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Mineral dust significantly affects air quality, visibility, and Earth's radiation
balance. Dust storms frequently occur in arid, semi-arid lands, flat regions with
erodible soils, where drought and land-use changes have increased their
occurrence, harming agriculture and communities. Central Eurasia, particularly
the Middle East, is a major dust source region. This study employed machine
learning to evaluate dust emission susceptibility in South Khorasan, Iran, by
analyzing environmental factors and enhancing existing dust prediction models.
Researchers used land use/land cover (2004 and 2019) maps, lithology,
elevation, and climate variables from ACCESS-CM2 and CANESM5 models
under IPCC6's SSP5-8.5 scenario to predict dust source susceptibility. Among
SVM, CART, and Linear Regression algorithms, Random Forest performed best
for LULC classification and wind speed prediction. The study combined CA-
Markov for LULC prediction with Maximum Entropy modeling to calculate the
Dust Source Susceptibility Index (DSSI). Results showed CANESMS5 projected
higher dust susceptibility than ACCESS-CM2, with over 10,340 km? falling into
the highest-risk DSSI category. Wind plays a determining role in starting dust
storms. The research demonstrates that integrating multiple modeling
approaches and validation metrics (Kappa, AUC, R?) provides an effective
framework for investigating dust source susceptibility, offering improved
predictive capability for dust storm management and mitigation strategies.
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1. Introduction

Mineral dust represents the most extensive terrestrial source of particulate matter in the
atmosphere. Once in the atmosphere, dust degrades the air quality and visibility, supplies a
source of nutrients to remote oceans and ecosystems (Mahowald et al., 2005), provides a
surface for the heterogeneous reaction of trace gases, and impacts the Earth's radiative budget
(Bauer et al., 2004). The formal definition of dust storms results from turbulent winds raising
large quantities of dust into the air and reducing visibility to less than 1000 meters (Jarraud,
2008). The main dust areas of the world are flat, physiographically dry areas with erosion-
sensitive soils and sparse vegetation that is easily eroded by wind (Boroughani et al., 2020). In
recent years, due to drought and Land use/Land cover Change, the frequency of days with dust
storms has increased significantly, which causes adverse biological effects and extensive
damage to agriculture, industry, and society. The combined development of this event along
with the accelerated trend of development, industrialization, and population growth in urban
areas has doubled the environmental tensions (Shaheen et al., 2020; Boloorani et al., 2020).

Central Eurasia included many dust hotspots and has a key role in particle dispersion. The
Middle East is a transcontinental region, primarily situated in Western Asia but extending into
northeastern Africa. The frequent dust storm events in most parts of the east and southeast of
Iran have devastating effects on people's lives and resulted in heavy financial losses and
casualties (Ahmadi et al. 2015; Karami et al., 2019). The major sources of dust emissions in
southwest Asia are the Karakum Desert which located in in Central Asia, Dasht-e-Lut, the
Margo and Registan deserts, the Sistan Basin, and the Hamun-e-Jaz Murian-a seasonal lake in
the Jazmurian Basin (Kaskaoutis et al., 2018; Crosbie et al., 2014; Namdari et al., 2018).
According to previous studies on the dust sources in the world, it can be seen that there are two
critical sources in the top and bottom of the Khorasan region. This region is bounded by the
desert of Kazakhstan in the north and the Sistan and Baluchestan region in the south (Baghi et
al., 2020).

Ecological models of landscape change have potential to increase the precision of dust
emission assessments across land cover types and the evaluation of accelerated and
anthropogenic wind erosion (Webb and Pierre, 2018). Machine learning (ML) is a part of data
science and a branch of artificial intelligence that can help solve a specific problem by
examining the pattern of changes in big data and its prediction (L’heureux et al., 2017; Qiu et
al., 2016). This method spans a broad set of models that are used to discover patterns in data
and to make predictions, whereby the process of model ‘training’ is synonymous with a type of
‘learning’ (Witten and Frank, 2002). In recent years, the use of MLAs for predicting various
variables has significantly grown, especially in The Earth science (Khaledian and Miller, 2020;
Heuvelink et al., 2021; Mandal & Vipparthi, 2021).

