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Effective land management in semi-arid regions is contingent upon the accurate 

forecasting of vegetative alterations in response to climatic variations. This 

research utilizes the CNN-LSTM model as a hybrid deep learning framework to 

predict fluctuations in Normalized Difference Vegetation Index (NDVI) using 

lagged Standardized Precipitation Index (SPI) and NDVI inputs. The objective 

of the model is to capture the enduring memory effects of vegetation that impact 

plant growth, as well as to account for short-term variations in precipitation. A 

dataset comprising MODIS NDVI and monthly SPI data from 2001–2022 was 

developed for the region of Semnan, Iran, which is characterized by its extreme 

aridity. After extensive preprocessing, various configurations of NDVI and SPI 

lags were systematically assessed. The optimal performance was obtained 

utilizing one-month SPI values with both 1- and 2-month time lags, in 

conjunction with a 1-month NDVI lag, resulting in notable accuracy (RMSE = 

0.0038; r = 0.968). The application of explainable artificial intelligence 

methodologies—including SHAP, LIME, and Random Forest feature 

importance—validated that NDVI lag-1 consistently emerged as the most 

significant predictor across all analytical approaches. Additionally, SPI lags 

made substantial contributions, with SPI-1 generally demonstrating a more 

pronounced impact than lags associated with longer precipitation durations. 

These results underscore the pivotal influence of short-term vegetative memory 

and recent precipitation anomalies in determining the dynamics of NDVI within 

dryland ecosystems. 
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1. Introduction  

Vegetation is a fundamental component of the Earth’s ecological systems, playing a central role 

in regulating biogeochemical cycles, stabilizing climate processes, and supporting essential 

ecosystem services such as soil protection, water-cycle regulation, and food production (Chapin 

et al., 2000; Bonan, 2008). In semi-arid environments, vegetation dynamics are highly sensitive 

to fluctuations in precipitation and temperature, making an understanding of climate–vegetation 

interactions crucial for sustainable land and water management. Monitoring vegetation change 

at landscape scales increasingly relies on satellite-based indicators, particularly the Normalized 

Difference Vegetation Index (NDVI), which has become one of the most widely used proxies 

of vegetation greenness since its introduction by Tucker (1979). Derived from red and near-

infrared reflectance, NDVI provides valuable information on plant vigor, phenology, and stress 

responses (Glenn et al., 2008; Hiep et al., 2023). The long-term consistency and high temporal 

resolution of MODIS observations (Justice et al., 1998; Huete et al., 2002) have greatly 

expanded the ability of researchers to characterize vegetation dynamics across diverse 

ecosystems, including dryland regions. 

Among climatic drivers, precipitation variability is a key factor shaping vegetation behavior, 

particularly in water-limited regions. The Standardized Precipitation Index (SPI) (McKee et al., 

1993) is widely used to quantify meteorological drought at multiple timescales and has proven 

effective in capturing both short-term soil moisture deficits and longer-term hydrological 

anomalies that influence vegetation responses. Extensions such as the SPEI incorporate 

evaporative demand and further enhance drought characterization (Vicente-Serrano et al., 

2010). Numerous studies have documented that vegetation commonly responds to precipitation 

anomalies with temporal lags—reflecting delays in soil moisture recharge, root-zone water 

uptake, and canopy greenness development (Ji & Peters, 2003; Vicente-Serrano et al., 2010; 

Wu et al., 2015). This lagged behavior highlights the complexity of climate–vegetation 

interactions and underscores the need for analytical tools capable of representing non-linear and 

time-dependent relationships. 

Traditional statistical approaches have been widely used to examine the relationship between 

climatic variables and vegetation indices; however, such methods often struggle to capture the 

spatial non-stationarity, temporal dependencies, and nonlinearities inherent in ecological 

systems (Zhu et al., 2017). Consequently, deep learning (DL) and machine learning (ML) 

approaches have gained prominence in ecological modeling. Architectures such as 

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks are 

particularly well suited to vegetation forecasting because they can extract spatial patterns and 

model long-term temporal dependencies (Reichstein et al., 2019; Muruganantham et al., 2022). 

Recent studies have demonstrated the superiority of DL-based models for predicting vegetation 

indices, drought conditions, and other biophysical parameters, often outperforming traditional 

regression techniques (Wu et al., 2019; Chen et al., 2021; Sun et al., 2023; Xiao et al., 2024). 

Parallel advances in explainable artificial intelligence (XAI) have further enabled researchers 

to interpret the internal behavior of complex models, offering insights into variable importance 

and the interactions that shape ecological outcomes (Zingaro et al., 2024). 

It is important to note that the present study focuses on forecasting vegetation dynamics 

indirectly through NDVI, a satellite-derived indicator of greenness rather than an in-situ 

ecological measurement of biomass, productivity, or species composition. Although ground-

based measurements can provide valuable ecological insight, long-term satellite archives such 

as MODIS NDVI (2001–2022) remain essential for modeling large-scale vegetation responses 
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in semi-arid environments. Thus, this study aims to predict NDVI variability as a remote-

sensing–based descriptor of vegetation behavior rather than ecological change in the strict 

biological sense. 

Despite substantial methodological advances, several challenges remain in the literature. 

First, the role of lagged SPI and NDVI signals—key determinants of vegetation memory—is 

often examined in isolation or without systematic evaluation across multiple lag structures. 

Second, while hybrid DL models have shown promising performance, their interpretability 

remains limited, hindering their use in environmental decision-making. Third, few studies have 

integrated DL with XAI techniques to simultaneously achieve high predictive accuracy and 

transparent understanding of the climatic drivers of vegetation patterns, particularly in semi-

arid regions such as Iran where drought vulnerability is high. 

