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Effective land management in semi-arid regions is contingent upon the accurate
forecasting of vegetative alterations in response to climatic variations. This
research utilizes the CNN-LSTM model as a hybrid deep learning framework to
predict fluctuations in Normalized Difference Vegetation Index (NDVI) using
lagged Standardized Precipitation Index (SPI) and NDVI inputs. The objective
of the model is to capture the enduring memory effects of vegetation that impact
plant growth, as well as to account for short-term variations in precipitation. A
dataset comprising MODIS NDVI and monthly SPI data from 2001-2022 was
developed for the region of Semnan, Iran, which is characterized by its extreme
aridity. After extensive preprocessing, various configurations of NDVI and SPI
lags were systematically assessed. The optimal performance was obtained
utilizing one-month SPI values with both 1- and 2-month time lags, in
conjunction with a 1-month NDVI lag, resulting in notable accuracy (RMSE =
0.0038; r = 0.968). The application of explainable artificial intelligence
methodologies—including SHAP, LIME, and Random Forest feature
importance—validated that NDVI lag-1 consistently emerged as the most
significant predictor across all analytical approaches. Additionally, SPI lags
made substantial contributions, with SPI-1 generally demonstrating a more
pronounced impact than lags associated with longer precipitation durations.
These results underscore the pivotal influence of short-term vegetative memory
and recent precipitation anomalies in determining the dynamics of NDVI within
dryland ecosystems.
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1. Introduction

Vegetation is a fundamental component of the Earth’s ecological systems, playing a central role
in regulating biogeochemical cycles, stabilizing climate processes, and supporting essential
ecosystem services such as soil protection, water-cycle regulation, and food production (Chapin
et al., 2000; Bonan, 2008). In semi-arid environments, vegetation dynamics are highly sensitive
to fluctuations in precipitation and temperature, making an understanding of climate—vegetation
interactions crucial for sustainable land and water management. Monitoring vegetation change
at landscape scales increasingly relies on satellite-based indicators, particularly the Normalized
Difference Vegetation Index (NDVI), which has become one of the most widely used proxies
of vegetation greenness since its introduction by Tucker (1979). Derived from red and near-
infrared reflectance, NDVI provides valuable information on plant vigor, phenology, and stress
responses (Glenn et al., 2008; Hiep et al., 2023). The long-term consistency and high temporal
resolution of MODIS observations (Justice et al., 1998; Huete et al., 2002) have greatly
expanded the ability of researchers to characterize vegetation dynamics across diverse
ecosystems, including dryland regions.

Among climatic drivers, precipitation variability is a key factor shaping vegetation behavior,
particularly in water-limited regions. The Standardized Precipitation Index (SPI) (McKee et al.,
1993) is widely used to quantify meteorological drought at multiple timescales and has proven
effective in capturing both short-term soil moisture deficits and longer-term hydrological
anomalies that influence vegetation responses. Extensions such as the SPEI incorporate
evaporative demand and further enhance drought characterization (Vicente-Serrano et al.,
2010). Numerous studies have documented that vegetation commonly responds to precipitation
anomalies with temporal lags—reflecting delays in soil moisture recharge, root-zone water
uptake, and canopy greenness development (Ji & Peters, 2003; Vicente-Serrano et al., 2010;
Wu et al., 2015). This lagged behavior highlights the complexity of climate—vegetation
interactions and underscores the need for analytical tools capable of representing non-linear and
time-dependent relationships.

Traditional statistical approaches have been widely used to examine the relationship between
climatic variables and vegetation indices; however, such methods often struggle to capture the
spatial non-stationarity, temporal dependencies, and nonlinearities inherent in ecological
systems (Zhu et al., 2017). Consequently, deep learning (DL) and machine learning (ML)
approaches have gained prominence in ecological modeling. Architectures such as
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks are
particularly well suited to vegetation forecasting because they can extract spatial patterns and
model long-term temporal dependencies (Reichstein et al., 2019; Muruganantham et al., 2022).
Recent studies have demonstrated the superiority of DL-based models for predicting vegetation
indices, drought conditions, and other biophysical parameters, often outperforming traditional
regression techniques (Wu et al., 2019; Chen et al., 2021; Sun et al., 2023; Xiao et al., 2024).
Parallel advances in explainable artificial intelligence (XAIl) have further enabled researchers
to interpret the internal behavior of complex models, offering insights into variable importance
and the interactions that shape ecological outcomes (Zingaro et al., 2024).

It is important to note that the present study focuses on forecasting vegetation dynamics
indirectly through NDVI, a satellite-derived indicator of greenness rather than an in-situ
ecological measurement of biomass, productivity, or species composition. Although ground-
based measurements can provide valuable ecological insight, long-term satellite archives such
as MODIS NDVI (2001-2022) remain essential for modeling large-scale vegetation responses
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in semi-arid environments. Thus, this study aims to predict NDVI variability as a remote-
sensing—based descriptor of vegetation behavior rather than ecological change in the strict
biological sense.

Despite substantial methodological advances, several challenges remain in the literature.
First, the role of lagged SPI1 and NDVI signals—key determinants of vegetation memory—is
often examined in isolation or without systematic evaluation across multiple lag structures.
Second, while hybrid DL models have shown promising performance, their interpretability
remains limited, hindering their use in environmental decision-making. Third, few studies have
integrated DL with XAl techniques to simultaneously achieve high predictive accuracy and
transparent understanding of the climatic drivers of vegetation patterns, particularly in semi-
arid regions such as Iran where drought vulnerability is high.