Previously, some studies were conducted in relation to dust emission susceptibility, in which
mathematical models were used in the spatial modeling of dust emission susceptibility
(Boroughani et al., 2020; Gholami et al., 2020; Rahmati et al., 2020). In this research, through
the use of machine learning for spatial and numerical data and other mathematical-based
models, the dust emission susceptibility of South Khorasan in 2040 was calculated using
environmental factors.

2. Materials and methods

2.1. Study Area

Central Eurasia (a) is a dust-prone region, with frequent storms occurring in Kazakhstan,
Turkmenistan, and Iran (Nobakht et al., 2021; OGUZ, 2020; Rashki et al., 2021). This study
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focuses on South Khorasan, Iran (b), located on the northeastern margin of the Dasht-e-Lut
desert, which connects Turkmenistan to the Sistan plain (Fig. 1). The region's diverse climate
and landforms make it a critical area for dust research. Six long-term synoptic stations in South
Khorasan provide essential climatic data, including visibility and dust event records.
Governmental reports indicate that the local population is increasingly harmed by these dust
events. Despite its significance, South Khorasan remains understudied, representing a missing
piece in Central Eurasian dust research. Previous studies have identified dominant dust
transport pathways. Ahmadi et al. (2015) found that winds carry dust from the eastern Caspian
Sea and Turkmenistan deserts through eastern Iran's drylands to the southeast. Supporting this,
HYSPLIT particle tracking from June-September 2017 confirmed that dust in northeastern Iran
originates mainly from Turkmenistan, with a minor contribution from Uzbekistan (Baghi et al.,
2020; Rashki et al., 2021).
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Fig 1. Study area map showing the location of the Synoptic Stations

2.2. Dataset

2.2.1. Climate Variables

2.2.1.1. Observation Data

Wind speed was obtained from South Khorasan Meteorological Organization. The dataset
corresponds to daily observations from Birjand, Boshrooyeh, Ferdows, Ghaen, Nehbandan and
Tabas synoptic stations.

2.2.1.2. Predicted Data
CMIP! Phase 6 (CMIP6) is currently in progress and a series of new versions GCMs have been
released. The climate model outputs from CMIP6 provide a foundational baseline for the next

! Coupled Model Intercomparison Project
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sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC6) (Eyring et
al., 2016). The CMIP6 model algorithm was designed to overcome the drawbacks that existed
in CMIP5 like the overestimation of annual and seasonal precipitation and the physical
algorithm has been improved (Rivera and Arnould, 2020). Changes to the GCM 'algorithm may
affect the precipitation simulation. To increase the confidence in future climate projections and
the fidelity of the IPCC?6, the performance of GCMs from CMIP6 requires rigorous
assessments (Tian and Dong, 2020). Despite such much evaluation works for CMIP5, the
assessments of CMIP6 are still ongoing in various regions.

ACCESS-CM23, as used for CMIP6, comprises the following components: UM10.6 GA7.1
configuration for the atmosphere; the Community Atmosphere Biosphere Land Exchange
(CABLE) model version 2.5 (coupled directly to the UM) for the land surface; CICE5.1.2 for
the sea ice; MOMS for the ocean; OASIS3-MCT for the numerical coupler; and the Rose/Cylc
(Oliver et al. 2019) framework for experiment management such as model configuration and
simulation control. Since all the submodels have been well documented by their individual
developers, we provide brief descriptions, mainly documenting the major changes occurring in
the scientific configurations of the model components since the implementation of our CMIP5
model ACCESS1.3 (Bi et al. 2020).