Responding to these gaps, the present study develops and evaluates a hybrid CNN–LSTM 

model to forecast monthly NDVI in the semi-arid Semnan region of Iran using long-term SPI 

and MODIS NDVI records (2001–2022). The study specifically (i) systematically analyzes 

lagged SPI and NDVI configurations to quantify vegetation memory effects and (ii) integrates 

model predictions with XAI approaches—including Random Forest feature importance, SHAP, 

and LIME—to enhance interpretability of vegetation–climate relationships. Improving NDVI 

forecasting in water-limited environments directly supports regional drought monitoring and 

provides useful insights for agricultural planning and climate adaptation strategies. 

 

2. Materials and methods 

2.1 Study Area 

Semnan County, located in Semnan Province in north-central Iran (34.89°N, 53.97°E), lies 

within a predominantly semi-arid climatic zone at an average elevation of approximately 1130 

m above sea level. It is bordered by Damghan to the east, Mahdishahr to the north, and Garmsar 

to the west, forming a transition zone between the Alborz highlands and the central Iranian 

plateau. The region experiences low annual precipitation of nearly 140 mm, an average annual 

temperature of about 17 °C, and around 48 frost days per year, reflecting the strong seasonal 

temperature contrasts typical of dryland environments. 

Land cover in Semnan County is dominated by arid and semi-arid rangelands with sparse 

vegetation, making the area highly sensitive to variations in rainfall and temperature. These 

characteristics, together with the region’s ecological fragility and dependence on precipitation-

driven vegetation growth, make Semnan a representative case study for examining climate–

vegetation interactions in water-limited ecosystems. 

Figure 1 illustrates the spatial boundaries and geographical location of the study area, 

providing a clear contextual understanding of the region’s environmental setting. 

 

2.2 Data Collection 

Monthly precipitation data were obtained from the Climate Hazards Group InfraRed 

Precipitation with Stations (CHIRPS) dataset, a high-resolution product widely used in climate-

impact assessments and drought monitoring applications. Following the standard procedure 

introduced by McKee et al. (1993), the CHIRPS monthly precipitation series for 2001–2022 

was used to compute the one-month Standardized Precipitation Index (SPI-1). The computation 

involved fitting a two-parameter gamma distribution to the long-term precipitation record, 

converting cumulative probabilities to a standard normal variate, and generating a temporally 

consistent series of precipitation anomalies. 
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To ensure temporal compatibility with the monthly SPI-1 series, NDVI data were derived 

from the 8-day MODIS Terra MOD09Q1 v6.1 product (250-m resolution). After applying the 

product’s native cloud and snow masking, 8-day NDVI layers were composited into monthly 

values. All pixels located outside the administrative boundary of Semnan County were removed 

prior to spatial aggregation. These steps produced a harmonized monthly time series of 

precipitation (SPI-1) and vegetation greenness (NDVI) suitable for lagged-relationship analysis 

and hybrid model development. 

A series of preprocessing steps was applied to ensure data quality before model 

development. First, all variables were normalized using Min–Max scaling to the range [–1, 1], 

which enhances comparability across heterogeneous time-series inputs and stabilizes model 

training: 

𝑋̃ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
× 2 − 1 (1) 

Where X is the original value, Xmin and Xmax are the minimum and maximum of the series, 

and 𝑋̃ is normalized value of the data in [1, -1]. 

Outliers were treated using the Interquartile Range (IQR) criterion. Values outside the interval 

[𝑄1−1.5×𝐼𝑄𝑅, 𝑄3+1.5×𝐼𝑄𝑅], were winsorized to the nearest boundary rather than removed. 

This strategy maintains temporal continuity, which is essential for lag-based modeling. 

Missing monthly values (less than 2% of all observations) were handled using linear 

interpolation over time, thus preventing disruptions in constructing lagged feature sequences 

and ensuring the integrity of the input time series. 

 

2.3 Temporal lag design and selection  

Lagged values of the Standardized Precipitation Index (SPI) and the Normalized Difference 

Vegetation Index (NDVI) were evaluated as potential predictors of monthly NDVI, following 

evidence that vegetation responses to rainfall anomalies commonly exhibit temporal delays (Ji 

& Peters, 2003; Vicente-Serrano et al., 2010; Wu et al., 2015). The search space for lag 

combinations was structured using a three-stage procedure. 

Stage 1: Individual SPI lags from 1 to 12 months were examined to capture short-term to 

annual memory effects.  

Stage 2: Sets of SPI lags ({1}, {1,2}, {1,2,3}, {1,6}, {1,3,6}, {1,3,6,9}, {1,3,6,9,12}) were 

evaluated across forecast horizons ℎ ∈ {1,3,6,12} months.  

Stage 3: Each SPI configuration was extended by incorporating NDVI lags L ∈ {1, …,6}. 

Lag selection was performed using an expanding-window walk-forward validation 

procedure to prevent temporal leakage, consistent with established time-series forecasting 

practice (Hyndman & Athanasopoulos, 2018). For each candidate configuration, model 

performance was assessed using RMSE and Pearson’s correlation coefficient averaged across 

validation folds, and the configuration yielding the lowest RMSE was retained. The optimal 

structure for ℎ=1 consisted of SPI₁,₂ combined with NDVI₁, which aligns with documented 

short vegetation memory and sensitivity to recent precipitation anomalies. Final evaluation was 

conducted on a held-out test segment comprising the last 20% of the time series. 

All features at time t exclusively used information available up to t, and normalization 

parameters were derived from the training set and applied consistently to validation and test 

subsets, following best practices in ecological deep-learning modeling (Reichstein et al., 2019). 
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Fig. 1. Semnan Province within Iran; Semnan County and the study area used for NDVI–SPI analysis. 

