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Mineral dust significantly affects air quality, visibility, and Earth's radiation 

balance. Dust storms frequently occur in arid, semi-arid lands, flat regions with 

erodible soils, where drought and land-use changes have increased their 

occurrence, harming agriculture and communities. Central Eurasia, particularly 

the Middle East, is a major dust source region. This study employed machine 

learning to evaluate dust emission susceptibility in South Khorasan, Iran, by 

analyzing environmental factors and enhancing existing dust prediction models. 

Researchers used land use/land cover (2004 and 2019) maps, lithology, 

elevation, and climate variables from ACCESS-CM2 and CANESM5 models 

under IPCC6's SSP5-8.5 scenario to predict dust source susceptibility. Among 

SVM, CART, and Linear Regression algorithms, Random Forest performed best 

for LULC classification and wind speed prediction. The study combined CA-

Markov for LULC prediction with Maximum Entropy modeling to calculate the 

Dust Source Susceptibility Index (DSSI). Results showed CANESM5 projected 

higher dust susceptibility than ACCESS-CM2, with over 10,340 km² falling into 

the highest-risk DSSI category. Wind plays a determining role in starting dust 

storms. The research demonstrates that integrating multiple modeling 

approaches and validation metrics (Kappa, AUC, R²) provides an effective 

framework for investigating dust source susceptibility, offering improved 

predictive capability for dust storm management and mitigation strategies. 
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1. Introduction 

Mineral dust represents the most extensive terrestrial source of particulate matter in the 

atmosphere. Once in the atmosphere, dust degrades the air quality and visibility, supplies a 

source of nutrients to remote oceans and ecosystems (Mahowald et al., 2005), provides a 

surface for the heterogeneous reaction of trace gases, and impacts the Earth's radiative budget 

(Bauer et al., 2004). The formal definition of dust storms results from turbulent winds raising 

large quantities of dust into the air and reducing visibility to less than 1000 meters (Jarraud, 

2008). The main dust areas of the world are flat, physiographically dry areas with erosion-

sensitive soils and sparse vegetation that is easily eroded by wind (Boroughani et al., 2020). In 

recent years, due to drought and Land use/Land cover Change, the frequency of days with dust 

storms has increased significantly, which causes adverse biological effects and extensive 

damage to agriculture, industry, and society. The combined development of this event along 

with the accelerated trend of development, industrialization, and population growth in urban 

areas has doubled the environmental tensions (Shaheen et al., 2020; Boloorani et al., 2020). 

Central Eurasia included many dust hotspots and has a key role in particle dispersion. The 

Middle East is a transcontinental region, primarily situated in Western Asia but extending into 

northeastern Africa. The frequent dust storm events in most parts of the east and southeast of 

Iran have devastating effects on people's lives and resulted in heavy financial losses and 

casualties (Ahmadi et al. 2015; Karami et al., 2019). The major sources of dust emissions in 

southwest Asia are the Karakum Desert which located in in Central Asia, Dasht-e-Lut, the 

Margo and Registan deserts, the Sistan Basin, and the Hamun-e-Jaz Murian-a seasonal lake in 

the Jazmurian Basin (Kaskaoutis et al., 2018; Crosbie et al., 2014; Namdari et al., 2018). 

According to previous studies on the dust sources in the world, it can be seen that there are two 

critical sources in the top and bottom of the Khorasan region. This region is bounded by the 

desert of Kazakhstan in the north and the Sistan and Baluchestan region in the south (Baghi et 

al., 2020).  

Ecological models of landscape change have potential to increase the precision of dust 

emission assessments across land cover types and the evaluation of accelerated and 

anthropogenic wind erosion (Webb and Pierre, 2018). Machine learning (ML) is a part of data 

science and a branch of artificial intelligence that can help solve a specific problem by 

examining the pattern of changes in big data and its prediction (L’heureux et al., 2017; Qiu et 

al., 2016). This method spans a broad set of models that are used to discover patterns in data 

and to make predictions, whereby the process of model ‘training’ is synonymous with a type of 

‘learning’ (Witten and Frank, 2002). In recent years, the use of MLAs for predicting various 

variables has significantly grown, especially in The Earth science (Khaledian and Miller, 2020; 

Heuvelink et al., 2021; Mandal & Vipparthi, 2021). 