The Canadian Earth System Model version 5 (CanESMD5) is the latest Canadian Centre for
Climate Modelling and Analysis (CCCma) global climate model. CanESM5 has the capability
to incorporate an interactive carbon cycle and was developed to simulate historical climate
change and variability, to make centennial-scale projections of future climate, and to produce
initialized climate predictions on seasonal to decadal timescales (Swart et al., 2019b, this issue,
hereafter S19). S19 summarizes CanESM5 components and their coupling, together with the
model's ability to reproduce large-scale features of the historical climate and its response to
external forcing. This paper examines the predictive ability of CanESMD5 on decadal timescales.
CanESMS5 decadal climate predictions are CCCma contribution to Component A of the Decadal
Climate Prediction Project (Boer et al., 2016) endorsed by phase 6 of the Coupled Model
Intercomparison Project (CMIP6).

In this study, Mean Temperature, Total Precipitation were received from WorldClim based
on ACCESS-CM2 and CANESMS5 from IPCC6 thorough SSP 5-8.5 scenario which is high
emission scenario (Nazarenko et al., 2022).

2.2.2. LULC

Land Use and Land Cover (LULC) are two alterable terms that have different connotations in
modern science (Lo, 1986). Monitoring of land use and land cover (LULC) change is
fundamental aspect of the landscape dynamics or environmental health evaluation at different
spatio-temporal scales (Chamling & Bera, 2020). LULC changes are fundamental processes on
the earth’s surface and have significant impacts on human society, climate, biodiversity,
hydrological cycles, ecosystems, biogeochemical cycles and many other processes (Were et al.,
2014; Lin et al., 2018).

The CA-Markov model is considered a robust approach because of the quantitative
estimation and the spatial and temporal dynamic it has for modeling the LULC dynamic (Mishra
et al., 2014). The CA model, together with the Markov transition probability, shows the ability
to predict the trend for landscape change. This spatio-temporal model provides not only a

! General Circulation Models
2 Intergovernmental Panel on Climate Change
3 Australian Community Climate and Earth System Simulator-Coupled Model-v2
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quantitative description of change in the past, but also the direction and amount of change in
the future (Surabuddin Mondal et al., 2019). In this study, CA-Markov was used to predict land
cover in 2040.

LULC were obtained from Landsat 8 images. First, 11 images of the study area were stitched
together on the Google Earth Engine platform through mosaicking. Then, by visiting and
examining control points, the land uses in the integrated image were classified using three
methods (RF!, SVM?, CART?), for the years 2004 and 2019. Finally, using a Markov chain,
land use in 2040 was predicted.

2.2.3. Lithology

High resolution global lithological map (GLiM) was assembled from existing regional
geological maps translated into lithological information with the help of regional literature. In
GLIM data, the area values represent the mapped surface coverage of each rock unit, which is
classified based on its lithology (rock type) and origin, not its intrinsic quality or strength.
Statistical analysis of the geological layer areas reveals that the region is predominantly covered
by superficial deposits, which dominate with a substantial 55.2% of the total area, indicating
the prevalence of young geology and unconsolidated sediments. This is followed by soil
complex at 18.5% and intrusive igneous rock at 10.9%, whereas hydrogeologically
significant layers such as pre-Quaternary aquifers constitute only 3.4% and aquitards account
for less than 0.5%. This uneven distribution, coupled with the minimal presence of metamorphic
rock and weathered layers - each less than 0.5% - underscores a geological framework
dominated by sedimentary and igneous formations, with limited development of hard and
ancient rock layers in the area (fig 2).
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Fig 2. Lithology map of the study area
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2.3. Methodology

2.3.1. Interpolation

There are many ways to convert numerical climate data to climate maps. Interpolation is a method
to find the value between the known data points (Cressie, 2015). Although choosing the best
interpolation method is an entirely relative choice, considering the number of stations, Inverse
distance weighting (IDW) was the most appropriate interpolation method for this study (Shepard,
1968). For this purpose, six Synoptic stations were used for Wind Speed interpolation.