Data sources: GADM (countries and subnational boundaries), CHIRPS (precipitation), MODIS 

(NDVI). Projection: WGS84 (EPSG: 4326);  

 

2.4 CNN-LSTM Hybrid Architecture and Training  

To jointly capture short-term temporal patterns and longer-range dependencies, a hybrid 1D-

CNN → LSTM architecture was employed. For each month t, the input consisted of a fixed-

length vector of lagged predictors [SPIt-1, SPIt-2, …; NDVIt-1, …], while the model predicted 

NDVIt+h. The overall framework of the model is illustrated in Figure 2, which outlines the main 

computational components and their interactions. 

Convolutional extraction of local patterns: The lagged sequences were reshaped to (T,F) 

(time steps × features). A causal Conv1D layer (32 filters, kernel size = 3), followed by 

MaxPooling1D (pool size = 2), was used to learn short-range temporal motifs, consistent with 

recommended CNN configurations for time-series feature extraction (LeCun et al., 2015). 

Sequence modeling: A single LSTM (64 units) layer was used to capture temporal memory 

and cross-lag dependencies, reflecting the well-established capability of LSTM networks to 

model nonlinear and delayed ecological responses (Hochreiter & Schmidhuber, 1997; 

Reichstein et al., 2019). 

Regularization and output: The regression head consisted of a Dense (32) layer and a linear 

output neuron. Dropout (0.2) and ReLU activation were applied for regularization. The model 

was trained using Adam (learning rate 10−3), MSE loss, batch size 16, for up to 100 epochs with 

EarlyStopping and ReduceLROnPlateau. 

Data splitting and leakage control: Hyperparameter/lags were selected using walk-forward 

validation on the training set. A chronological 80:20 train–test split was used. Standardization 

parameters were derived exclusively from the training subset, and all sequences were 

constructed to ensure that month 𝑡 does not use information from future periods. 

This hybrid architecture enables the CNN component to extract short-term temporal patterns 

from the lagged precipitation inputs (e.g., SPIt-1 and SPIt-2), while the LSTM component 

captures longer-range dependencies by integrating these signals with vegetation memory 

indicators (e.g., NDVIt-1). Together, these layers jointly learn how recent precipitation 

anomalies and past vegetation conditions contribute to monthly NDVI variability. 
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Fig. 2. The CNN-LSTM architecture 

 

2.5 Feature Importance Analysis 

In order to drastically enhance the interpretability of the predictive model under consideration, 

a comprehensive application of diverse methodologies, i.e., Random Forest, SHAP, and LIME, 

was executed with commitment:  

Random Forest was employed as an ensemble-based baseline model to quantify the relative 

importance of the input features. Random Forest ranks predictors according to their contribution 

to reducing prediction error, commonly evaluated through the Mean Squared Error (MSE) 

(Breiman, 2001): 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1  (2) 

Where N is the number of samples, yi is the actual value in the i-th sample, 𝑦𝑖̂ is the 

predicted value by the model for the i-th sample. 

A Random Forest regressor (n_estimators = 500, max_features = ‘sqrt’, a fixed random state 

for reproducibility) was trained using the complete predictor set. Feature importance was 

quantified using impurity-based importance, also known as Mean Decrease in Impurity (MDI), 

which aggregates each feature’s contribution to reducing out-of-bag MSE: 

𝑀𝐷𝐼 (𝑋𝑖) = ∑ 𝑝(𝑡). ∆𝑀𝑆𝐸(𝑡, 𝑋𝑖)𝑡∈𝑇  (3) 

Where Xi denotes the feature being evaluated, T is the set of all splitting nodes in a 

decision tree, p(t) is the probability of reaching node t, and ∆𝑀𝑆𝐸(𝑡, 𝑋𝑖) represents the 

reduction in impurity at node t when the split is made on Xi. 

A higher MDI score indicates a more influential feature, as such predictors contribute more 

substantially to impurity reduction across the ensemble of decision trees (Breiman, 2001).  

To quantify the contribution of each predictor to NDVI forecasting, SHapley Additive 

exPlanations (SHAP) were employed. SHAP provides a unified, game-theoretic framework that 

assigns additive importance values to individual features based on their marginal contributions 

to the model output (Lundberg et al., 2020). In this study, SHAP summary plots and dependence 

plots were used to visualize how lagged SPI and NDVI inputs influence the predicted NDVI 

values, allowing clear interpretation of both main effects and feature interactions. These visual 
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diagnostics facilitate a transparent assessment of the relative influence of short-term 

precipitation anomalies and vegetation memory on model predictions. 

𝜙𝑖 = ∑
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!
(𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆))𝑆⊆{1,…,𝑁}\{𝑖}  (4) 

Where 𝜙𝑖 is SHAP value for feature Xi, S is a subset of the entire set of features of 𝑁 without 

considering 𝑖, f(S) is the model prediction value using subset 𝑆, |𝑆| is the number of elements 

in the subset 𝑆, |𝑁| is the total number of features. 

To provide localized interpretability for individual NDVI predictions, the LIME-Tabular 

method was applied to selected test-month instances using a sample size of 5000, default kernel 

width, and discretization enabled for continuous variables. LIME constructs a sparse linear 

surrogate model g(z) in the neighborhood of each instance, producing signed feature weights 

that indicate the direction and magnitude of each predictor’s local influence. All LIME analyses 

were conducted exclusively on the out-of-sample test set to ensure that the resulting 

explanations reflect generalizable model behavior rather than artifacts of the training data 

(Ribeiro et al., 2016). 

 

2.6 Model Evaluation Metrics 

To ensure a comprehensive and interpretable assessment of the model’s predictive skill and 

reliability, the performance of the proposed CNN–LSTM hybrid architecture was evaluated 

using widely adopted statistical metrics and graphical diagnostics. These evaluation procedures 

are standard in time-series forecasting and machine-learning validation frameworks, providing 

quantitative and visual insights into model accuracy, bias, and temporal consistency (Willmott 

& Matsuura, 2005). 