Previously, some studies were conducted in relation to dust emission susceptibility, in which 

mathematical models were used in the spatial modeling of dust emission susceptibility 

(Boroughani et al., 2020; Gholami et al., 2020; Rahmati et al., 2020). In this research, through 

the use of machine learning for spatial and numerical data and other mathematical-based 

models, the dust emission susceptibility of South Khorasan in 2040 was calculated using 

environmental factors. 

 

2. Materials and methods 

2.1. Study Area 

Central Eurasia (a) is a dust-prone region, with frequent storms occurring in Kazakhstan, 

Turkmenistan, and Iran (Nobakht et al., 2021; OĞUZ, 2020; Rashki et al., 2021). This study 
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focuses on South Khorasan, Iran (b), located on the northeastern margin of the Dasht-e-Lut 

desert, which connects Turkmenistan to the Sistan plain (Fig. 1). The region's diverse climate 

and landforms make it a critical area for dust research. Six long-term synoptic stations in South 

Khorasan provide essential climatic data, including visibility and dust event records. 

Governmental reports indicate that the local population is increasingly harmed by these dust 

events. Despite its significance, South Khorasan remains understudied, representing a missing 

piece in Central Eurasian dust research. Previous studies have identified dominant dust 

transport pathways. Ahmadi et al. (2015) found that winds carry dust from the eastern Caspian 

Sea and Turkmenistan deserts through eastern Iran's drylands to the southeast. Supporting this, 

HYSPLIT particle tracking from June-September 2017 confirmed that dust in northeastern Iran 

originates mainly from Turkmenistan, with a minor contribution from Uzbekistan (Baghi et al., 

2020; Rashki et al., 2021). 

 

Fig 1. Study area map showing the location of the Synoptic Stations 

 

2.2. Dataset 

2.2.1. Climate Variables 

2.2.1.1. Observation Data 

Wind speed was obtained from South Khorasan Meteorological Organization. The dataset 

corresponds to daily observations from Birjand, Boshrooyeh, Ferdows, Ghaen, Nehbandan and 

Tabas synoptic stations. 

2.2.1.2. Predicted Data 

CMIP1 Phase 6 (CMIP6) is currently in progress and a series of new versions GCMs have been 

released. The climate model outputs from CMIP6 provide a foundational baseline for the next 
                                                           
1 Coupled Model Intercomparison Project 
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sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC6) (Eyring et 

al., 2016). The CMIP6 model algorithm was designed to overcome the drawbacks that existed 

in CMIP5 like the overestimation of annual and seasonal precipitation and the physical 

algorithm has been improved (Rivera and Arnould, 2020). Changes to the GCM 1algorithm may 

affect the precipitation simulation. To increase the confidence in future climate projections and 

the fidelity of the IPCC26, the performance of GCMs from CMIP6 requires rigorous 

assessments (Tian and Dong, 2020). Despite such much evaluation works for CMIP5, the 

assessments of CMIP6 are still ongoing in various regions. 

ACCESS-CM23, as used for CMIP6, comprises the following components: UM10.6 GA7.1 

configuration for the atmosphere; the Community Atmosphere Biosphere Land Exchange 

(CABLE) model version 2.5 (coupled directly to the UM) for the land surface; CICE5.1.2 for 

the sea ice; MOM5 for the ocean; OASIS3-MCT for the numerical coupler; and the Rose/Cylc 

(Oliver et al. 2019) framework for experiment management such as model configuration and 

simulation control. Since all the submodels have been well documented by their individual 

developers, we provide brief descriptions, mainly documenting the major changes occurring in 

the scientific configurations of the model components since the implementation of our CMIP5 

model ACCESS1.3 (Bi et al. 2020). 

The Canadian Earth System Model version 5 (CanESM5) is the latest Canadian Centre for 

Climate Modelling and Analysis (CCCma) global climate model. CanESM5 has the capability 

to incorporate an interactive carbon cycle and was developed to simulate historical climate 

change and variability, to make centennial-scale projections of future climate, and to produce 

initialized climate predictions on seasonal to decadal timescales (Swart et al., 2019b, this issue, 

hereafter S19). S19 summarizes CanESM5 components and their coupling, together with the 

model's ability to reproduce large-scale features of the historical climate and its response to 

external forcing. This paper examines the predictive ability of CanESM5 on decadal timescales. 