2.3.2. Dust Source Susceptibility

Recent studies on dust source susceptibility have used a wide range of methodologies, evolving
from traditional statistical approaches to advanced machine learning techniques. Key methods
include multi-criteria decision analysis (MCDA) with the Analytical Hierarchy Process (AHP)
as in Al-Hemoud et al. (2024) and Fuzzy-AHP hybrids in Gholami et al. (2020), as well as
geostatistical models integrating remote sensing data, demonstrated by Darvishi Boloorani et
al. (2022). Machine learning approaches have become more prominent, with studies employing
Random Forest algorithms (Jafari et al., 2022), Logistic Model Trees (Jafari & Malekian, 2019),
and Frequency Ratio models (Boroughani et al., 2020). Other methods include multivariate
logistic regression (Middleton, 2017), Principal Component Analysis with clustering (Zoljoodi
et al., 2021), and physical-based indices such as Dust Uplift Potential (Yu et al., 2018). These
approaches typically integrate multiple environmental factors — including soil properties,
vegetation indices, land use, wind patterns, and topographic features — validated against ground
observations and satellite imagery to produce accurate susceptibility maps.

There are several methods to evaluate the susceptibility of lands. Elevation, Lithology,
LULC, Mean Temperature, Total Precipitation and Wind Speed were used to measure the
susceptibility to dust sources. Then, Nominal maps were divided into different classes based on
the defined classes.

Maximum entropy (MaxEnt) is increasingly being considered in studying various earth
system processes (Dyke and Kleidon, 2010). This Model compares the conditional density
function of covariates (predictor variables) at presence sites to the marginal (background)
density of covariates in the study area in order to derive the conditional occurrence probability
(Elith et al., 2011). Maximum entropy models derive from information theory (as opposed to
thermodynamic entropy models) and have shown promise in various earth science applications
(Ruddell et al., 2013). Before this research, Maxent was used to determine different areas'
suitability to create a dust source (Ansari et al., 2017; Lababpour, 2020). Finally, based on the
prediction rate, Dust Source Susceptibility Index, or DSSI can be calculated (Pourhashemi et
al., 2019).

DSSI = Z(FR)l- (=123, ..,1n)

Which FR is Frequency Ratio.
The flowchart of methodology for predicting DSSI in 2040 is given in Fig 3.

2.3.3. Methods Validation

A wide range of techniques has been used to evaluate the performance and efficiency of ML
algorithms; for example, Receiver Operating Characteristic Area Under Curve (ROC-AUC)
(Pham et al., 2018; Felicisimo et al., 2013), root mean square error (RMSE), mean square error
(MSE), mean absolute error (MAE), determination coefficient (R?) (Khosravi et al., 2019; Fan
et al., 2018). R?, MSE, RMSE, and MAE can be expressed as:
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Fig 3. Descriptive flowchart outlining our approach to predicting dust susceptibility in 2040
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where n is the number of observations, and Xobs, Xmodel, and Xak indicate the measured,
estimated, and the mean of measured values, respectively.

Matrix by Kappa coefficient is a common and typical method (Congalton & Green, 2019).
KAPPA analysis is a discrete multivariate technique used in accuracy assessments (Jensen et
al., 1996). KAPPA analysis yields a Khat statistic (an estimate of KAPPA) that is a measure of
agreement or accuracy (Congalton, 1991).

CONY X — e (X + Xxyy)
NZ — Y1 (xiXx 1)
where;

K
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r = number of rows and columns in error matrix, N = total number of observations (pixels)

Xii = observation in row i and column i,

Xi+ = marginal total of row i, and X+i = marginal total of column i

The overall classification accuracy is the percentage of correctly classified samples of an
error matrix. It is computed by dividing the total number of correctly classified samples by the
total number of reference samples. It can be expressed by the following equation:

1 n
Overall Accuracy = Nzk Axk
-1

Producer’s accuracy (PA) informs the image analyst of the number of pixels correctly
classified in a particular category as a percentage of the total number of pixels actually
belonging to that category in the image. Producer’s accuracy measures errors of omission
(Anand, 2017).

The consumer’s accuracy (CA) is computed using the number of correctly classified pixels
to the total number of pixels assigned to a particular category. It takes errors of commission
into account by telling the consumer that, for all areas identified as category X, a certain
percentage are actually correct (Anand, 2017).

