.45 °C in 2023, and the lowest LST dropped from 22.47 °C to 19.98 °C. These
findings indicate significant alterations in surface thermal conditions linked to LULC changes
over the study period. These results suggest that multiple factors, including the type of
vegetation, plant density, and human activities, can influence LST. Modifications in land
cover and other surface characteristics, such as land use changes, vegetation growth, and
urbanization, can lead to notable shifts in surface temperatures. When analyzing land cover
changes and their effects on surface energy, special attention must be paid to these influencing
factors.

The results of recent research conducted by Damayanti et al. (2023) showed an increase in
vegetation cover leads to a decrease in LST, whereas the drying of lakes results in its increase.
Similarly, they concluded that changes in soil surface temperature are closely related to land
cover modifications, with a noticeable rise in soil temperatures in areas where land use
changes occurred. In general, it can be concluded that land use changes from barren land to
agricultural areas, gardens, urban parks and mountainous rangelands positively influence the
spatial distribution of LST. The expansion of vegetative cover and enhanced
evapotranspiration in these areas contribute to lower LST, thereby potentially improving
environmental conditions and mitigating the impacts of climate change. Continuous and
detailed monitoring of such changes using RS data can provide critical insights for effective
natural resource management and environmental planning.

Table 4. LST change values over the study year

Year LSTmin (°C) LSTmax (°C)
2019 22.47 37.31
2023 19.98 34.45

As observed, barren lands and urban parks exhibit the highest LST values (Figure 6),
whereas water bodies and vegetated regions demonstrate lower temperatures. The spatial
analysis of LST over the study period indicates that changes in LULC have directly
influenced surface temperature. Specifically, areas where barren lands have been converted
into gardens, urban parks, and mountainous rangelands (increasing NDVI) have experienced a
reduction in LST. Furthermore, the maps reveal that the northern, southern and eastern parts
of the study area, predominantly consisting of barren lands and urban zones, exhibits the
highest LST values. In contrast, the central region, characterized by agricultural fields,
expanded gardens, and mountainous rangelands, demonstrates lower surface temperatures.
Research was done by Liping et al. (2018) showed the conversion of barren lands into
agricultural areas typically results in a reduction of LST, as newly established vegetation can
absorb a substantial amount of solar radiation and enhance the evapotranspiration process,
which in turn contributes to temperature reduction. This effect is particularly pronounced in
regions where irrigation systems are utilized. For example, a study conducted in China
revealed that the transition from barren land to agricultural use led to a decrease in the
average LST by up to 2°C in the studied area (Zhu et al., 2017).

Gardens are typically established in semi-arid and barren regions due to their low water
requirements and adaptability to dry conditions. These green spaces, including parks, gardens,
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gardens, and other vegetated areas, can play a significant role in reducing LST, particularly
during the warmer months. For instance, a study conducted in the Mediterranean region
revealed that olive gardens reduced LST by an average of 3°C compared to the surrounding
barren lands (Alganci et al., 2018).

4. Discussion

The results indicated that SVM offers a superior representation of spectrally intricate urban
and constructed regions. This is due to SVM's capability to handle high-dimensional input
spaces featuring non-linear class boundaries (Foody & Mathur, 2004). In contrast, the RF
model better characterizes continuous vegetation covers like croplands and forests. This
advantage stems from the ensemble characteristics of the RF algorithm, providing enhanced
resilience against noise and fluctuations in data (Maleki et al., 2020; Mousavi et al., 2023).
Visual evaluation of the classification maps showed that SVM generated outputs that were
more spatially cohesive with reduced random classification noise, especially in fragmented
landscapes and transitional zones. The ongoing study emphasizes the importance of
implementing a multi-faceted assessment framework that simultaneously integrates statistical,
spatial, and semantic precision. This method offers a better understanding of how and why
SVM classifiers can statistically excel over other techniques in specific situations, particularly
in dynamic or spectrally diverse settings. The noted disparities in pixel classifications in the
LULC maps can be attributed to differences in spectral responses, variations in model
parameter tuning, and discrepancies in algorithm effectiveness. Past research has emphasized
that LULC classification via satellite imagery is affected by various factors, such as the
satellite type, weather conditions, classification methods, and unique features of the study
location. Thus, alterations in the study area, dataset volume, and atmospheric, lighting, or
geometric factors may influence the classification results and precision (McCarty et al., 2020;
Nasiri et al., 2022; Yuh et al., 2023). Incorporating these contextual elements in the
Discussion enhances the comprehension of the noted differences and underlines the
interpretation of the classification findings showcased in this research.