2.6.1 Root Mean Squared Error (RMSE)  

The RMSE quantifies the average magnitude of prediction errors and is expressed in the same 

units as the target variable (here, NDVI). RMSE penalizes larger deviations more heavily and 

is widely regarded as one of the most interpretable accuracy metrics in environmental and 

geophysical modeling (Willmott et al., 2005): 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑁

𝑖=1  (5) 

where 𝑦𝑖 is the observed NDVI at sample 𝑖, 𝑦𝑖̂ is the model prediction, and 𝑁 is the number 

of observations. Lower RMSE values indicate greater predictive accuracy. 

2.6.2 Pearson correlation coefficient (r)  

Pearson’s correlation coefficient r measures the strength of the linear association between 

observed and predicted NDVI values. It helps assess the extent to which the model captures 

temporal variability and directionality in vegetation dynamics (Willmott et al., 2005): 

𝑟 =
∑(𝑦𝑖−𝑦̅)(𝑦𝑖̂−𝑦̅̂)

√∑(𝑦𝑖−𝑦̅)2 ∑(𝑦𝑖̂−𝑦̅̂)2
 (6) 

Where 𝑦̅ and 𝑦̅̂ denote the sample means of observed and predicted values, respectively. 

Values of 𝑟 close to 1 (or −1) indicate strong positive (or negative) linear agreement. 
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2.6.3 Coefficient of determination (R2)  

The R² expresses the proportion of variance in observed NDVI that is explained by the 

predictive model. It complements RMSE and r by indicating how well the model reproduces 

overall variability (Willmott et al., 2005): 

𝑅2 = 1 −
∑(𝑦𝑖−𝑦𝑖̂)2

∑(𝑦𝑖−𝑦̅)
2  (7) 

2.6.4 Graphical diagnostics. 
Graphical diagnostics (e.g., observed–predicted scatter plots, residual patterns, and correlation 

heatmaps) were used to visually assess model bias, heteroscedasticity, and temporal 

consistency, following standard recommendations for time-series model evaluation (Hyndman 

& Athanasopoulos, 2018). 

 

2.7 Interpretability Assessment 

To quantify and interpret the influence of lagged climatic and vegetation predictors on model 

outputs, model-agnostic interpretability frameworks were employed. Specifically, SHAP 

(Lundberg et al., 2020) and LIME (Ribeiro et al., 2016) were applied alongside impurity-based 

feature importance from a Random Forest regressor (Breiman, 2001). These approaches 

provide complementary perspectives: SHAP assigns additive contribution scores based on 

cooperative game theory, LIME fits sparse local surrogate models around individual 

predictions, and Random Forest importance quantifies reductions in prediction error 

attributable to each feature. 

The interpretability results were visualized using summary plots, dependence plots, and local 

explanation diagrams, enabling a clear examination of how individual lagged SPI and NDVI 

inputs shape the predicted NDVI values. In addition, standard diagnostic charts—including 

scatter plots, residual plots, correlation heatmaps, and prediction-error histograms—were 

incorporated to contextualize interpretability outputs within the model’s overall error structure 

(Willmott, 2005). 

Together, these interpretability procedures offer a transparent assessment of model behavior 

and ensure that the hybrid CNN–LSTM framework remains both robust and explainable when 

applied to forecasting vegetation dynamics under variable climatic conditions. 

 

3. Results and discussion 

3.1. Evaluation of NDVI Prediction Models  

3.1.1 Investigating the Effect of Time Lags in the CNN-LSTM Combined Model 

As shown in Table 1, the highest predictive performance among SPI-only configurations was 

achieved when the model used monthly SPI lags of 1, 3, 6, and 9 months prior to the forecast 

month for a one-month-ahead NDVI prediction. 

Although multiple forecast horizons (h = 1, 3, 6, and 12 months) were initially evaluated 

during model screening, it is noteworthy that the best-performing models across all experiments 

consistently corresponded to a one-month prediction horizon. Consequently, the subsequent 

analysis and interpretation focus on short-term (one-month-ahead) forecasting results, as these 

emerged objectively from the performance ranking rather than from an a priori modeling choice. 

To maintain clarity and avoid excessively long tables, only the top 10 lag-set combinations—

ranked by RMSE and Pearson’s correlation coefficient—are reported in Table 1, while 

configurations yielding negative correlations were omitted. Each entry represents the best 
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outcome obtained after 10 independent runs of the hybrid CNN–LSTM model, ensuring 

robustness against random initialization effects. 

Table 1. Top 10 combinations resulting from running the model with different SPI delay  

Lags_1 Lags_2 Lags_3 Lags_4 Lags_5 Forecast Horizon RMSE Correlation 

1 3 6 9  1 0/0129 0/469 

1 3 6 9 12 6 0/0130 0/468 

1 3 6 9 12 1 0/0191 0/459 

1 3 6 9 12 3 0/0135 0/395 

1 3 6   3 0/0132 0/378 

1 3 6   1 0/0138 0/368 

1 3 6 9  6 0/0173 0/345 

1 3 6 9 12 12 0/0165 0/333 

1 2 3   12 0/0136 0/327 

1 2 3   6 0/0148 0/324 

 

To illustrate, if the target month is January, the optimal lag combination implies that NDVIₜ₊₁ 

can be most accurately predicted using SPI readings from November, September, June, and 

March of the preceding year. Even so, the best configuration yields a Pearson correlation 

coefficient of r ≈ 0.47 (R² ≈ 0.22), meaning that approximately 20% of the NDVI variance is 

explained by these lagged precipitation inputs. Although the RMSE value reflects a relatively 

small average deviation between observed and predicted NDVI values, the moderate 

explanatory power indicates that precipitation alone—represented through SPI—accounts for 

only a limited portion of vegetation variability in this semi-arid region. 