Final dust sources susceptibility maps were evaluated using the Area Under Curve (AUC).
The area under the ROC curve, called AUC, indicates the amount of system prediction through
its ability to accurately estimate its occurrence (presence of dust sources) and non-occurrence
(absence of dust sources). It varies from 0.5 to 1 (Zhu and Wang, 2009). Finally, the range of
values of dust sources susceptibility maps was reclassified between 0 and 1.

To evaluate LULC classification Kappa, Overall Accuracy, Producer’s Accuracy and
Consumer’s Accuracy, and to evaluate wind speed, RMSE, MSE, MAE and R?, and to evaluate
DSSI, AUC were used.

3. Results and discussion
3.1. LULC Classification
The following is a land use map of the study area in 2004 and 2019 (Fig 4).
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Fig 4. Classified map of 2004 (a) and 2019 (b)

Analysis of the LULC area changes from 2004 to 2019 reveals significant and concerning
environmental trends. The most striking changes are the dramatic expansion of urban areas,
which more than doubled from 1,570.74 km? to 3,542.73 km?, and the substantial spread of
sand dunes, which increased from 5,237.80 km? to 7,796.22 km?, indicating severe
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desertification. Concurrently, salt-affected lands grew from 1,524.65 kmz2 to 1,753.64 km?,
signaling increasing soil salinity, while areas of poor vegetation saw a minor decline. These
concurrent trends point to mounting pressure on the natural environment from both human
development and ecological degradation (Table 1).

Table 1. Area of LULC classes in 2004 and 2019

Area (km?)
Class 2004 2019
Barren 131741.48 127447.49
Poor Vegetation 14335.28 14189.29
Sand Dunes 5237.80 7796.22
Urban 1570.74 3542.73
Salt 1524.65 1753.64

Based on the results, RF is the best model for LULC classification in the study area. In
addition to having the highest Kappa value, this model also has the best Validation Overall
Accuracy. On the other hand, SVM is the weakest model for LULC classification, and its kappa
value does not reach 0.5 (Table 2).

Table 2. Values of overall accuracy metrics for LULC classification

Training Overall Accuracy  Validation Overall Accuracy  Kappa

SVM 0.685 0.655 0.477

LULC (2004)  CART 1.000 0.782 0.687
RF 0.956 0.832 0.757

SVM 0.662 0.663 0.465

LULC (2019)  CART 1.000 0.696 0.789
RF 0.962 0.832 0.755

Consumer and producer accuracy in 2004 show that the SVM model does not have the
necessary ability to distinguish “urban” and “sand dunes” classes. These two classes are also
weak in CART classification in 2004, but their value is high in 2019. Overall, the difference in
value between CART and RF is small in 2019, but RF model performed slightly better. This
difference is more in the classification of 2004 classification (Table 3).

After predicting the land cover in 2040, the results showed that 85% of the barren areas
remain in their current form. On the other hand, 67% of areas with poor vegetation will become
areas without vegetation in 2040, which shows the trend of desertification in the future (Fig 5).

It is also observed that the Sand Dunes have increased significantly. The area of salt flats has
also increased. However, it is not as much as the increase in the area of Sand Dunes (Table 4).

The study's results, showing RF achieving the highest Kappa value and overall accuracy, are
consistent with previous research where RF consistently ranks high in classification tasks
involving remote sensing data. In a study by Krivoguz et al. (2023), various machine learning
models were evaluated for LULC classification using Landsat-5 data. The RF model
demonstrated high accuracy, similar to the current study's findings, where RF was favored over
SVM and CART models. This reinforces the notion that RF is particularly effective in
distinguishing between land cover types, especially in regions with complex landscapes or
overlapping spectral signatures (Basheer et al., 2022).
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Table 3. Values of consumer and producer accuracy in for LULC classification