Responding to these gaps, the present study develops and evaluates a hybrid CNN-LSTM
model to forecast monthly NDVI in the semi-arid Semnan region of Iran using long-term SPI
and MODIS NDVI records (2001-2022). The study specifically (i) systematically analyzes
lagged SP1 and NDVI configurations to quantify vegetation memory effects and (ii) integrates
model predictions with XAl approaches—including Random Forest feature importance, SHAP,
and LIME—to enhance interpretability of vegetation—climate relationships. Improving NDVI
forecasting in water-limited environments directly supports regional drought monitoring and
provides useful insights for agricultural planning and climate adaptation strategies.

2. Materials and methods

2.1 Study Area

Semnan County, located in Semnan Province in north-central Iran (34.89°N, 53.97°E), lies
within a predominantly semi-arid climatic zone at an average elevation of approximately 1130
m above sea level. It is bordered by Damghan to the east, Mahdishahr to the north, and Garmsar
to the west, forming a transition zone between the Alborz highlands and the central Iranian
plateau. The region experiences low annual precipitation of nearly 140 mm, an average annual
temperature of about 17 °C, and around 48 frost days per year, reflecting the strong seasonal
temperature contrasts typical of dryland environments.

Land cover in Semnan County is dominated by arid and semi-arid rangelands with sparse
vegetation, making the area highly sensitive to variations in rainfall and temperature. These
characteristics, together with the region’s ecological fragility and dependence on precipitation-
driven vegetation growth, make Semnan a representative case study for examining climate—
vegetation interactions in water-limited ecosystems.

Figure 1 illustrates the spatial boundaries and geographical location of the study area,
providing a clear contextual understanding of the region’s environmental setting.

2.2 Data Collection

Monthly precipitation data were obtained from the Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS) dataset, a high-resolution product widely used in climate-
impact assessments and drought monitoring applications. Following the standard procedure
introduced by McKee et al. (1993), the CHIRPS monthly precipitation series for 2001-2022
was used to compute the one-month Standardized Precipitation Index (SPI-1). The computation
involved fitting a two-parameter gamma distribution to the long-term precipitation record,
converting cumulative probabilities to a standard normal variate, and generating a temporally
consistent series of precipitation anomalies.
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To ensure temporal compatibility with the monthly SPI-1 series, NDVI data were derived
from the 8-day MODIS Terra MOD09Q1 v6.1 product (250-m resolution). After applying the
product’s native cloud and snow masking, 8-day NDVI layers were composited into monthly
values. All pixels located outside the administrative boundary of Semnan County were removed
prior to spatial aggregation. These steps produced a harmonized monthly time series of
precipitation (SPI-1) and vegetation greenness (NDV1) suitable for lagged-relationship analysis
and hybrid model development.

A series of preprocessing steps was applied to ensure data quality before model
development. First, all variables were normalized using Min—Max scaling to the range [-1, 1],
which enhances comparability across heterogeneous time-series inputs and stabilizes model
training:

—mn_x2-1 (1)

Where X is the original value, Xmin and Xmax are the minimum and maximum of the series,
and X is normalized value of the data in [1, -1].

Outliers were treated using the Interquartile Range (IQR) criterion. Values outside the interval

[Q1-1.5xIQR, Q3+1.5%IQR], were winsorized to the nearest boundary rather than removed.
This strategy maintains temporal continuity, which is essential for lag-based modeling.

Missing monthly values (less than 2% of all observations) were handled using linear
interpolation over time, thus preventing disruptions in constructing lagged feature sequences
and ensuring the integrity of the input time series.

2.3 Temporal lag design and selection
Lagged values of the Standardized Precipitation Index (SPI) and the Normalized Difference
Vegetation Index (NDVI) were evaluated as potential predictors of monthly NDVI, following
evidence that vegetation responses to rainfall anomalies commonly exhibit temporal delays (Ji
& Peters, 2003; Vicente-Serrano et al., 2010; Wu et al., 2015). The search space for lag
combinations was structured using a three-stage procedure.

Stage 1: Individual SPI lags from 1 to 12 months were examined to capture short-term to
annual memory effects.

Stage 2: Sets of SPI lags ({1}, {1,2}, {1,2,3}, {1,6}, {1,3,6}, {1,3,6,9}, {1,3,6,9,12}) were
evaluated across forecast horizons h € {1,3,6,12} months.

Stage 3: Each SPI configuration was extended by incorporating NDVI lags L € {1, ...,6}.

Lag selection was performed using an expanding-window walk-forward validation
procedure to prevent temporal leakage, consistent with established time-series forecasting
practice (Hyndman & Athanasopoulos, 2018). For each candidate configuration, model
performance was assessed using RMSE and Pearson’s correlation coefficient averaged across
validation folds, and the configuration yielding the lowest RMSE was retained. The optimal
structure for h=1 consisted of SPI,,, combined with NDVI,, which aligns with documented
short vegetation memory and sensitivity to recent precipitation anomalies. Final evaluation was
conducted on a held-out test segment comprising the last 20% of the time series.