CanESM5 decadal climate predictions are CCCma contribution to Component A of the Decadal 

Climate Prediction Project (Boer et al., 2016) endorsed by phase 6 of the Coupled Model 

Intercomparison Project (CMIP6). 

In this study, Mean Temperature, Total Precipitation were received from WorldClim based 

on ACCESS-CM2 and CANESM5 from IPCC6 thorough SSP 5-8.5 scenario which is high 

emission scenario (Nazarenko et al., 2022). 

2.2.2. LULC 

Land Use and Land Cover (LULC) are two alterable terms that have different connotations in 

modern science (Lo, 1986). Monitoring of land use and land cover (LULC) change is 

fundamental aspect of the landscape dynamics or environmental health evaluation at different 

spatio-temporal scales (Chamling & Bera, 2020). LULC changes are fundamental processes on 

the earth’s surface and have significant impacts on human society, climate, biodiversity, 

hydrological cycles, ecosystems, biogeochemical cycles and many other processes (Were et al., 

2014; Lin et al., 2018).  

The CA-Markov model is considered a robust approach because of the quantitative 

estimation and the spatial and temporal dynamic it has for modeling the LULC dynamic (Mishra 

et al., 2014). The CA model, together with the Markov transition probability, shows the ability 

to predict the trend for landscape change. This spatio-temporal model provides not only a 

                                                           
1 General Circulation Models 
2 Intergovernmental Panel on Climate Change 
3 Australian Community Climate and Earth System Simulator-Coupled Model-v2 
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quantitative description of change in the past, but also the direction and amount of change in 

the future (Surabuddin Mondal et al., 2019). In this study, CA-Markov was used to predict land 

cover in 2040. 

LULC were obtained from Landsat 8 images. First, 11 images of the study area were stitched 

together on the Google Earth Engine platform through mosaicking. Then, by visiting and 

examining control points, the land uses in the integrated image were classified using three 

methods (RF1, SVM2, CART3), for the years 2004 and 2019. Finally, using a Markov chain, 

land use in 2040 was predicted. 

2.2.3. Lithology 

High resolution global lithological map (GLiM) was assembled from existing regional 

geological maps translated into lithological information with the help of regional literature. In 

GLIM data, the area values represent the mapped surface coverage of each rock unit, which is 

classified based on its lithology (rock type) and origin, not its intrinsic quality or strength. 

Statistical analysis of the geological layer areas reveals that the region is predominantly covered 

by superficial deposits, which dominate with a substantial 55.2% of the total area, indicating 

the prevalence of young geology and unconsolidated sediments. This is followed by soil 

complex at 18.5% and intrusive igneous rock at 10.9%, whereas hydrogeologically 

significant layers such as pre-Quaternary aquifers constitute only 3.4% and aquitards account 

for less than 0.5%. This uneven distribution, coupled with the minimal presence of metamorphic 

rock and weathered layers - each less than 0.5% - underscores a geological framework 

dominated by sedimentary and igneous formations, with limited development of hard and 

ancient rock layers in the area (fig 2). 

 

Fig 2. Lithology map of the study area 

                                                           
1 Random Forest 
2 Support Vector Machine 
3 Classification and Regression Tree 
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2.3. Methodology 

2.3.1. Interpolation 

There are many ways to convert numerical climate data to climate maps. Interpolation is a method 

to find the value between the known data points (Cressie, 2015). Although choosing the best 

interpolation method is an entirely relative choice, considering the number of stations, Inverse 

distance weighting (IDW) was the most appropriate interpolation method for this study (Shepard, 

1968). For this purpose, six Synoptic stations were used for Wind Speed interpolation. 

2.3.2. Dust Source Susceptibility 
Recent studies on dust source susceptibility have used a wide range of methodologies, evolving 

from traditional statistical approaches to advanced machine learning techniques. Key methods 

include multi-criteria decision analysis (MCDA) with the Analytical Hierarchy Process (AHP) 

as in Al-Hemoud et al. (2024) and Fuzzy-AHP hybrids in Gholami et al. (2020), as well as 

geostatistical models integrating remote sensing data, demonstrated by Darvishi Boloorani et 

al. (2022). Machine learning approaches have become more prominent, with studies employing 

Random Forest algorithms (Jafari et al., 2022), Logistic Model Trees (Jafari & Malekian, 2019), 

and Frequency Ratio models (Boroughani et al., 2020). Other methods include multivariate 

logistic regression (Middleton, 2017), Principal Component Analysis with clustering (Zoljoodi 

et al., 2021), and physical-based indices such as Dust Uplift Potential (Yu et al., 2018). These 

approaches typically integrate multiple environmental factors – including soil properties, 

vegetation indices, land use, wind patterns, and topographic features – validated against ground 

observations and satellite imagery to produce accurate susceptibility maps. 