The scatter plot of observed versus predicted NDVI values for the best-performing lag 

combination (derived from Table 1) is provided below. Overall, results confirm that model 

accuracy generally declines when (i) the number of SPI lag inputs is reduced or (ii) lags become 

increasingly distant from the prediction horizon—both patterns consistent with the short-term 

memory behavior of vegetation in water-limited ecosystems. 

 

Fig. 3. Predicted value vs. actual value of NDVI with only SPI lag as input variable 
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3.1.2 Effect of Combining SPI Lags and Adding NDVI Lag 

Initial results showed that using a single SPI lag alone limited model accuracy, and the 

correlation coefficient was low in many combinations. Therefore, combinations of several SPI 

lags that improved the model were considered. However, the best improvement was achieved 

when a time lag of NDVI was also added as an input variable. This modification explicitly 

accounts for vegetation memory and persistence effects, which are well documented in NDVI 

time series. The results of the top 10 combinations are shown in Table (2). 

Table 2. Top 10 combinations resulting from running the model with different combinations of SPI 

lag and NDVI lag 

 

Lags_1 Lags_2 Lags_3 Lags_4 Forecast Horizon NDVI_Lag RMSE Correlation 

1 2   1 1 0/0038 0/968 

1    1 1 0/0045 0/966 

1 6   1 2 0/0051 0/955 

1 6   2 1 0/0063 0/925 

1    2 1 0/0048 0/913 

1 2   2 2 0/0149 0/880 

1 2   1 2 0/0067 0/871 

1 6   1 1 0/0111 0/870 

1 2   3 2 0/0083 0/849 

1    3 1 0/0074 0/843 

 

It is clearly evident that with this modification, higher accuracy predictions can be made 

with simpler combinations of SPI time lags. For the example mentioned in the previous section, 

to predict vegetation cover one period (month) ahead, only a combination of the previous 1 and 

2 periods' SPI lags, along with the previous period's NDVI lag, is sufficient to estimate 

vegetation cover with significantly higher accuracy (R² = 0.938). Furthermore, the correlation 

coefficient for the best results obtained at each stage improved by more than two-fold, and the 

RMSE decreased from 0.0128 to 0.0038. This confirms that short-term NDVI persistence 

dominates predictive skill, while precipitation acts as a secondary but still relevant driver. 

 Importantly, the high correlation values obtained after adding NDVI lag should be 

interpreted cautiously. These values primarily reflect the strong temporal autocorrelation 

inherent in NDVI time series, rather than an exclusive climatic control. Thus, the role of SPI 

should be viewed as modulating vegetation dynamics rather than fully determining them. 

3.1.3 Comparison of the Best Combinations and Prediction Error Analysis 

Based on the obtained results, the three best combinations were selected based on the lowest 

RMSE and highest correlation, and their performance was carefully examined. This section 

compares the actual NDVI values with the model predictions for these combinations to 

determine the model's accuracy. 

As seen in Figure 4, the predicted values in the model resulting from the combination of 1 

and 2-month lags of SPI with a 1-month lag of NDVI accurately follow the actual trajectory of 

NDVI changes. This correlation is observable even at the peaks and valleys of the trajectory. 

The next model, which only lacks the 2-month lag of the SPI variable, deviates slightly from 

the actual values in the valleys. In the third model, where the SPI variable is created from a 
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combination of 1-month and 6-month lags, there is deviation at some peaks and all valleys. 

Crucially, referring to Table 2, adding the NDVI variable lag from 2 months to 1 month In the 

third model, reduces the correlation from 0.95 to 0.87. This could mean that the effects of 

rainfall 6 months prior can impact vegetation 2 months before the observation time.  

Although SPI6 appears to exert a positive influence in some global analyses (Table 2), its 

effect is not uniform. In fact, the influence of SPI6 varies across analytical methods and 

temporal contexts, reflecting the scale-dependent and non-linear nature of precipitation–

vegetation interactions in semi-arid environments. Such behavior is consistent with previous 

studies reporting delayed or indirect vegetation responses to antecedent rainfall at seasonal to 

sub-seasonal scales. 

  

 
Fig. 4. Predicted value vs. actual value of NDVI 

with lagged NDVI as an input variable 

 

Even while the hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-

LSTM) model has proven a generally acceptable performance in the context of forecasting 

variations in the NDVI, it's important to note that there have been apparent and significant 

prediction errors that have appeared during certain temporal segments, usually termed as 

troughs, wherein NDVI values have dramatically fallen. Many of elements contributing to these 

disparities in prediction accuracy call for thorough investigation. First, it is vital to realize that 

sudden and quick declines in NDVI are often related with non-repetitive and unexpected 
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environmental events including extended drought conditions, changes in land use patterns, 

outbreaks of pests, or several kinds of human interventions—all of which pose significant 

obstacles for the model's ability to generalize properly given their rare occurrence and the 

complicated nature of the underlying processes. Moreover, the current model mostly depends 

on historical lagged values of SPI and NDVI, which may not fully cover the whole spectrum of 

causal variables at work throughout these abrupt changes, hence restricting its predictive power. 

Furthermore, there is the chance of temporal misalignment between the climatic input 

parameters and the vegetative response; for example, the late reaction of vegetation to total 

losses in rainfall might further aggravate these predictive errors. At last, one should keep in 

mind that observational noise found in NDVI measurements, especially during days of overcast 

weather or during changing seasons, might drastically impede the model's learning process and 

general accuracy. Given these discovered constraints, it is vital that upcoming research efforts 

concentrate on combining a wider spectrum of environmental factors and utilize more readable 

and open deep learning architectures as such developments might possibly improve the model's 

accuracy and robustness during these important and sensitive phases of NDVI forecasting. 