All features at time t exclusively used information available up to t, and normalization
parameters were derived from the training set and applied consistently to validation and test
subsets, following best practices in ecological deep-learning modeling (Reichstein et al., 2019).
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Fig. 1. Semnan Province within Iran; Semnan County and the study area used for NDVI-SPI analysis.
Data sources: GADM (countries and subnational boundaries), CHIRPS (precipitation), MODIS
(NDVI). Projection: WGS84 (EPSG: 4326);

2.4 CNN-LSTM Hybrid Architecture and Training

To jointly capture short-term temporal patterns and longer-range dependencies, a hybrid 1D-
CNN — LSTM architecture was employed. For each month t, the input consisted of a fixed-
length vector of lagged predictors [SPlt.1, SPlt2, ...; NDVI, ...], while the model predicted
NDV l+h. The overall framework of the model is illustrated in Figure 2, which outlines the main
computational components and their interactions.

Convolutional extraction of local patterns: The lagged sequences were reshaped to (T,F)
(time steps x features). A causal ConvlD layer (32 filters, kernel size = 3), followed by
MaxPoolinglD (pool size = 2), was used to learn short-range temporal motifs, consistent with
recommended CNN configurations for time-series feature extraction (LeCun et al., 2015).

Sequence modeling: A single LSTM (64 units) layer was used to capture temporal memory
and cross-lag dependencies, reflecting the well-established capability of LSTM networks to
model nonlinear and delayed ecological responses (Hochreiter & Schmidhuber, 1997,
Reichstein et al., 2019).

Regularization and output: The regression head consisted of a Dense (32) layer and a linear
output neuron. Dropout (0.2) and ReLU activation were applied for regularization. The model
was trained using Adam (learning rate 10~%), MSE loss, batch size 16, for up to 100 epochs with
EarlyStopping and ReduceLROnPlateau.

Data splitting and leakage control: Hyperparameter/lags were selected using walk-forward
validation on the training set. A chronological 80:20 train—test split was used. Standardization
parameters were derived exclusively from the training subset, and all sequences were
constructed to ensure that month t does not use information from future periods.

This hybrid architecture enables the CNN component to extract short-term temporal patterns
from the lagged precipitation inputs (e.g., SPlt1 and SPl.2), while the LSTM component
captures longer-range dependencies by integrating these signals with vegetation memory
indicators (e.g., NDVIw1). Together, these layers jointly learn how recent precipitation
anomalies and past vegetation conditions contribute to monthly NDVI variability.



292 DESERT, 30-2, 2025

[T 1T RI1

o 0 0 K Fully

Convolutional LSTM layer
layer

Fig. 2. The CNN-LSTM architecture

2.5 Feature Importance Analysis
In order to drastically enhance the interpretability of the predictive model under consideration,
a comprehensive application of diverse methodologies, i.e., Random Forest, SHAP, and LIME,
was executed with commitment:

Random Forest was employed as an ensemble-based baseline model to quantify the relative
importance of the input features. Random Forest ranks predictors according to their contribution
to reducing prediction error, commonly evaluated through the Mean Squared Error (MSE)
(Breiman, 2001):

MSE =~ 3N, (v — 9)? 2

Where N is the number of samples, yi is the actual value in the i-th sample, ¥, is the
predicted value by the model for the i-th sample.

A Random Forest regressor (n_estimators = 500, max_features = ‘sqrt’, a fixed random state
for reproducibility) was trained using the complete predictor set. Feature importance was
quantified using impurity-based importance, also known as Mean Decrease in Impurity (MDI),
which aggregates each feature’s contribution to reducing out-of-bag MSE:

MDI (X;) = Xier p(t). AMSE(t, X;) ©)

Where Xi denotes the feature being evaluated, T is the set of all splitting nodes in a
decision tree, p(t) is the probability of reaching node t, and AMSE (t, X;) represents the
reduction in impurity at node t when the split is made on Xi.

A higher MDI score indicates a more influential feature, as such predictors contribute more
substantially to impurity reduction across the ensemble of decision trees (Breiman, 2001).

To quantify the contribution of each predictor to NDVI forecasting, SHapley Additive
exPlanations (SHAP) were employed. SHAP provides a unified, game-theoretic framework that
assigns additive importance values to individual features based on their marginal contributions
to the model output (Lundberg et al., 2020). In this study, SHAP summary plots and dependence
plots were used to visualize how lagged SPI and NDVI inputs influence the predicted NDVI
values, allowing clear interpretation of both main effects and feature interactions. These visual
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diagnostics facilitate a transparent assessment of the relative influence of short-term
precipitation anomalies and vegetation memory on model predictions.

IS[IAN]—1S|-1)!

¢ = ng{l,...,N}\{i}T (fEuih) - 1) (4)

Where ¢; is SHAP value for feature X;, S is a subset of the entire set of features of N without
considering i, f(S) is the model prediction value using subset S, |S| is the number of elements
in the subset S, |N| is the total number of features.

To provide localized interpretability for individual NDVI predictions, the LIME-Tabular
method was applied to selected test-month instances using a sample size of 5000, default kernel
width, and discretization enabled for continuous variables. LIME constructs a sparse linear
surrogate model g(z) in the neighborhood of each instance, producing signed feature weights
that indicate the direction and magnitude of each predictor’s local influence. All LIME analyses
were conducted exclusively on the out-of-sample test set to ensure that the resulting
explanations reflect generalizable model behavior rather than artifacts of the training data
(Ribeiro et al., 2016).

2.6 Model Evaluation Metrics

To ensure a comprehensive and interpretable assessment of the model’s predictive skill and
reliability, the performance of the proposed CNN-LSTM hybrid architecture was evaluated
using widely adopted statistical metrics and graphical diagnostics. These evaluation procedures
are standard in time-series forecasting and machine-learning validation frameworks, providing
quantitative and visual insights into model accuracy, bias, and temporal consistency (Willmott
& Matsuura, 2005).