Consumer’s Accuracy

Class 2004 2019
SVM CART RF SVM CART RF
Barren 0.550 0.787 0.810 0.561 0.779 0.756
Poor vegetation 0.950 0.789 0.821 0.888 0.682 0.776
Sand dunes 0.000 0.200 0.833 0.000 0.857 0.750
Urban 0.000 0.684 0.800 0.925 0.779 0.906
Salt 0.764 0.809 0.891 0.750 0.861 0.861
Producer’s Accuracy
Class 2004 2019
SVM CART RF SVM CART RF
Barren 0.894 0.824 0.900 0.908 0.805 0.885
Poor vegetation 0.483 0.875 0.883 0.210 0.763 0.776
Sand dunes 0.000 0.166 0.833 0.000 0.750 0.750
Urban 0.000 0.393 0.363 0.409 754 0.639
Salt 0.702 0.765 0.810 0.700 775 0.775
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Fig 5. LULC predicted map using CA-Markov in 2040

Table 4. Areas of classified map in 2040

Class Area (Km?)

Barren 120872.93
Poor Vegetation 13384.62
Sand Dunes 9516.31
Urban 3411.62

Salt 1880.75
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3.2. Climatic Variables Downscaling

Downscaling of wind speed in different stations shows that, like mean temperature and
precipitation, for downscaling of wind speed, RF has the best performance compared to other
regressors. The value of R2 gauge in Ghaen station is estimated to be higher than other stations.
The value of RMSE in this station is also lower than other stations and considering the
measurements of other regressors, it can be seen that the downscaling of wind speed in Ghaen
station is done with higher quality than other stations. Also, LR has a good performance (Table 5).

Table 5. Calibration and Validation metrics of Wind Speed in all synoptic stations.

LR RF SVM (rbf')
cal val cal val cal val

R? 0.190 0.236 0.841 0.849 0.227 0.222

g RMSE 2.353 2.203 1.040 0.979 2.298 2.224
E MSE 5.539 4.854 1.082 0.959 5.282 4,947
MAE 1.826 1.673 0.752 0.714 1.718 1.669

= R? 0.182 -0.870 0.556 0.779 0.229 -0.794
08>)‘ RMSE 1.186 4,276 0.873 1.467 1.150 4,186
§ MSE 1.406 18.290 0.763 2.153 1.324 17.529
@ MAE 0.865 3.376 0.637 1.095 0.828 3.290
R? 0.208 0.037 0.843 0.808 0.237 0.094

% RMSE 1.795 1.710 0.797 0.761 1.762 1.658
E MSE 3.224 2.924 0.635 0.580 3.106 2.750
MAE 1.425 1311 0.590 0.556 1.394 1.261

R? 0.699 0.216 0.924 0.894 0.750 0.360

é RMSE 1.094 2.228 0.550 0.815 0.997 2.012
'LCD MSE 1.197 4.964 0.302 0.665 0.994 4,051
MAE 0.861 1.679 0.399 0.581 0.776 1.496

- R? 0.462 0.287 0.896 0.875 0.469 0.435
% RMSE 2.578 2.510 1.133 1.050 2.562 2.235
% MSE 6.650 6.302 1.284 1.102 6.564 4.996
< MAE 1.975 1.965 0.812 0.768 1.907 1.730
R? 0.055 -0.045 0.795 0.809 0.060 0.0302

§ RMSE 2.492 2.694 1.161 1.151 2.486 2.594
e MSE 6.210 7.260 1.348 1.324 6.183 6.732
MAE 1.901 2.064 0.833 0.836 1.894 1.967

! Radial Basis Function
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3.3. DSSI

In Obisesan et al (2024)’s study, various machine learning models were trained to predict
meteorological variables in a tropical location. The results demonstrated that the Random Forest
model had the highest performance metrics, including an R? value of 0.93 for temperature
prediction and 0.79 for wind speed. showed that Random Forest achieved an accuracy of
95.64%, surpassing the Decision Tree's accuracy of 94.85%. This reinforces the idea that RF is
more effective for predicting rainfall due to its ensemble nature, which enhances predictive
performance. Furthermore, Mecikalski et al (2021) utilized Random Forest to assess predictor
importance related to severe storm warnings. The study highlighted how incorporating satellite
data into RF models significantly improved prediction accuracy for severe weather events,
showcasing RF's versatility in different meteorological applications.