There are several methods to evaluate the susceptibility of lands. Elevation, Lithology, 

LULC, Mean Temperature, Total Precipitation and Wind Speed were used to measure the 

susceptibility to dust sources. Then, Nominal maps were divided into different classes based on 

the defined classes. 

Maximum entropy (MaxEnt) is increasingly being considered in studying various earth 

system processes (Dyke and Kleidon, 2010). This Model compares the conditional density 

function of covariates (predictor variables) at presence sites to the marginal (background) 

density of covariates in the study area in order to derive the conditional occurrence probability 

(Elith et al., 2011). Maximum entropy models derive from information theory (as opposed to 

thermodynamic entropy models) and have shown promise in various earth science applications 

(Ruddell et al., 2013). Before this research, Maxent was used to determine different areas' 

suitability to create a dust source (Ansari et al., 2017; Lababpour, 2020). Finally, based on the 

prediction rate, Dust Source Susceptibility Index, or DSSI can be calculated (Pourhashemi et 

al., 2019). 

𝐷𝑆𝑆𝐼 = ∑(𝐹𝑅)𝑖        (𝑖 = 1,2,3, … , 𝑛) 

Which FR is Frequency Ratio. 

The flowchart of methodology for predicting DSSI in 2040 is given in Fig 3. 

2.3.3. Methods Validation 

A wide range of techniques has been used to evaluate the performance and efficiency of ML 

algorithms; for example, Receiver Operating Characteristic Area Under Curve (ROC-AUC) 

(Pham et al., 2018; Felicísimo et al., 2013), root mean square error (RMSE), mean square error 

(MSE), mean absolute error (MAE), determination coefficient (R2) (Khosravi et al., 2019; Fan 

et al., 2018). R2, MSE, RMSE, and MAE can be expressed as: 
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Fig 3. Descriptive flowchart outlining our approach to predicting dust susceptibility in 2040 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)2𝑛

𝑖=1

𝑛
 

𝑀𝑆𝐸 =
∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)

2𝑛
𝑖=1

𝑛
 

𝑀𝐴𝐸 =
1

n
× ∑ |𝑂𝑖 − 𝑃𝑖|

𝑛

𝑖=1

 

𝑟 =
𝑛(∑ 𝑋𝑜𝑏𝑠,𝑖𝑋𝑚𝑜𝑑𝑒𝑙,𝑖) − (∑ 𝑋𝑜𝑏𝑠,𝑖)(∑ 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)

√[𝑛 ∑(𝑋𝑜𝑏𝑠,𝑖)2 − (∑ 𝑋𝑜𝑏𝑠,𝑖)2][𝑛 ∑(𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)2 − (∑ 𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)2]
 

where n is the number of observations, and Xobs, Xmodel, and XAK indicate the measured, 

estimated, and the mean of measured values, respectively. 

Matrix by Kappa coefficient is a common and typical method (Congalton & Green, 2019). 

KAPPA analysis is a discrete multivariate technique used in accuracy assessments (Jensen et 

al., 1996). KAPPA analysis yields a Khat statistic (an estimate of KAPPA) that is a measure of 

agreement or accuracy (Congalton, 1991).  

𝐾 =
N ∑ 𝑥𝑖𝑖

𝑟
𝑖=1 − ∑ (x𝑖 + X𝑥+1)𝑟

𝑖=1

𝑁2 − ∑ (𝑟
𝑖=1 x𝑖𝑖X𝑥+1)

 

where; 



192  DESERT, 30-1, 2025 

 

r = number of rows and columns in error matrix, N = total number of observations (pixels) 

Xii = observation in row i and column i, 

Xi+ = marginal total of row i, and X+i = marginal total of column i 

The overall classification accuracy is the percentage of correctly classified samples of an 

error matrix. It is computed by dividing the total number of correctly classified samples by the 

total number of reference samples. It can be expressed by the following equation: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

N
∑ 𝑎𝑘𝑘

𝑛

𝑘−1
 

Producer’s accuracy (PA) informs the image analyst of the number of pixels correctly 

classified in a particular category as a percentage of the total number of pixels actually 

belonging to that category in the image. Producer’s accuracy measures errors of omission 

(Anand, 2017). 