2.6.1 Root Mean Squared Error (RMSE)

The RMSE quantifies the average magnitude of prediction errors and is expressed in the same
units as the target variable (here, NDVI). RMSE penalizes larger deviations more heavily and
is widely regarded as one of the most interpretable accuracy metrics in environmental and
geophysical modeling (Willmott et al., 2005):

RMSE = |25,y - 902 ®)

where y: is the observed NDVI at sample i, ¥, is the model prediction, and N is the number
of observations. Lower RMSE values indicate greater predictive accuracy.

2.6.2 Pearson correlation coefficient (r)

Pearson’s correlation coefficient r measures the strength of the linear association between
observed and predicted NDVI values. It helps assess the extent to which the model captures
temporal variability and directionality in vegetation dynamics (Willmott et al., 2005):

r= Z(yi_:}_’)(y\l_j’)_ (6)
[Zoi-972 3097

Where ¥ and 9 denote the sample means of observed and predicted values, respectively.
Values of r close to 1 (or —1) indicate strong positive (or negative) linear agreement.
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2.6.3 Coefficient of determination (R?)

The R2? expresses the proportion of variance in observed NDVI that is explained by the
predictive model. It complements RMSE and r by indicating how well the model reproduces
overall variability (Willmott et al., 2005):

Yi—9)?
R2 =1 —=2ZR) 7
Y-y (7)

2.6.4 Graphical diagnostics.

Graphical diagnostics (e.g., observed—predicted scatter plots, residual patterns, and correlation
heatmaps) were used to visually assess model bias, heteroscedasticity, and temporal
consistency, following standard recommendations for time-series model evaluation (Hyndman
& Athanasopoulos, 2018).

2.7 Interpretability Assessment

To quantify and interpret the influence of lagged climatic and vegetation predictors on model
outputs, model-agnostic interpretability frameworks were employed. Specifically, SHAP
(Lundberg et al., 2020) and LIME (Ribeiro et al., 2016) were applied alongside impurity-based
feature importance from a Random Forest regressor (Breiman, 2001). These approaches
provide complementary perspectives: SHAP assigns additive contribution scores based on
cooperative game theory, LIME fits sparse local surrogate models around individual
predictions, and Random Forest importance quantifies reductions in prediction error
attributable to each feature.

The interpretability results were visualized using summary plots, dependence plots, and local
explanation diagrams, enabling a clear examination of how individual lagged SPI1 and NDVI
inputs shape the predicted NDVI values. In addition, standard diagnostic charts—including
scatter plots, residual plots, correlation heatmaps, and prediction-error histograms—were
incorporated to contextualize interpretability outputs within the model’s overall error structure
(Willmott, 2005).

Together, these interpretability procedures offer a transparent assessment of model behavior
and ensure that the hybrid CNN-LSTM framework remains both robust and explainable when
applied to forecasting vegetation dynamics under variable climatic conditions.

3. Results and discussion

3.1. Evaluation of NDVI Prediction Models

3.1.1 Investigating the Effect of Time Lags in the CNN-LSTM Combined Model

As shown in Table 1, the highest predictive performance among SPI-only configurations was
achieved when the model used monthly SPI lags of 1, 3, 6, and 9 months prior to the forecast
month for a one-month-ahead NDVI prediction.

Although multiple forecast horizons (h = 1, 3, 6, and 12 months) were initially evaluated
during model screening, it is noteworthy that the best-performing models across all experiments
consistently corresponded to a one-month prediction horizon. Consequently, the subsequent
analysis and interpretation focus on short-term (one-month-ahead) forecasting results, as these
emerged objectively from the performance ranking rather than from an a priori modeling choice.

To maintain clarity and avoid excessively long tables, only the top 10 lag-set combinations—
ranked by RMSE and Pearson’s correlation coefficient—are reported in Table 1, while
configurations yielding negative correlations were omitted. Each entry represents the best
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outcome obtained after 10 independent runs of the hybrid CNN-LSTM model, ensuring
robustness against random initialization effects.

Table 1. Top 10 combinations resulting from running the model with different SPI delay

Correlation RMSE Forecast Horizon Lags 5 | Lags 4 | Lags 3 | Lags 2 | Lags 1
0/469 0/0129 1 9 6 3 1
0/468 0/0130 6 12 9 6 3 1
0/459 0/0191 1 12 9 6 3 1
0/395 0/0135 3 12 9 6 3 1
0/378 0/0132 3 6 3 1
0/368 0/0138 1 6 3 1
0/345 0/0173 6 9 6 3 1
0/333 0/0165 12 12 9 6 3 1
0/327 0/0136 12 3 2 1
0/324 0/0148 6 3 2 1

Toillustrate, if the target month is January, the optimal lag combination implies that NDV I, ,
can be most accurately predicted using SPI readings from November, September, June, and
March of the preceding year. Even so, the best configuration yields a Pearson correlation
coefficient of r = 0.47 (R? = 0.22), meaning that approximately 20% of the NDVI variance is
explained by these lagged precipitation inputs. Although the RMSE value reflects a relatively
small average deviation between observed and predicted NDVI values, the moderate
explanatory power indicates that precipitation alone—represented through SPl—accounts for
only a limited portion of vegetation variability in this semi-arid region.