Bouslihim et al. (2022) examine into the effectiveness of two ML algorithms, RF and
SVM, for LULC classification using Landsat 9 and Sentinel-2 imagery. Their findings
indicated that combining Sentinel-2 data with the SVM classifier yielded the most precise
classification. Similarly, Abdi (2020) explored the accuracy of non-parametric classification
algorithms in south-central Sweden. A comparison of four algorithms SVM, RF, extreme
gradient boosting (XGBoost), and deep learning (DL) showed that the SVM classifier
achieved the highest overall accuracy.

Using the classified results, changes over time in vegetation cover were examined. The
findings show that the overall vegetative cover in the research region rose from 31267.42 ha
in 2019 to 34483.64 ha in 2023 (Figure 4). These modifications are also apparent in the NDVI
distribution map (Figure 5). The results indicate a notable correlation among land-use/land-
cover (LULC) alterations, vegetation changes, and trends in land surface temperature (LST)
within the research region. In particular, the increase in green land-cover types like gardens,
city parks, and hilly rangelands correlates with elevated NDVI values and reduced surface
temperatures.

The noted rise in NDVI signifies enhancements in plant density and surface greenness,
especially in regions where unproductive land has been transformed into cultivated or semi-
natural vegetation. This pattern aligns with earlier research carried out in semi-arid and
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Mediterranean settings, where vegetated regions typically show greater NDVI values than
bare ground because of denser canopy cover and better moisture availability (Alganci et al.,
2018). The alignment between the current results and prior studies strengthens the
dependability of the noted vegetation trends. The spatial arrangement of LST highlights the
cooling effect of vegetation cover. Results indicate that barren zones with minimal vegetation
show elevated LST values, whereas areas with vegetation and irrigation reveal reduced
surface temperatures. This disparity can be attributed to variations in surface energy balance,
as vegetation lowers surface heating via shading and evapotranspiration mechanisms. Similar
associations between LULC and LST have been frequently documented, especially in
research focusing on changes in land cover from barren or empty zones to agricultural or
verdant areas (Zhu et al., 2017; Liping et al., 2018). The noted reduction in both maximum
and minimum LST values during the study period indicates that recent land-cover alterations
have played a role in regulating surface thermal conditions. This effect is particularly
significant in semi-arid urban watersheds, where surface warming is frequently exacerbated
by large barren zones and developed regions. Earlier research has indicated that the growth
and increase of gardens and urban green areas can greatly lower surface temperatures,
especially in warm seasons (Alganci et al., 2018), which aligns closely with the spatial
patterns found in this research. The results indicate that changes in LULC from uninhabited or
barren regions to vegetated land types positively influence vegetation indices and surface
temperature patterns. The alignment of this study's findings with earlier research underscores
the significance of vegetation-focused land management approaches for enhancing
environmental quality and reducing surface heat. Ongoing observation of LULC, NDVI, and
LST through remote sensing data offers essential insights for sustainable land-use planning
and climate adaptation approaches in semi-arid areas.

5. Conclusion

In this study, the ability of various classifiers on the GEE platform to produce accurate LULC
maps was evaluated with the aim of identifying the best-performing classifier. The results
indicated that the SVM classifier, when applied to Landsat 8 imagery in the study area, which
includes various land use types such as barren lands, gardens, urban parks, and mountainous
rangelands, outperformed other classifiers. The analysis of land cover changes during the
study period revealed that the total vegetative cover increased from 31267.42 ha in 2019 to
34483.64 ha in 2023. This increase in vegetative cover led to a rise in NDVI and a decrease in
LST. Additionally, cloud-based platforms such as GEE and Landsat 8 satellite data have
significantly contributed to the enhancement of LULC mapping and monitoring. Overall, the
accuracy assessment revealed minor variations in overall accuracy and kappa coefficient
values among the different classifiers. Given that an overall accuracy above 70% is deemed
acceptable, and a kappa coefficient between 0.40 and 0.85 signifies good agreement (with
0.86 - 1 indicating excellent agreement, according to Congalton, 1991), both the SVM and RF
models proved effectiveness and practicality for generating LULC maps from Landsat 8 data.
However, the SVM algorithm truly emerged as the most suitable classifier for LULC mapping
in this context. Consequently, LULC classification using high-resolution spatial imagery and
the SVM algorithm on the GEE platform proves to be an accurate and efficient method for
assessing land use and cover changes over different periods. Therefore, this approach can
serve as a valuable tool in natural resource and urban planning, including land use planning
and water and soil management. However, it is important to consider that while satellite data
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offers numerous advantages in environmental studies, some limitations exist. As, this method
encounters challenges in areas affected by clouds and fog, necessitating the use of radar data.
Future research should explore the use of other classification algorithms, such as deep
learning techniques, to improve classification accuracy and investigate the integration of
satellite data with additional datasets, such as RS, field data, and modeling outputs, to
enhance the quality and precision of land use and cover maps.
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