The consumer’s accuracy (CA) is computed using the number of correctly classified pixels 

to the total number of pixels assigned to a particular category. It takes errors of commission 

into account by telling the consumer that, for all areas identified as category X, a certain 

percentage are actually correct (Anand, 2017). 

Final dust sources susceptibility maps were evaluated using the Area Under Curve (AUC). 

The area under the ROC curve, called AUC, indicates the amount of system prediction through 

its ability to accurately estimate its occurrence (presence of dust sources) and non-occurrence 

(absence of dust sources). It varies from 0.5 to 1 (Zhu and Wang, 2009). Finally, the range of 

values of dust sources susceptibility maps was reclassified between 0 and 1. 

To evaluate LULC classification Kappa, Overall Accuracy, Producer’s Accuracy and 

Consumer’s Accuracy, and to evaluate wind speed, RMSE, MSE, MAE and R2, and to evaluate 

DSSI, AUC were used. 

 

3. Results and discussion 

3.1. LULC Classification 

The following is a land use map of the study area in 2004 and 2019 (Fig 4). 

 

Fig 4. Classified map of 2004 (a) and 2019 (b) 

 

Analysis of the LULC area changes from 2004 to 2019 reveals significant and concerning 

environmental trends. The most striking changes are the dramatic expansion of urban areas, 

which more than doubled from 1,570.74 km² to 3,542.73 km², and the substantial spread of 

sand dunes, which increased from 5,237.80 km² to 7,796.22 km², indicating severe 
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desertification. Concurrently, salt-affected lands grew from 1,524.65 km² to 1,753.64 km², 

signaling increasing soil salinity, while areas of poor vegetation saw a minor decline. These 

concurrent trends point to mounting pressure on the natural environment from both human 

development and ecological degradation (Table 1). 

Table 1. Area of LULC classes in 2004 and 2019 

 Area (km2) 

Class 2004 2019 

Barren 131741.48 127447.49 

Poor Vegetation 14335.28 14189.29 

Sand Dunes 5237.80 7796.22 

Urban 1570.74 3542.73 

Salt 1524.65 1753.64 

 

Based on the results, RF is the best model for LULC classification in the study area. In 

addition to having the highest Kappa value, this model also has the best Validation Overall 

Accuracy. On the other hand, SVM is the weakest model for LULC classification, and its kappa 

value does not reach 0.5 (Table 2). 

Table 2. Values of overall accuracy metrics for LULC classification 

  Training Overall Accuracy Validation Overall Accuracy Kappa 

LULC (2004) 

SVM 0.685 0.655 0.477 

CART 1.000 0.782 0.687 

RF 0.956 0.832 0.757 

LULC (2019) 

SVM 0.662 0.663 0.465 

CART 1.000 0.696 0.789 

RF 0.962 0.832 0.755 

 

Consumer and producer accuracy in 2004 show that the SVM model does not have the 

necessary ability to distinguish “urban” and “sand dunes” classes. These two classes are also 

weak in CART classification in 2004, but their value is high in 2019. Overall, the difference in 

value between CART and RF is small in 2019, but RF model performed slightly better. This 

difference is more in the classification of 2004 classification (Table 3). 

After predicting the land cover in 2040, the results showed that 85% of the barren areas 

remain in their current form. On the other hand, 67% of areas with poor vegetation will become 

areas without vegetation in 2040, which shows the trend of desertification in the future (Fig 5). 

It is also observed that the Sand Dunes have increased significantly. The area of salt flats has 

also increased. However, it is not as much as the increase in the area of Sand Dunes (Table 4). 