The scatter plot of observed versus predicted NDVI values for the best-performing lag
combination (derived from Table 1) is provided below. Overall, results confirm that model
accuracy generally declines when (i) the number of SPI lag inputs is reduced or (ii) lags become
increasingly distant from the prediction horizon—both patterns consistent with the short-term
memory behavior of vegetation in water-limited ecosystems.

Lags: [1 3 6 9], Horizon: 1 Months

Actual NDVI
251 — — — Predicted NDVI | |

NDVI

Fig. 3. Predicted value vs. actual value of NDVI with only SPI lag as input variable
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3.1.2 Effect of Combining SPI Lags and Adding NDVI Lag

Initial results showed that using a single SPI lag alone limited model accuracy, and the
correlation coefficient was low in many combinations. Therefore, combinations of several SPI
lags that improved the model were considered. However, the best improvement was achieved
when a time lag of NDVI was also added as an input variable. This modification explicitly
accounts for vegetation memory and persistence effects, which are well documented in NDVI
time series. The results of the top 10 combinations are shown in Table (2).

Table 2. Top 10 combinations resulting from running the model with different combinations of SPI
lag and NDVI lag

Correlation RMSE NDVI_Lag | Forecast Horizon | Lags 4 | Lags_3 | Lags_2 | Lags_1
0/968 0/0038 1 1 2 1
0/966 0/0045 1 1 1
0/955 0/0051 2 1 6 1
0/925 0/0063 1 2 6 1
0/913 0/0048 1 2 1
0/880 0/0149 2 2 2 1
0/871 0/0067 2 1 2 1
0/870 0/0111 1 1 6 1
0/849 0/0083 2 3 2 1
0/843 0/0074 1 3 1

It is clearly evident that with this modification, higher accuracy predictions can be made
with simpler combinations of SPI time lags. For the example mentioned in the previous section,
to predict vegetation cover one period (month) ahead, only a combination of the previous 1 and
2 periods' SPI lags, along with the previous period's NDVI lag, is sufficient to estimate
vegetation cover with significantly higher accuracy (R2 = 0.938). Furthermore, the correlation
coefficient for the best results obtained at each stage improved by more than two-fold, and the
RMSE decreased from 0.0128 to 0.0038. This confirms that short-term NDVI persistence
dominates predictive skill, while precipitation acts as a secondary but still relevant driver.

Importantly, the high correlation values obtained after adding NDVI lag should be
interpreted cautiously. These values primarily reflect the strong temporal autocorrelation
inherent in NDVI time series, rather than an exclusive climatic control. Thus, the role of SPI
should be viewed as modulating vegetation dynamics rather than fully determining them.

3.1.3 Comparison of the Best Combinations and Prediction Error Analysis

Based on the obtained results, the three best combinations were selected based on the lowest
RMSE and highest correlation, and their performance was carefully examined. This section
compares the actual NDVI values with the model predictions for these combinations to
determine the model's accuracy.

As seen in Figure 4, the predicted values in the model resulting from the combination of 1
and 2-month lags of SPI with a 1-month lag of NDV1 accurately follow the actual trajectory of
NDVI changes. This correlation is observable even at the peaks and valleys of the trajectory.
The next model, which only lacks the 2-month lag of the SPI variable, deviates slightly from
the actual values in the valleys. In the third model, where the SPI variable is created from a



Forecasting NDVI Variability Using SPI-Driven Hybrid Deep Learning in... / Erfani 297

combination of 1-month and 6-month lags, there is deviation at some peaks and all valleys.
Crucially, referring to Table 2, adding the NDVI variable lag from 2 months to 1 month In the
third model, reduces the correlation from 0.95 to 0.87. This could mean that the effects of
rainfall 6 months prior can impact vegetation 2 months before the observation time.

Although SPIs appears to exert a positive influence in some global analyses (Table 2), its
effect is not uniform. In fact, the influence of SPls varies across analytical methods and
temporal contexts, reflecting the scale-dependent and non-linear nature of precipitation—
vegetation interactions in semi-arid environments. Such behavior is consistent with previous
studies reporting delayed or indirect vegetation responses to antecedent rainfall at seasonal to
sub-seasonal scales.

024 Lags: [1 2], NDVI Lag: 1, Horizon: 1 Months 024 Lags: 1, NDVI Lag: 1, Horizon: 1 Months

Actual NDVI
= = = Predicted NDVI

Actual NDVI
% = = = Predicted NDVI

023 1

0.22

0211

NDVI
NDVI

0.2

019

0.18

017 t t 017

Sample Sample

024 Lags: [1 6], NDVI Lag: 2, Horizon: 1 Months

Actual NDVI

— — — Predicted NDVI
023 T 1

022

021

NDVI

02

019

0.18

0 0 20 Sa:;'o . 50 %  Fig. 4. Predicted value vs. actual value of NDVI
’ with lagged NDVI as an input variable

Even while the hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-
LSTM) model has proven a generally acceptable performance in the context of forecasting
variations in the NDVI, it's important to note that there have been apparent and significant
prediction errors that have appeared during certain temporal segments, usually termed as
troughs, wherein NDV 1 values have dramatically fallen. Many of elements contributing to these
disparities in prediction accuracy call for thorough investigation. First, it is vital to realize that
sudden and quick declines in NDVI are often related with non-repetitive and unexpected