 

3.2 Feature Analysis 

The evaluation process of the CNN-LSTM combined model continued with the application of 

various feature analysis methods to enhance model transparency and better understand the role 

of input variables in NDVI prediction. This section comprises three subsections: 

3.2.1 Feature Importance Analysis with Random Forest 

To assess the impact of each time lag of SPI and NDVI lag on the predicted NDVI value, the 

Random Forest Regressor algorithm was employed. As a non-parametric tree-based algorithm, 

this model allows for the calculation of the relative importance of features using metrics such 

as Mean Squared Error (MSE) reduction and the coefficient of determination (R²). 

Figure 5 shows that in all three combinations, the effect of NDVI lag is significantly higher 

than the other two variables on the output. The MSE and R² values indicate a highly satisfactory 

accuracy of the Random Forest analysis results for the predicted outputs in all three 

combinations. For a better visual understanding of the importance of each model feature, a 

heatmap of the top three combinations is presented in Figure 6. 

  

a( SPI Lags [1,2], NDVI Lag [1]. MSE: 12.96e-06, R2: 0.940 b( SPI Lags [1,0], NDVI Lag [1]. MSE: 19.36e-06, R2: 0.907 

Fig. 5. Relative importance chart of features for the top three combinations 
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c( SPI Lags [1,6], NDVI Lag [2]. MSE: 24.01e-06, R2: 0.897 
Fig. 5. Continued 

 

  

b  ( SPI Lags [1,0], NDVI Lag [1] a  ( SPI Lags [1,2], NDVI Lag [1] 

Fig. 6. Heatmap of the relative importance of 

features for the top three combinations. 

 

c  ( SPI Lags [1,6], NDVI Lag [2] 
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As shown in Figure (6a), the correlation between Actual and Predicted NDVI is 0.96. This 

very high value indicates that the deep learning model has successfully predicted the trend and 

actual values of NDVI with high accuracy. Such a high value indicates the model's acceptable 

performance in reproducing the behavior of the target variable. 

The correlation between NDVI Lag and Predicted is 0.99, and with Actual is 0.97. This 

indicates that the previous month's NDVI plays a very important role in predicting the current 

NDVI. In other words, the NDVI itself in past times (lag=1) has a strong temporal memory in 

predicting the future, which has also affected the learning model. Therefore, including the 

lagged NDVI in the model has increased its predictive power. 

SPI Lag 1 has a correlation of 0.21 with Predicted and 0.15 with Actual. This shows that SPI 

one month prior has a weak but noticeable effect on the current NDVI. This is logical, as the 

effect of rainfall with a short time lag (about one month) can affect vegetation cover. 

SPI Lag 2 has almost no correlation (Actual = -0.03) and (Predicted = -0.011). It seems that 

the effect of rainfall with a two-month lag has no significant role in predicting NDVI for this 

region or time period. 

The results in Figures (6b) and (6c) are similar to the previous combination and show the 

weak but noticeable effect of rainfall one month prior on the current vegetation. What is 

observed from the images is that by adding a lag to the precipitation index, the effect of the 

one-month prior precipitation lag on the Actual and Predicted data improves. 

3.2.2 Feature Dependency Analysis with SHAP Values 

To interpret the output of the CNN-LSTM model and gain a deeper understanding of how 

features affect NDVI prediction, the SHAP (SHapley Additive exPlanations) method was used. 

This tool locally and globally analyzes the impact of each feature on the model's output, helping 

to better identify non-linear relationships and complex interactions between features. 

Figure (7a) shows that NDVI Lag has the highest dispersion and a positive impact on the 

output. High values (red) lead to an increase in the predicted NDVI value, while low values 

(blue) have a decreasing effect. 

The 2-month lagged rainfall is mostly distributed around a SHAP value of zero, meaning its 

influence is weaker and closer to neutral. However, the slight dispersion of red/blue points 

indicates a minor positive and negative impact. Meanwhile, the 1-month lagged rainfall has 

almost no effect; its SHAP values are very close to zero, and the colors do not show a dispersed 

distribution. 

Figure (7b) also shows the wide distribution of NDVI Lag points relative to the vertical axis, 

indicating that this feature plays a dominant role in NDVI prediction. Red points (higher NDVI 

Lag values) are concentrated on the right (positive SHAP values), indicating that high NDVI 

Lag values lead to an increase in the next month's NDVI prediction, and conversely, low values 

cause a decrease in the vegetation index prediction. SPI Lag points are distributed around a 

SHAP value of zero and have a smaller range than NDVI Lag. However, the dispersion pattern 

suggests that the effect of the previous month's rainfall lag on NDVI prediction is relatively 

significant, and an increase in this feature value leads to a higher vegetation cover in the 

following month. 

In Figure (7c), NDVI Lag remains the most important predictor for the next month's NDVI; 

it has a strong positive and negative influence depending on the past NDVI value. This index 

confirms that the previous month's NDVI is the most important driver of the model in all 

combinations. SPI Lag1 and SPI Lag2 are both centered near zero, although the effect of the 1-
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month rainfall lag is less than the effect of the 6-month rainfall lag on the prediction, but this 

effect is direct. That is, increased rainfall in the previous month contributed to increased 

vegetation cover one month later. However, the 6-month rainfall lag shows an inverse effect on 

vegetation cover one month later. This means that whenever rainfall 6 months prior to the study 

date was lower, the vegetation covers one month after that date was better (for example, in some 

periods, high rainfall 6 months prior may reduce vegetation cover due to waterlogging or 

saturation). 