The study's results, showing RF achieving the highest Kappa value and overall accuracy, are 

consistent with previous research where RF consistently ranks high in classification tasks 

involving remote sensing data. In a study by Krivoguz et al. (2023), various machine learning 

models were evaluated for LULC classification using Landsat-5 data. The RF model 

demonstrated high accuracy, similar to the current study's findings, where RF was favored over 

SVM and CART models. This reinforces the notion that RF is particularly effective in 

distinguishing between land cover types, especially in regions with complex landscapes or 

overlapping spectral signatures (Basheer et al., 2022). 
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Table 3. Values of consumer and producer accuracy in for LULC classification 

Consumer’s Accuracy   

Class 
2004 2019 

SVM CART RF SVM CART RF 

Barren 0.550 0.787 0.810 0.561 0.779 0.756 

Poor vegetation 0.950 0.789 0.821 0.888 0.682 0.776 

Sand dunes 0.000 0.200 0.833 0.000 0.857 0.750 

Urban 0.000 0.684 0.800 0.925 0.779 0.906 

Salt 0.764 0.809 0.891 0.750 0.861 0.861 

Producer’s Accuracy   

Class 
2004 2019 

SVM CART RF SVM CART RF 

Barren 0.894 0.824 0.900 0.908 0.805 0.885 

Poor vegetation 0.483 0.875 0.883 0.210 0.763 0.776 

Sand dunes 0.000 0.166 0.833 0.000 0.750 0.750 

Urban 0.000 0.393 0.363 0.409 .754 0.639 

Salt 0.702 0.765 0.810 0.700 .775 0.775 

 

 

Fig 5. LULC predicted map using CA-Markov in 2040 

 

 

Table 4. Areas of classified map in 2040 

Class Area (Km2) 

Barren 120872.93 

Poor Vegetation 13384.62 

Sand Dunes 9516.31 

Urban 3411.62 

Salt 1880.75 
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3.2. Climatic Variables Downscaling 

Downscaling of wind speed in different stations shows that, like mean temperature and 

precipitation, for downscaling of wind speed, RF has the best performance compared to other 

regressors. The value of R2 gauge in Ghaen station is estimated to be higher than other stations. 

The value of RMSE in this station is also lower than other stations and considering the 

measurements of other regressors, it can be seen that the downscaling of wind speed in Ghaen 

station is done with higher quality than other stations. Also, LR has a good performance (Table 5). 

Table 5. Calibration and Validation metrics of Wind Speed in all synoptic stations. 

  LR RF SVM (rbf1) 

  cal val cal val cal val 

B
ir

ja
n

d
 

R2 0.190 0.236 0.841 0.849 0.227 0.222 

RMSE 2.353 2.203 1.040 0.979 2.298 2.224 

MSE 5.539 4.854 1.082 0.959 5.282 4.947 

MAE 1.826 1.673 0.752 0.714 1.718 1.669 

B
o
sh

ro
o
y
eh

 R2 0.182 -0.870 0.556 0.779 0.229 -0.794 

RMSE 1.186 4.276 0.873 1.467 1.150 4.186 

MSE 1.406 18.290 0.763 2.153 1.324 17.529 

MAE 0.865 3.376 0.637 1.095 0.828 3.290 

F
er

d
o
w

s 

R2 0.208 0.037 0.843 0.808 0.237 0.094 

RMSE 1.795 1.710 0.797 0.761 1.762 1.658 

MSE 3.224 2.924 0.635 0.580 3.106 2.750 

MAE 1.425 1.311 0.590 0.556 1.394 1.261 

G
h
ae

n
 

R2 0.699 0.216 0.924 0.894 0.750 0.360 

RMSE 1.094 2.228 0.550 0.815 0.997 2.012 

MSE 1.197 4.964 0.302 0.665 0.994 4.051 

MAE 0.861 1.679 0.399 0.581 0.776 1.496 

N
eh

b
an

d
an

 R2 0.462 0.287 0.896 0.875 0.469 0.435 

RMSE 2.578 2.510 1.133 1.050 2.562 2.235 

MSE 6.650 6.302 1.284 1.102 6.564 4.996 

MAE 1.975 1.965 0.812 0.768 1.907 1.730 

T
ab

as
 

R2 0.055 -0.045 0.795 0.809 0.060 0.0302 

RMSE 2.492 2.694 1.161 1.151 2.486 2.594 

MSE 6.210 7.260 1.348 1.324 6.183 6.732 

MAE 1.901 2.064 0.833 0.836 1.894 1.967 

 

                                                           
1 Radial Basis Function 
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3.3. DSSI 

In Obisesan et al (2024)’s study, various machine learning models were trained to predict 

meteorological variables in a tropical location. The results demonstrated that the Random Forest 

model had the highest performance metrics, including an R² value of 0.93 for temperature 

prediction and 0.79 for wind speed. showed that Random Forest achieved an accuracy of 

95.64%, surpassing the Decision Tree's accuracy of 94.85%. This reinforces the idea that RF is 

more effective for predicting rainfall due to its ensemble nature, which enhances predictive 

performance. Furthermore, Mecikalski et al (2021) utilized Random Forest to assess predictor 

importance related to severe storm warnings. The study highlighted how incorporating satellite 

data into RF models significantly improved prediction accuracy for severe weather events, 

showcasing RF's versatility in different meteorological applications. 