298 DESERT, 30-2, 2025

environmental events including extended drought conditions, changes in land use patterns,
outbreaks of pests, or several kinds of human interventions—all of which pose significant
obstacles for the model's ability to generalize properly given their rare occurrence and the
complicated nature of the underlying processes. Moreover, the current model mostly depends
on historical lagged values of SPI and NDVI, which may not fully cover the whole spectrum of
causal variables at work throughout these abrupt changes, hence restricting its predictive power.
Furthermore, there is the chance of temporal misalignment between the climatic input
parameters and the vegetative response; for example, the late reaction of vegetation to total
losses in rainfall might further aggravate these predictive errors. At last, one should keep in
mind that observational noise found in NDVI measurements, especially during days of overcast
weather or during changing seasons, might drastically impede the model's learning process and
general accuracy. Given these discovered constraints, it is vital that upcoming research efforts
concentrate on combining a wider spectrum of environmental factors and utilize more readable
and open deep learning architectures as such developments might possibly improve the model's
accuracy and robustness during these important and sensitive phases of NDVI forecasting.

3.2 Feature Analysis

The evaluation process of the CNN-LSTM combined model continued with the application of
various feature analysis methods to enhance model transparency and better understand the role
of input variables in NDVI prediction. This section comprises three subsections:

3.2.1 Feature Importance Analysis with Random Forest

To assess the impact of each time lag of SPI and NDVI lag on the predicted NDVI value, the
Random Forest Regressor algorithm was employed. As a non-parametric tree-based algorithm,
this model allows for the calculation of the relative importance of features using metrics such
as Mean Squared Error (MSE) reduction and the coefficient of determination (R2).

Figure 5 shows that in all three combinations, the effect of NDVI lag is significantly higher
than the other two variables on the output. The MSE and R2 values indicate a highly satisfactory
accuracy of the Random Forest analysis results for the predicted outputs in all three
combinations. For a better visual understanding of the importance of each model feature, a
heatmap of the top three combinations is presented in Figure 6.
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Fig. 5. Relative importance chart of features for the top three combinations
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Fig. 5. Continued
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As shown in Figure (6a), the correlation between Actual and Predicted NDVI is 0.96. This
very high value indicates that the deep learning model has successfully predicted the trend and
actual values of NDVI with high accuracy. Such a high value indicates the model's acceptable
performance in reproducing the behavior of the target variable.

The correlation between NDVI Lag and Predicted is 0.99, and with Actual is 0.97. This
indicates that the previous month's NDVI plays a very important role in predicting the current
NDVI. In other words, the NDVI itself in past times (lag=1) has a strong temporal memory in
predicting the future, which has also affected the learning model. Therefore, including the
lagged NDVI in the model has increased its predictive power.

SPI Lag 1 has a correlation of 0.21 with Predicted and 0.15 with Actual. This shows that SPI
one month prior has a weak but noticeable effect on the current NDVI. This is logical, as the
effect of rainfall with a short time lag (about one month) can affect vegetation cover.

SPI Lag 2 has almost no correlation (Actual = -0.03) and (Predicted = -0.011). It seems that
the effect of rainfall with a two-month lag has no significant role in predicting NDVI for this
region or time period.

The results in Figures (6b) and (6c) are similar to the previous combination and show the
weak but noticeable effect of rainfall one month prior on the current vegetation. What is
observed from the images is that by adding a lag to the precipitation index, the effect of the
one-month prior precipitation lag on the Actual and Predicted data improves.

3.2.2 Feature Dependency Analysis with SHAP Values

To interpret the output of the CNN-LSTM model and gain a deeper understanding of how
features affect NDVI prediction, the SHAP (SHapley Additive exPlanations) method was used.
This tool locally and globally analyzes the impact of each feature on the model's output, helping
to better identify non-linear relationships and complex interactions between features.

Figure (7a) shows that NDVI Lag has the highest dispersion and a positive impact on the
output. High values (red) lead to an increase in the predicted NDVI1 value, while low values
(blue) have a decreasing effect.

The 2-month lagged rainfall is mostly distributed around a SHAP value of zero, meaning its
influence is weaker and closer to neutral. However, the slight dispersion of red/blue points
indicates a minor positive and negative impact. Meanwhile, the 1-month lagged rainfall has
almost no effect; its SHAP values are very close to zero, and the colors do not show a dispersed
distribution.

Figure (7b) also shows the wide distribution of NDVI Lag points relative to the vertical axis,
indicating that this feature plays a dominant role in NDVI prediction. Red points (higher NDVI
Lag values) are concentrated on the right (positive SHAP values), indicating that high NDVI
Lag values lead to an increase in the next month's NDVI prediction, and conversely, low values
cause a decrease in the vegetation index prediction. SPI Lag points are distributed around a
SHAP value of zero and have a smaller range than NDVI Lag. However, the dispersion pattern
suggests that the effect of the previous month's rainfall lag on NDVI prediction is relatively
significant, and an increase in this feature value leads to a higher vegetation cover in the
following month.

In Figure (7c), NDVI Lag remains the most important predictor for the next month's NDVI;
it has a strong positive and negative influence depending on the past NDVI value. This index
confirms that the previous month's NDVI is the most important driver of the model in all
combinations. SPI Lagl and SPI Lag2 are both centered near zero, although the effect of the 1-



Forecasting NDVI Variability Using SPI-Driven Hybrid Deep Learning in... / Erfani 301

month rainfall lag is less than the effect of the 6-month rainfall lag on the prediction, but this
effect is direct. That is, increased rainfall in the previous month contributed to increased
vegetation cover one month later. However, the 6-month rainfall lag shows an inverse effect on
vegetation cover one month later. This means that whenever rainfall 6 months prior to the study
date was lower, the vegetation covers one month after that date was better (for example, in some
periods, high rainfall 6 months prior may reduce vegetation cover due to waterlogging or
saturation).
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Fig. 7. SHAP Summary chart for the top three combinations.