 

a  ( SPI Lags [1,2], NDVI Lag [1] 

 

b  ( SPI Lags [1,0], NDVI Lag [1] 

 

c  ( SPI Lags [1,6], NDVI Lag [2] 

Fig. 7. SHAP Summary chart for the top three combinations. 
 

The charts in Figure (7) generally show that the maximum SHAP value for NDVI Lag in all 

three combinations reaches approximately +0.025. The SHAP range for SPI Lag1 and Lag2 is 

very small (approximately ±0.005), indicating their minimal influence. 

The charts in Figure (8) show the relationship between the NDVI Lag value and its SHAP 

value. The color of the points indicates the value of the second feature (SPI Lag). 

In Figure (8a), an almost linear positive relationship is observed between the NDVI Lag 

value and its SHAP value. As NDVI Lag increases, its impact on the model output also 

increases. The color of the points (representing the SPI Lag2 value) is scattered throughout the 

chart but does not significantly alter the relationship. This means that the 2-month rainfall lag 

has little effect on adjusting the role of NDVI Lag. In other words, the effect of NDVI Lag 
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increases linearly independently of the rainfall index lag value. This analysis also holds true for 

Figures (8b) and (8c), but the effect of the 1-month rainfall lag on adjusting the role of the 

vegetation index lag is examined. 

In conclusion, NDVI Lag has a direct and strong influence on the output and is not affected 

by the value of the previous month's rainfall lag. 

  

b (SPI Lags [1,0], NDVI Lag [1] a (SPI Lags [1,2], NDVI Lag [1] 

Fig. 8. SHAP Value Dependence Plot for the most 

important feature in the top three combinations. 

 

c (SPI Lags [1,6], NDVI Lag [2] 

 

In all three combinations, increasing the NDVI Lag value leads to an increase in the SHAP 

value. This means that, generally, the higher the NDVI in the previous month, the stronger the 

model's prediction of a higher NDVI in the following month. The color-coding of the points 

shows that different values of SPI Lag (one or two months depending on the combination) have 

a minor effect on the main slope of the relationship. In points with cool colors (low SPI values), 

a slight deviation towards negative SHAP is observed. In points with warm colors (high SPI 

values), they often shift the SHAP graph towards positive values, but this relative change is 

very small. This means that rainfall with a one or two-month lag can slightly enhance the effect 

of NDVI Lag at high values or slightly weaken it at low values, but the main role still returns 

to the linear and direct relationship with NDVI Lag. NDVI Lag is the basis of the modeling. 

With an increase in the previous month's NDVI lag, the model expects a higher NDVI in the 

current month. SPI Lag acts as a minor modifier. Higher SPI values may slightly increase the 

impact of NDVI Lag (warmer points slightly above the general trend line), while lower SPI 

values slightly decrease the SHAP at the same NDVI Lag value. 
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3.2.3 Local Analysis with LIME  

To examine and understand the model's behavior in specific instances (local interpretability), 

the LIME (Local Interpretable Model-agnostic Explanations) algorithm was used. This tool 

simplifies the main model around a specific point, showing how the features affect the 

prediction of that specific instance. 

 

a  ( SPI Lags [1,2], NDVI Lag [1] 

 

b  ( SPI Lags [1,0], NDVI Lag [1] 

 

c  ( SPI Lags [1,6], NDVI Lag [2] 

Fig. 9. LIME diagram for the effect of features on the top three combinations. 

 

In Figure (9a), the locally predicted value is approximately 0.19. NDVI Lag has the greatest 

impact on the prediction. However, NDVI lags greater than 0.19 have a decreasing effect on 

the predicted value, and the local value of this feature is 0.19, hence it is shown as negative. 

After NDVI lag, the 1-month previous rainfall lag affects the predicted value. As observed, 

values greater than -0.75 had a decreasing (negative) effect on the predicted vegetation cover 

of the following month, and therefore the local value of -0.50 is displayed negatively. The least 

impact is related to the 2-month previous rainfall lag, where the local value of -0.67, being 

greater than -0.69, has a decreasing (negative) effect on the predicted value. 

In Figure (9b), the locally predicted value is approximately 0.19. NDVI Lag is again the 

strongest driver of the output value, and its local value is the same as before. SPI Lag 1 (-0.33) 

is the only rainfall lag with a negative role here because, in this combination, according to the 

LIME analysis, SPI lag values greater than -0.50 have a decreasing effect on the output NDVI 

1 month later. 

In Figure (9c), the locally predicted value is approximately 0.19. NDVI Lag, despite being 

a two-period lag, is still the most effective factor in predicting vegetation cover one month 

ahead. However, here, NDVI lags smaller than 0.19 showed a decreasing effect on the output 

variable. Regarding the standardized precipitation index lag, the 6-month lag was more 

effective than the 1-month lag in predicting vegetation cover. Precipitation values greater than 

-0.93 for the 6-month SPI lag had a decreasing effect and greater than -0.85 for the 1-month 

SPI lag had an increasing effect on vegetation cover. It can be said that the local values of SPI 

Lag 1 (-0.67) have a relatively strong increasing role in the prediction, although the precipitation 

of the last 6 months is more effective in predicting the vegetation index.  
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As observed, in all three combinations, NDVI Lag (both one and two periods prior) always 

has the largest contribution to the prediction of NDVI. This emphasizes that the plant's own 

vegetation memory (Lagged NDVI) is the main axis of modeling. 

Although SPI Lags have a positive effect in most local samples, the magnitude of their effect 

varies slightly in different combinations.  

LIME takes the actual values of the features for each sample and shows their 

positive/negative impact. This analysis highlights that within different input ranges (e.g., when 

NDVI Lag equals 0.18 or 0.19), NDVI prediction can be influenced by SPI Lags. 