The results showed that CANESM5 was implemented with higher quality according to the 

AUC assessment (Table 6). Also, the Jackknife of AUC presented for the two models indicated 

that the common point of the two models is the high importance of wind speed, the high value 

of which indicates its importance in the suitability of the habitat for the formation of dust 

sources (Fig 6). 

 

Fig 6. Jackknife of AUC for ACCESS-CM2 and CANESM5 

 

Table 6. Values of AUC 

 AUC 

Model Training data Test data 

ACCESS-CM2 0.882 0.876 

CANESM5 0.896 0.966 
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The results show that in CANESM5, the areas with the highest potential to form dust sources 

are 2000 km2 more than ACCESS-CM2 (Table 7). Also, the area of the good floor is more in 

CANESM5 than in model 1, which indicates the higher area of areas prone to dust formation 

in CANESM5 (Fig 7).  

 

 

Fig 7. Continuous and classified map of DSSI in ACCESS-CM2 and CANESM5 under SSP 5-8.5 scenario 

 

In similar research, Boroughani et al (2022) focused on mapping dust sources using satellite 

imagery combined with machine learning techniques. The Random Forest model achieved an 

accuracy of 63.5%, making it the most accurate among the algorithms tested. Utilizing the 

Google Earth Engine, Wang et al (2023) employed four machine learning methods to predict 

sources of sand and dust storms in arid areas. The results indicated that machine learning 

approaches effectively identified potential dust sources, providing valuable insights for 

environmental management and planning. Aryal (2022) compared various machine learning 

models, including Random Forest (RF), Support Vector Machine (SVM), and others, for 

predicting fine and coarse dust concentrations. The findings revealed that non-linear machine 
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learning models outperformed linear regression, particularly in predicting fine dust. Also, they 

found Air temperature was identified as the most significant predictor. 

There are no other similar studies in this field and with these methods, and this study 

provides a new and comprehensive method by incorporating climate and land use, making it 

possible to predict dust sources. 

Table 7. Areas of DSSI classified map in ACCESS-CM2 and CANESM5 under SSP 5-8.5 scenario 

DSSI class Area (Km2) 

 ACCESS-CM2 CANESM5 

Least 86476.81 83213.75 

Moderate 39168.00 38594.06 

Good 14038.50 16329.06 

High 8801.93 10348.37 

 

4. Conclusion 

In this study, three approaches were used to classify land use: Random Forest, CART and SVM. 

Finally, Random Forest was selected from the two methods CART and Random Forest, which 

differed only slightly. After the model was modeled using two classified land use maps from 

2004 and 2019, a LULC map for 2040 was created. After downloading the data of two 

temperature variables from IPCC6 models ACCESS-CM2 and CANESM5, the observed wind 

speed data for 2040 was predicted using three linear regression models, Random Forest and 

SVM. The R2 showed that the Random Forest model performed better. 

Finally, by combining static factors such as lithology and elevation and dynamic factors 

including two categories of received data, including temperature and precipitation, and 

predicted data, including wind speed and land cover, the dust source sensitivity model was 

implemented. For this purpose, the maximum entropy model was used and two different models 

were created. One model used the temperature and precipitation data of ACCESS-CM2 and 

CANESM5 used the temperature and precipitation data of CANESM5. In ACCESS-CM2, 

temperature, wind speed and elevation data played the most important role in the 

implementation of the model, while in CANESM5, precipitation, elevation and wind speed data 

played the most important role. Therefore, it can be said that elevation and wind speed are 

among the most important factors in DSSI. Also, in CANESM5, the area of high-sensitivity 

regions is 2000 square kilometers higher than in ACCESS-CM2, which indicates the greater 

vulnerability of the region to the characteristics of this model. 
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