The charts in Figure (7) generally show that the maximum SHAP value for NDVI Lag in all
three combinations reaches approximately +0.025. The SHAP range for SP1 Lagl and Lag2 is
very small (approximately £0.005), indicating their minimal influence.

The charts in Figure (8) show the relationship between the NDVI Lag value and its SHAP
value. The color of the points indicates the value of the second feature (SPI Lag).

In Figure (8a), an almost linear positive relationship is observed between the NDVI Lag
value and its SHAP value. As NDVI Lag increases, its impact on the model output also
increases. The color of the points (representing the SPI Lag2 value) is scattered throughout the
chart but does not significantly alter the relationship. This means that the 2-month rainfall lag
has little effect on adjusting the role of NDVI Lag. In other words, the effect of NDVI Lag
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increases linearly independently of the rainfall index lag value. This analysis also holds true for
Figures (8b) and (8c), but the effect of the 1-month rainfall lag on adjusting the role of the
vegetation index lag is examined.

In conclusion, NDVI Lag has a direct and strong influence on the output and is not affected
by the value of the previous month's rainfall lag.
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¢ (SPI Lags [1,6], NDVI Lag [2] important feature in the top three combinations.

In all three combinations, increasing the NDVI Lag value leads to an increase in the SHAP
value. This means that, generally, the higher the NDVI1 in the previous month, the stronger the
model's prediction of a higher NDVI in the following month. The color-coding of the points
shows that different values of SPI Lag (one or two months depending on the combination) have
a minor effect on the main slope of the relationship. In points with cool colors (low SPI values),
a slight deviation towards negative SHAP is observed. In points with warm colors (high SPI
values), they often shift the SHAP graph towards positive values, but this relative change is
very small. This means that rainfall with a one or two-month lag can slightly enhance the effect
of NDVI Lag at high values or slightly weaken it at low values, but the main role still returns
to the linear and direct relationship with NDVI Lag. NDVI Lag is the basis of the modeling.
With an increase in the previous month's NDVI lag, the model expects a higher NDVI in the
current month. SPI Lag acts as a minor modifier. Higher SPI values may slightly increase the
impact of NDVI Lag (warmer points slightly above the general trend line), while lower SPI
values slightly decrease the SHAP at the same NDVI Lag value.
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3.2.3 Local Analysis with LIME

To examine and understand the model's behavior in specific instances (local interpretability),
the LIME (Local Interpretable Model-agnostic Explanations) algorithm was used. This tool
simplifies the main model around a specific point, showing how the features affect the
prediction of that specific instance.
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Fig. 9. LIME diagram for the effect of features on the top three combinations.

In Figure (9a), the locally predicted value is approximately 0.19. NDVI Lag has the greatest
impact on the prediction. However, NDVI lags greater than 0.19 have a decreasing effect on
the predicted value, and the local value of this feature is 0.19, hence it is shown as negative.
After NDVI lag, the 1-month previous rainfall lag affects the predicted value. As observed,
values greater than -0.75 had a decreasing (negative) effect on the predicted vegetation cover
of the following month, and therefore the local value of -0.50 is displayed negatively. The least
impact is related to the 2-month previous rainfall lag, where the local value of -0.67, being
greater than -0.69, has a decreasing (negative) effect on the predicted value.

In Figure (9b), the locally predicted value is approximately 0.19. NDVI Lag is again the
strongest driver of the output value, and its local value is the same as before. SPI Lag 1 (-0.33)
is the only rainfall lag with a negative role here because, in this combination, according to the
LIME analysis, SPI lag values greater than -0.50 have a decreasing effect on the output NDVI
1 month later.

In Figure (9c), the locally predicted value is approximately 0.19. NDVI Lag, despite being
a two-period lag, is still the most effective factor in predicting vegetation cover one month
ahead. However, here, NDVI lags smaller than 0.19 showed a decreasing effect on the output
variable. Regarding the standardized precipitation index lag, the 6-month lag was more
effective than the 1-month lag in predicting vegetation cover. Precipitation values greater than
-0.93 for the 6-month SPI lag had a decreasing effect and greater than -0.85 for the 1-month
SPI lag had an increasing effect on vegetation cover. It can be said that the local values of SPI
Lag 1 (-0.67) have a relatively strong increasing role in the prediction, although the precipitation
of the last 6 months is more effective in predicting the vegetation index.
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As observed, in all three combinations, NDVI Lag (both one and two periods prior) always
has the largest contribution to the prediction of NDVI. This emphasizes that the plant's own
vegetation memory (Lagged NDVI) is the main axis of modeling.

Although SPI Lags have a positive effect in most local samples, the magnitude of their effect
varies slightly in different combinations.

LIME takes the actual values of the features for each sample and shows their
positive/negative impact. This analysis highlights that within different input ranges (e.g., when
NDVI Lag equals 0.18 or 0.19), NDVI prediction can be influenced by SPI Lags.

Comparing the three feature analysis tools, Random Forest, SHAP, and LIME, shows that in
all of them, the NDVI Lag feature has the highest importance in predicting future NDVI values.