Comparing the three feature analysis tools, Random Forest, SHAP, and LIME, shows that in 

all of them, the NDVI Lag feature has the highest importance in predicting future NDVI values.  

Overall, the analysis showed that the most reliable forecasts were obtained when using SPI 

lags of one and two months together with an NDVI lag of one month, which achieved the lowest 

prediction errors (RMSE = 0.0038) and the highest correlation (r = 0.968).  

Across all feature analysis methods—Random Forest, SHAP, and LIME—the lagged NDVI 

variable consistently emerges as the dominant predictor, confirming the central role of 

vegetation memory. In contrast, SPI lags exhibit weaker and more variable contributions, 

depending on lag length, season, and local conditions. 

Notably, the seemingly inconsistent behavior of SPI6 across Random Forest, SHAP, and 

LIME analyses should not be interpreted as a contradiction. Rather, it reflects differences 

between global importance (RF), average marginal contribution (SHAP), and local instance-

specific effects (LIME). This pattern underscores that longer precipitation lags influence NDVI 

indirectly and episodically, rather than exerting a stable linear effect.  

The dominance of lagged NDVI over precipitation-based indices in short-term vegetation 

prediction observed in this study is consistent with previous findings in arid and semi-arid 

regions. Numerous studies have demonstrated that vegetation dynamics exhibit strong temporal 

persistence, reflecting ecosystem memory and delayed physiological responses to climatic 

forcing. For instance, Weiss et al. (2004) showed that NDVI variations in semi-arid ecosystems 

are strongly influenced by antecedent climatic conditions and that precipitation alone cannot 

fully explain inter-annual vegetation variability. 

Similarly, large-scale analyses have revealed that vegetation anomalies are often driven by 

antecedent precipitation rather than concurrent rainfall, with time-lag effects extending from 

one to several months depending on climatic regime and ecosystem type (Papagiannopoulou et 

al., 2017; Wu et al., 2015). These lagged responses are frequently associated with soil moisture 

storage and drought propagation processes, whereby meteorological drought signals propagate 

into ecological responses over delayed time scales (Huang et al., 2017). 

In line with these findings, the results of the present CNN–LSTM model indicate that while 

SPI contributes to NDVI prediction, its explanatory power is secondary to that of lagged NDVI, 

which encapsulates vegetation memory and integrated ecosystem responses. This outcome 

supports earlier remote sensing and deep learning studies suggesting that temporal 

dependencies embedded in vegetation indices often dominate short-term forecasting skill, while 

climatic variables act primarily as modulators of vegetation dynamics rather than sole 

predictors (Zhang et al., 2016). Overall, the present results reinforce the consensus that short-

term NDVI forecasting in water-limited environments is largely governed by vegetation 

persistence, with precipitation exerting a delayed and indirect influence. 

On this basis, the next section turns to the broader ecological meaning of these findings, their 

practical applications, and the limitations of the proposed CNN-LSTM approach. 
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4. Conclusion 

This research precisely presents an advanced hybrid approach that successfully combines 

LSTM and CNN architectures, hence incorporating lagged. The main goal of precisely 

predicting is to use inputs from SPI and NDVI together with advanced explainable AI 

techniques. The complex interactions of vegetation in Iran's semi-arid Semnan region. This 

study differs greatly from earlier academic work in that its originality is mainly based on a 

thorough analysis of several lag. Configurations that elegantly combine short-term rainfall 

variations with the natural memory effects of plants, while also incorporating interpretable 

features like Random Forest, SHAP By going beyond the restrictions usually linked to opaque 

black-box deep learning models and LIME address their limits. 

When taken together, the findings of this exhaustive study quite clearly showed that the 

particular setup using SPI lags of one month and two months was superior. With an NDVI lag 

of one month, the Root Mean Square indicated the highest level of predictive ability obtained. 

RMSE error is 0.0038 and the correlation coefficient (r) is 0.968. These major results support 

the idea that while the lagged NDVI acts as a important measure that accurately reflects the 

underlying memory and resilience traits found in plant systems. From an ecological perspective, 

this supports the general knowledge that vegetation responses inside arid and semi-arid areas 

are distinguished by delays as well as nonlinear dynamics. which are exquisitely formed by the 

total interaction of soil moisture availability and rainfall patterns. 

SHAP and LIME approaches offer a solid framework for interpretability since they regularly 

find the lagged NDVI as the main predictor while also explaining SPI's role in predictive 

modeling is context-dependent. For agricultural consultants and legislators charged with the 

crucial responsibility of creating efficient early warning systems for, such openness is 

absolutely vital. drought conditions; designing irrigation scheduling techniques; and creating 

climate adaptation strategies precisely suited for the particular local settings in which they run. 

Still, it should be noted that this research was only ever confined to one case study using 

MODIS data with Moderate Resolution Imaging Spectroradiometer. moderate spatial 

resolution with fairly limited range of climatic drivers accompanying. Future studies should 

therefore seek to broaden this analytical framework across a variety of ecosystems, include 

higher-resolution remote sensing data sources such as Further confirm and improve the 

robustness of the suggested model, Sentinel-2 and Landsat, and compare the results with those 

of conventional statistical approaches. 

Finally, this study demonstrates that integrating explainable artificial intelligence techniques 

with deep learning models, specifically the CNN–LSTM framework, can enhance both 

predictive performance and interpretability in NDVI forecasting. Beyond improving short-term 

prediction accuracy, the proposed approach provides scientifically interpretable insights into 

the relative roles of vegetation memory and precipitation variability. These insights contribute 

to a better understanding of vegetation–climate interactions in semi-arid regions and may 

support more informed decision-making in land-use management, drought monitoring, and 

agricultural planning under increasing climate variability and uncertainty. 
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