The results showed that CANESM5 was implemented with higher quality according to the
AUC assessment (Table 6). Also, the Jackknife of AUC presented for the two models indicated
that the common point of the two models is the high importance of wind speed, the high value
of which indicates its importance in the suitability of the habitat for the formation of dust
sources (Fig 6).

Jackknife of AUC (ACCESS-CM2)

BIO12 (Precipitation) I With all variables ®

BIO1 (Temperature)

Elevation
Limotocy |
vucc [

040 045 050 055 0.60 0.65 070 0.75 080 085 0.90 0.95

Jackknife of AUC (CANESMS)

BIOI2 (Precipitation) With all variables ®

BIO1 (Temperature)
Elevation

Lithology

LULC

Wind Speed

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Fig 6. Jackknife of AUC for ACCESS-CM2 and CANESM5

Table 6. Values of AUC

AUC
Model Training data Test data
ACCESS-CM2 0.882 0.876
CANESM5 0.896 0.966
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The results show that in CANESMD5, the areas with the highest potential to form dust sources
are 2000 km? more than ACCESS-CM2 (Table 7). Also, the area of the good floor is more in
CANESMS5 than in model 1, which indicates the higher area of areas prone to dust formation
in CANESMS5 (Fig 7).
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Fig 7. Continuous and classified map of DSSI in ACCESS-CM2 and CANESM5 under SSP 5-8.5 scenario

In similar research, Boroughani et al (2022) focused on mapping dust sources using satellite
imagery combined with machine learning techniques. The Random Forest model achieved an
accuracy of 63.5%, making it the most accurate among the algorithms tested. Utilizing the
Google Earth Engine, Wang et al (2023) employed four machine learning methods to predict
sources of sand and dust storms in arid areas. The results indicated that machine learning
approaches effectively identified potential dust sources, providing valuable insights for
environmental management and planning. Aryal (2022) compared various machine learning
models, including Random Forest (RF), Support Vector Machine (SVM), and others, for
predicting fine and coarse dust concentrations. The findings revealed that non-linear machine
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learning models outperformed linear regression, particularly in predicting fine dust. Also, they
found Air temperature was identified as the most significant predictor.

There are no other similar studies in this field and with these methods, and this study
provides a new and comprehensive method by incorporating climate and land use, making it
possible to predict dust sources.

Table 7. Areas of DSSI classified map in ACCESS-CM2 and CANESMS5 under SSP 5-8.5 scenario

DSSI class Area (Km?)
ACCESS-CM2 CANESM5
Least 86476.81 83213.75
Moderate 39168.00 38594.06
Good 14038.50 16329.06
High 8801.93 10348.37
4. Conclusion

In this study, three approaches were used to classify land use: Random Forest, CART and SVM.
Finally, Random Forest was selected from the two methods CART and Random Forest, which
differed only slightly. After the model was modeled using two classified land use maps from
2004 and 2019, a LULC map for 2040 was created. After downloading the data of two
temperature variables from IPCC6 models ACCESS-CM2 and CANESMD5, the observed wind
speed data for 2040 was predicted using three linear regression models, Random Forest and
SVM. The R2 showed that the Random Forest model performed better.

Finally, by combining static factors such as lithology and elevation and dynamic factors
including two categories of received data, including temperature and precipitation, and
predicted data, including wind speed and land cover, the dust source sensitivity model was
implemented. For this purpose, the maximum entropy model was used and two different models
were created. One model used the temperature and precipitation data of ACCESS-CM2 and
CANESMS5 used the temperature and precipitation data of CANESM5. In ACCESS-CM2,
temperature, wind speed and elevation data played the most important role in the
implementation of the model, while in CANESMD5, precipitation, elevation and wind speed data
played the most important role. Therefore, it can be said that elevation and wind speed are
among the most important factors in DSSI. Also, in CANESMS5, the area of high-sensitivity
regions is 2000 square kilometers higher than in ACCESS-CM2, which indicates the greater
vulnerability of the region to the characteristics of this model.
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