Overall, the analysis showed that the most reliable forecasts were obtained when using SPI
lags of one and two months together with an NDV1 lag of one month, which achieved the lowest
prediction errors (RMSE = 0.0038) and the highest correlation (r = 0.968).

Across all feature analysis methods—Random Forest, SHAP, and LIME—the lagged NDVI
variable consistently emerges as the dominant predictor, confirming the central role of
vegetation memory. In contrast, SPI lags exhibit weaker and more variable contributions,
depending on lag length, season, and local conditions.

Notably, the seemingly inconsistent behavior of SPls across Random Forest, SHAP, and
LIME analyses should not be interpreted as a contradiction. Rather, it reflects differences
between global importance (RF), average marginal contribution (SHAP), and local instance-
specific effects (LIME). This pattern underscores that longer precipitation lags influence NDVI
indirectly and episodically, rather than exerting a stable linear effect.

The dominance of lagged NDVI over precipitation-based indices in short-term vegetation
prediction observed in this study is consistent with previous findings in arid and semi-arid
regions. Numerous studies have demonstrated that vegetation dynamics exhibit strong temporal
persistence, reflecting ecosystem memory and delayed physiological responses to climatic
forcing. For instance, Weiss et al. (2004) showed that NDV| variations in semi-arid ecosystems
are strongly influenced by antecedent climatic conditions and that precipitation alone cannot
fully explain inter-annual vegetation variability.

Similarly, large-scale analyses have revealed that vegetation anomalies are often driven by
antecedent precipitation rather than concurrent rainfall, with time-lag effects extending from
one to several months depending on climatic regime and ecosystem type (Papagiannopoulou et
al., 2017; Wu et al., 2015). These lagged responses are frequently associated with soil moisture
storage and drought propagation processes, whereby meteorological drought signals propagate
into ecological responses over delayed time scales (Huang et al., 2017).

In line with these findings, the results of the present CNN-LSTM model indicate that while
SPI contributes to NDVI prediction, its explanatory power is secondary to that of lagged NDVI,
which encapsulates vegetation memory and integrated ecosystem responses. This outcome
supports earlier remote sensing and deep learning studies suggesting that temporal
dependencies embedded in vegetation indices often dominate short-term forecasting skill, while
climatic variables act primarily as modulators of vegetation dynamics rather than sole
predictors (Zhang et al., 2016). Overall, the present results reinforce the consensus that short-
term NDVI forecasting in water-limited environments is largely governed by vegetation
persistence, with precipitation exerting a delayed and indirect influence.

On this basis, the next section turns to the broader ecological meaning of these findings, their
practical applications, and the limitations of the proposed CNN-LSTM approach.
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4. Conclusion

This research precisely presents an advanced hybrid approach that successfully combines
LSTM and CNN architectures, hence incorporating lagged. The main goal of precisely
predicting is to use inputs from SPl and NDVI together with advanced explainable Al
techniques. The complex interactions of vegetation in Iran's semi-arid Semnan region. This
study differs greatly from earlier academic work in that its originality is mainly based on a
thorough analysis of several lag. Configurations that elegantly combine short-term rainfall
variations with the natural memory effects of plants, while also incorporating interpretable
features like Random Forest, SHAP By going beyond the restrictions usually linked to opaque
black-box deep learning models and LIME address their limits.

When taken together, the findings of this exhaustive study quite clearly showed that the
particular setup using SPI lags of one month and two months was superior. With an NDVI lag
of one month, the Root Mean Square indicated the highest level of predictive ability obtained.
RMSE error is 0.0038 and the correlation coefficient (r) is 0.968. These major results support
the idea that while the lagged NDVI acts as a important measure that accurately reflects the
underlying memory and resilience traits found in plant systems. From an ecological perspective,
this supports the general knowledge that vegetation responses inside arid and semi-arid areas
are distinguished by delays as well as nonlinear dynamics. which are exquisitely formed by the
total interaction of soil moisture availability and rainfall patterns.

SHAP and LIME approaches offer a solid framework for interpretability since they regularly
find the lagged NDVI as the main predictor while also explaining SPI's role in predictive
modeling is context-dependent. For agricultural consultants and legislators charged with the
crucial responsibility of creating efficient early warning systems for, such openness is
absolutely vital. drought conditions; designing irrigation scheduling techniques; and creating
climate adaptation strategies precisely suited for the particular local settings in which they run.

Still, it should be noted that this research was only ever confined to one case study using
MODIS data with Moderate Resolution Imaging Spectroradiometer. moderate spatial
resolution with fairly limited range of climatic drivers accompanying. Future studies should
therefore seek to broaden this analytical framework across a variety of ecosystems, include
higher-resolution remote sensing data sources such as Further confirm and improve the
robustness of the suggested model, Sentinel-2 and Landsat, and compare the results with those
of conventional statistical approaches.

Finally, this study demonstrates that integrating explainable artificial intelligence techniques
with deep learning models, specifically the CNN-LSTM framework, can enhance both
predictive performance and interpretability in NDVI forecasting. Beyond improving short-term
prediction accuracy, the proposed approach provides scientifically interpretable insights into
the relative roles of vegetation memory and precipitation variability. These insights contribute
to a better understanding of vegetation—climate interactions in semi-arid regions and may
support more informed decision-making in land-use management, drought monitoring, and
agricultural planning under increasing climate variability and uncertainty.
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